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Abstract
In this paper, we study tubular surfaces in Minkowski 3-space satisfying

some equations in terms of the Gaussian curvature, the mean curvature, the
second Gaussian curvature and the second mean curvature. This paper is a
completion of Weingarten and linear Weingarten tubular surfaces in Minkowski
3-space.
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1 Introduction

A surface M in Euclidean space E3 or Minkowski space E3
1 is called a Wein-

garten surface if there is a smooth relation U(k1, k2) = 0 between its two
principal curvatures k1 and k2. If K and H denote respectively the Gauss
curvature and the mean curvature of M , U(k1, k2) = 0 implies a relation
Φ(K,H) = 0. The existence of a non-trivial functional relation Φ(K,H) = 0
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on a surface M parameterized by a patch x(s, t) is equivalent to the vanishing

of the corresponding Jacobian determinant, namely
∣∣∣∂(K,H)
∂(s,t)

∣∣∣ = 0 [6].

The simplest case when U = ak1 + bk2 − c or Φ = aH + bK − c (a,b and
c are constants with a2 + b2 6= 0 ), the surfaces are called linear Weingarten
surfaces. When the constant a = 0, a linear Weingarten surface M reduces to a
surface with constant Gaussian curvature. When the constant b = 0, a linear
Weingarten surface M reduces to a surface with constant mean curvature.
In such a sense, the linear Weingarten surfaces can be regarded as a natural
generalization of surfaces with constant Gaussian curvature or with constant
mean curvature [4].

The set of solutions of U(k1, k2) = 0 is called the curvature diagram of the
surface [7]. If the curvature diagram degenerates to exactly one point then
the surface has two constant principal curvatures which is possible for only a
piece of a plane, a sphere or a circular cylinder. If the curvature diagram is
contained in one of the coordinate axes through the origin then the surface
is developable. If the curvature diagram is contained in the main diagonal
k1 = k2 then the surface is a piece of a plane or a sphere because every point is
umbilic. The curvature diagram is contained in a straight line parallel to the
diagonal k1 = −k2 if and only if the mean curvature is zero. It is contained in
a standard hyperbola k1 = c

k2
if and only if the Gaussian curvature is constant

[6].

If the second fundamental form II of a surface M in E3
1 is non-degenerate,

then it is regarded as a new pseudo-Riemannian metric. Therefore, the second
Gaussian curvature KII of non-degenerate second fundamental form II can be
defined formally on the Riemannian or pseudo-Riemannian manifold (M, II)
[4].

For a pair (X, Y ), X 6= Y , of the curvatures K,H and KII of M in E3
1 , if

M satisfies U(X, Y ) = aX+bY −c = 0, then it said to be a (X, Y )-Weingarten
surface and (X, Y )-linear Weingarten surface, respectively [4].

Several geometers [3, 4, 8] have studied tubes in Euclidean 3-space and
Minkowski 3-space satisfying some equation in terms of the Gaussian cur-
vature, the mean curvature and the second Gaussian curvature.Following the
Jacobi equation and the linear equation with respect to the Gaussian curvature
K, the mean curvature H, the second Gaussian curvature KII and the second
mean curvature HII an interesting geometric question is raised: Classify all
surfaces in Euclidean 3-space satisfying the conditions

Φ(X, Y ) = 0 (1.1)

aX + bY = c (1.2)

where X, Y ∈ {K,H,KII , HII}, X 6= Y and (a, b, c) 6= (0, 0, 0).
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In this paper, we studied Weingarten and linear Weingarten tubular sur-
faces and we obtained some conditions for that surfaces in E3

1 .We show that
tubular surfaces are not umbilical and minimal by using their principal curva-
tures and they haven’t curvature diagram.

2 Preliminaries

The Minkowski 3-space E3
1 is the Euclidean 3-space E3 provided with the

Lorentzian inner product

〈X, Y 〉 = −x1y1 + x2y2 + x3y3

where X = (x1, x2, x3) and Y = (y1, y2, y3). Since 〈, 〉 is an indefinite metric,
recall that a vector v ∈ E3

1 can have the one of three Lorentzian causal char-
acters: it is spacelike if 〈v, v〉 > 0 or v = 0 , timelike if 〈v, v〉 < 0 and null
(lightlike) if 〈v, v〉 = 0 and v 6= 0 . Similarly, an arbitrary curve α = α(s)
in E3

1 is locally spacelike, timelike or null (lightlike), if all of its velocity vec-
tors α′(s) are respectively spacelike, timelike or null (lightlike) [6]. Denote
by {T,N,B} the moving Frenet frame along the curve α(s) parametrized by
a pseudo-arclength parameter such that 〈α′(s), α′(s)〉 = ±1. If α is timelike
curve, then Frenet formulae are

T ′ = κN, N ′ = κT + τB, B′ = −τN (2.1)

where 〈T, T 〉 = −1, 〈N,N〉 = 1, 〈B,B〉 = 1. If α is a spacelike curve with a
spacelike principal normal, then Frenet formulae are

T ′ = κN, N ′ = −κT + τB, B′ = τN (2.2)

where 〈T, T 〉 = 〈N,N〉 = 1, 〈B,B〉 = −1. If α is a spacelike curve with a
spacelike binormal, then Frenet formulae are

T ′ = κN, N ′ = κT + τB, B′ = τN (2.3)

where 〈T, T 〉 = 〈B,B〉 = 1, 〈N,N〉 = −1 [5].
We denote a surface M in E3

1 by

M (s, t) = (m1 (s, t) ,m2 (s, t) ,m3 (s, t)) .

Let U be the standard unit normal vector field on a surface M defined by

U =
Ms ∧Mt

‖Ms ∧Mt‖
.
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The first fundamental form I and the second fundamental form II of a surface
M are

I = Eds2 + 2Fdsdt+Gdt2, II = eds2 + 2fdsdt+ gdt2

respectively, where

E = 〈Ms,Ms〉, F = 〈Ms,Mt〉, G = 〈Mt,Mt〉
e = 〈Mss, U〉, f = 〈Mst, U〉, g = 〈Mtt, U〉

[4]. The Gaussian curvature K and the mean curvature H are

K =
eg − f 2

EG− F 2
, H =

Eg − 2Ff +Ge

2(EG− F 2)
,

respectively. From Brioschi’s formula in a Minkowski 3-space, we are able to
compute KII of a surface by replacing the components of the first fundamen-
tal form E,F,G by the components of the second fundamental form e, f, g
respectively [4]. Thus, the second Gaussian curvature KII of a surface is

KII =
1

(|eg| − f 2)2


∣∣∣∣∣∣
−1

2
ett + fst − 1

2
gss

1
2
es fs − 1

2
et

ft − 1
2
gs e f

1
2
gt f g

∣∣∣∣∣∣−
∣∣∣∣∣∣

0 1
2
et

1
2
gs

1
2
et e f

1
2
gs f g

∣∣∣∣∣∣


and the second mean curvature HII of a surface is defined by

HII = H − 1

2
√
|det II|

∑
i,j

∂

∂ui

(√
|det II|Lij ∂

∂uj

(
ln
√
|K|
))

(2.4)

where (Lij) = (Lij)
−1 and Lij are the coefficients of second fundamental forms

[1,2]. The principal curvatures of the surface M(s, t) can be found by the
following equations(

EG− F 2
)
k2n − (Eg + eG− 2fF ) kn +

(
eg − f 2

)
= 0

and then the principal curvatures are

k1 = H +
√
H2 −K, k2 = H −

√
H2 −K.

Definition 2.1 Let k1, k2 be the principal curvatures of the surface M(s, t)
in E3

1 . The surface M(s, t) has a curvature diagram if it satisfies

f(k1, k2) = a1k
2
1 + 2a2k1k2 + a3k

2
2 + a4k1 + a5k2 + a6 = 0 (2.5)

for some constant ai(i = 1, 2, ..., 6).

Remark 2.2 It is well known that a minimal surface has vanishing second
Gaussian curvature but a surface with vanishing second Gaussian curvature
needs not be minimal [4].
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3 Weingarten Tubular Surfaces in Minkowski

3-Space

Definition 3.1 Let α : [a, b] → E3
1 be a unit-speed spacelike curve with

timelike principal normal. A tubular surface of radius λ > 0 about α is the
surface with parametrization

M1(s, θ) = α(s) + λ [N(s) cosh θ +B(s) sinh θ] (3.1)

a ≤ s ≤ b [5].

We have the natural frame {Ms,Mθ} of the surface Mgiven by

Ms = (1 + λκ cosh θ)T + (λτ sinh θ)N + (λτ cosh θ)B,

Mθ = (λ sinh θ)N + (λ cosh θ)B.

The components of the first fundamental form are

E = λ2τ 2 + (1− λκ cosh θ)2

F = λ2τ

G = λ2.

The unit normal vector field U is obtained by U = N cosh θ + B sinh θ. Since
〈U,U〉 = −1 < 0, the surface M1 is a spacelike surface. From this, the compo-
nents of the second fundamental form of M1 are given by

e = −λτ 2 − κ cosh θ (1 + λκ cosh θ)

f = −λτ
g = −λ.

If the second fundamental form is non-degenerate, eg − f 2 6= 0. Namely, κ,
(1 + λκ cosh θ) and cosh θ are nowhere vanishing. In this case, we can define
formally the second Gaussian curvature KII and second mean curvature HII

on M1. On the other hand, the curvatures K, H , KII and HII are

K =
κ cosh θ (1 + λκ cosh θ)

λ (−1 + λκ cosh θ)2
, H = −(1− λκ cosh θ) + 2λ2κ2 cosh2 θ

2λ (−1 + λκ cosh θ)2
,

(3.2)

KII =
κ
(
1 + 6λκ cosh3 θ + 4λ2κ2 cosh4 θ + cosh2 θ

)
4 cosh θ (1 + λκ cosh θ)

, (3.3)

HII = − 1

8λκ3 cosh3 θ (1 + λκ cosh θ)3 (−1 + λκ cosh θ)2

(
8∑
i=0

ui coshi θ

)
(3.4)
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and where the coefficients ui are

u0 = −3λ2κ2τ 2

u1 = +2λκ
(
κτ ′ − κ′τ sinh θ − 2λκ2τ 2

)
− κ3

u2 = 3λ (κ′)
2

+ κλ (2κ (3λκτ ′ + 2κ′τ) sinh θ)

− κλ
(

2 (κ′′)
2

+ 3κ3 + κτ 2 + 5λ2κ3τ 2
)

u3 = κ

{
2λ3κ2 (3κ′τ − κτ ′) sinh θ + 3κ2

+λ2
(
2κ2τ 2 (9λ2κ2 − 1) + 11κ4 − 6κκ′′ + 4 (κ′)2

) }
u4 = λκ2

(
6λ3κ2 (4κ′τ sinh θ − κτ ′)

)
+ λκ2

(
λ2
(

13κ4 − 5 (κ′)
2 − 2κκ′′ − 3κ2τ 2

))
− 3λκ4

u5 = λ2κ3
(
λ2
(

6κ4 + 6κκ′′ − 12κ2τ 2 − 18 (κ′)
2
)
− 7κ2

)
u6 = 11λ3κ6

u7 = 20λ4κ7

u8 = 8λ5κ8.

respectively. Differentiating K,H and KII with respect to s and θ, we get

Ks = −κ
′ cosh θ (1 + 3λκ cosh θ)

λ (−1 + λκ cosh θ)3
, Kθ = −κ sinh θ (1 + 3λκ cosh θ)

λ (−1 + λκ cosh θ)3
, (3.5)

Hs = − κ′ (1 + 3λκ cosh θ)

2 (−1 + λκ cosh θ)3
, Hθ = −κ sinh θ (1 + 3λκ cosh θ)

2 (−1 + λκ cosh θ)3
, , (3.6)

(KII)s =
κ′
(
cosh2 θ + 12λκ cosh3 θ + 18λ2κ2 cosh4 θ + 8λ3κ3 cosh5 θ + 1

)
4 cosh θ (1 + λκ cosh θ)2

,

(3.7)

(KII)θ =
κ sinh θ

(
cosh2 θ + 12λκ cosh3 θ + 18λ2κ2 cosh4 θ

)
4 cosh2 θ (1 + λκ cosh θ)2

+
κ sinh θ

(
8λ3κ3 cosh5 θ − 1− 2λκ cosh θ

)
4 cosh2 θ (1 + λκ cosh θ)2

Now, we investigate a tubular surface M in E3
1 satisfying the Jacobi equation

Φ(K,HII) = 0. By using (3.5), we obtained Φ(K,HII) in the form

Φ(K,HII) =
1

4λ2κ3 cosh3 θ (1 + λκ cosh θ)3 (−1 + λκ cosh θ)5

7∑
i=0

ai coshi θ

(3.8)
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with respect to the Gaussian curvature K and the second mean curvature HII

where

a0 = 3λκ3ττ ′ sinh θ + 3λκ2κ′τ 2 sinh θ

a1 = κ2
{
κκ′ sinh θ + λκτ ′′ + 13λ2κτ (κτ ′ + κ′τ)− λκ′′τ

}
a2 = λ

{{
7λ2κ4τ (κ′τ + κτ ′)− 4κκ′κ′′

+κ2 (κ′′′ − κττ ′) + 3(κ′)3

}
sinh θ + λκ3 (5κ′τ ′ − κ′′τ + 6κτ ′′)

}

a3 = λκ

 λ

{
6κ2κ′′′ − κ3ττ ′ (33λ2κ2 + κ′)− 20κ4κ′

+λκ3κ′ (17τ ′ − 33λκτ 2)− 19κκ′κ′′ + 13 (κ′)3

}
sinh θ

+
(
κκ′′τ (1 + 9λ2κ2)− 3 (κ′)2 τ − κκ′τ ′ + κ2τ ′′ (8λ2κ2 − 1)

)


a4 = λ2κ2


λ

{
κ3ττ ′ (9− 54λ2κ2) +

(
8κ2κ′′′ + 7 (κ′)3

)
−κκ′ (46κ3 + 54λ2κ3τ 2 + 15κ′′)

}
sinh θ

+

{
λ2κ3 (21κ′′τ + 15κ′τ ′ − 6κτ ′′)

+κκ′′τ + κκ′τ ′ − (κ′)2 τ − 6κ2τ ′′

}


a5 = λ3κ3

 λ

{
3κ′
(
13κκ′′ − 11 (κ′)2

)
− 9κ4 (5κ′ + λτ ′′)

+21κ3ττ ′ − 6κ2κ′′′

}
sinh θ

+
(
9κκ′′τ (4λ2κ2 − 1) + 9κκ′τ ′ (3λ2κ2 − 1) + 9 (κ′)2 τ − 8κ2τ ′′

)


a6 = λ4κ4
{
λ
(
κ′
(
63κκ′′ − 18κ4 − 54 (κ′)2

)
− 9κ2κ′′′ + 36κ3ττ ′

)
sinh θ

+3
(
2κ2τ ′′ + 7

(
(κ′)2 τ − κκ′′τ − κκ′τ ′

)) }
a7 = 9λ5κ5

(
κ2τ ′′ + 4 (κ′)

2
τ − 4κκ′′τ − 4κκ′τ ′

)
.

Then, by (3.5), equation (3.8) becomes

7∑
i=0

ai coshi θ = 0 (3.9)

Hence we have the following theorem.

Theorem 3.2 Let M1 be a tubular surface defined by (3.1) with non-degene-
rate second fundamental form. M1 is a (K,HII)-Weingarten surface if and
only if M1 is a tubular surface around a circle or a helix in Minkowski 3-space.

Proof. Let assume that M1 is a (K,HII)-Weingarten surface then the
Jacobi equation (3.9) satisfied. Since the polynomial in (3.9) is equal to zero
for every θ, all its coefficients must be zero. Therefore, the solutions of a0 =
a1 = a2 = a3 = a4 = a5 = a6 = a7 = 0 are κ′, τ = 0 and κ′, τ ′ = 0 that
is M1 is a tubular surface around a circle or a helix in Minkowski 3-space,
respectively.

Conversely, suppose that M1 is a tubular surface around a circle or a helix
in Minkowski 3-space then it is easily to see that Φ(K,HII) = 0 is satisfied for
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the cases both κ′, τ = 0 and κ′, τ ′ = 0. Thus M1 is a (K,HII)-Weingarten
surface in Minkowski 3-space.

We suppose that a tubular surface M1(s, θ) with non-degenerate second
fundamental form in E3

1 is (H,HII)-Weingarten surface. From (3.6), Φ(H,HII)
is

Φ(H,HII) =
1

8λκ3 cosh3 θ (1 + λκ cosh θ)3 (−1 + λκ cosh θ)5

7∑
i=0

mi coshi θ

(3.10)
with respect to the variable cosh θ , where

m0 = −3λκ2κ′τ (τ + κτ ′) sinh θ (3.11)

m1 = −κ3
(
13λ2κττ ′ + 13λ2κ′τ 2 + κ′

)
sinh θ + λκ2 (κ′′τ − κτ ′′)

m2 = λ sinh θκ3ττ ′
(
1− 7λ2κ2

)
− κ2κ′′′ + κ′

(
4κκ′′ − 7λ2κ4τ 2 − 3 (κ′)

2
)

+λ sinh θ
(
λκ3 (κ′′τ − 5κ′τ ′ − 6κτ ′′)

)
m3 = λ2κ sinh θ

(
κ3κ′τ

(
τ ′ + 33λ2κτ

)
+ 33λ2κ5ττ ′

)
+λ2κ sinh θ

(
κ′
(

20κ4 + 19κκ′′ − 13 (κ′)
2
)
− 6κ2κ′′′

)
+λ2κ

(
κ2τ ′′

(
1− 8λ2κ2

)
− κκ′τ ′

(
1 + 17λ2κ2

))
−λ2κ

(
κκ′′τ

(
9λ2κ2 + 1

)
+ (κ′)2τ

)
m4 = λ2κ2λ sinh θκκ′

(
15κ′′ + 46κ3 + 54λ2κ3τ 2

)
+λ2κ2λ sinh θ

(
9κ3ττ ′

(
6λ2κ2 − 1

)
− 8κ2κ′′′ − 7 (κ′)

3
τ
)

+λ2κ2
(

(κ′)
2
τ − κκ′τ ′

(
15λ2κ2 + 1

))
+λ2κ2

(
6κ2τ ′′

(
λ2κ2 + 1

)
− κκ′′τ

(
21λ2κ2 + 1

))
m5 = λ3κ3

 λ

{
6κ2κ′′′ + κκ′ (45κ3 − 39κ′′)

−3κ3τ (12λκ′′ + 7τ ′) + 33 (κ′)3

}
sinh θ

+9κκ′′τ + 8κ2τ ′′ + 9κκ′τ ′ + 9λ2κ4τ ′′ − 9 (κ′)2 τ − 27λ2κ3κ′τ ′


m6 = λ4κ4

{
λ
{

54 (κ′)3 + 9κ2κ′′′ − 36κ3ττ ′ − 63κκ′κ′′ + 18κ4κ′
}

sinh θ

+21κκ′′τ − 21 (κ′)2 τ − 6κ2τ ′′ + 21κκ′τ ′

}
m7 = 9λ5κ5

{
4κκ′′τ sinh θ − 4 (κ′)

2
τ + 4κκ′τ ′ − κ2τ ′′

}
.
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Then, by Φ(H,HII) = 0, the equation (3.10) can be written in the following
form.

7∑
i=0

mi coshi θ = 0. (3.12)

Thus we state the following theorem.

Theorem 3.3 Let M1 be a tubular surface defined by (3.1) with non-degene-
rate second fundamental form. M1 is a (H,HII)-Weingarten surface if and
only if M1 is a tubular surface around a circle or a helix in Minkowski 3-space.

Proof. Considering Φ(H,HII) = 0 and using (3.11 ) one can obtain the
solutions κ′, τ = 0 and κ′, τ ′ = 0 of the equation m0 = m1 = m2 = m3 =
m4 = m5 = m6 = m7 = 0 for all θ. Thus it is easly proved that M1 is a
(H,HII)-Weingarten surface if and only if M1 is a tubular surface around a
circle or a helix in Minkowski 3-space.

We consider a tubular surface M1 as (KII , HII)-Weingarten surface with
non-degenerate second fundamental form in E3

1 . By using (3.7),

Φ(KII , HII) =
1

16λκ3 cosh5 θ (1 + λκ cosh θ)5 (−1 + λκ cosh θ)3

12∑
i=0

ni coshi θ.

(3.13)
for some ni.

Since Φ(KII , HII) = 0, then the equation (3.13) becomes in following form.

12∑
i=0

ni coshi θ = 0. (3.14)

Hence we have the following theorem.

Theorem 3.4 Let M1 be a tubular surface defined by (3.1) with non-degene-
rate second fundamental form. M1 is a (KII , HII)-Weingarten surface if and
only if M1 is a tubular surface around a circle or a helix in Minkowski 3-space.

Proof.It can be easly proved similar to theorems 1 and 2.
Consequently, we can give the following main theorem for the end of this

part.

Theorem 3.5 Let (X, Y ) ∈ {(K,HII) , (H,HII) , (KII , HII)} and let M1

be a tubular surface defined by (3.1) with non-degenerate second fundamental
form. M1 is a (X, Y )-Weingarten surface if and only if M1 is a tubular surface
around a circle or a helix in Minkowski 3-space.
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Theorem 3.6 The spacelike tubular surface M1(s, θ) is neither umblical
nor minimal.

Proof.Let k1, k2 be the principal curvatures of M1(s, θ) in E3
1 . The prin-

cipal curvatures are obtained as follows;

k1 = − κ cosh θ

1 + λκ cosh θ
, k2 = −1

λ
. (3.15)

Since M1 has not a curvature diagram such that k1 − k2 = 0 and k1 + k2 = 0
then M1 is neither umblical nor minimal.

3.1 Linear Weingarten Tubular Surfaces in Minkowski
3-Space

In this part of this paper, we study on linear Weingarten tubular surfaces
(K,HII), (H,HII), (KII , HII) and (K,H,HII), (K,H,KII), (H,KII , HII),
(K,KII , HII) and (K,H,KII , HII) in E3

1 , linear Weingarten tubes (K,H),
(K,KII), (H,KII) are studied in [3,4].

Let a1, a2, a3, a4 and p be constants. In general, a linear combination of
K, H, KII and HII can be constructed as

a1K + a2H + a3KII + a4HII = p. (4.1)

By the straightforward calculations, we obtained the reduced form of the
equation (4.1) as

a1K + a2H + a3KII + a4HII − p

=
−1

8λκ3 (1 + λκ cosh θ)3 (−1 + λκ cosh θ)2 cosh3 θ

10∑
i=0

wi(cosh θ)i

where the coefficients are
w0 = −3a4λκ

2τ 2

w1 = κ
{

2a4λ (κτ ′ − κ′τ) sinh θ − a4κ2
(
4λ2τ 2 + 1

)}
w2 = λ

{
2a4λκ

2 (3κτ ′ + 2κ′τ) sinh θ
+a4 (κ2τ 2 (5λ2κ2 + 1)− 2κκ′′ + 3(κ′)2 + 3κ4)− 2a3κ

4

}
w3 = κ

{
2a4λ

3κ2 (3κ′τ − κτ ′) sinh θ + 4a2κ
2 + 8pλκ2

+a4 (3κ2 − 6λ2κκ′′ + λ2 (11κ4 − 2κ2τ 2 + 18λ2κ4τ 2 + 4(κ′)2))

}
w4 =

κ2 (6a4λ
4κ2 (4κ′τ − κτ ′) sinh θ − 8a1κ

2 + 8a2λκ
2 − 2a3λκ

2 (1− 2λ2κ2))
+κ2 (a4λ (13λ2κ4 − 3κ2 + 2λ2κκ′′ − 5λ2(κ′)2 − 3λ2κ2τ 2) + 8pλ2κ2)

w5 = λκ3
{

−32a1κ
2 + 8a2λκ

2 − 12a3λκ
2 − 16pλ2κ2

+a4λ (κ2 (6λ2κ2 − 12λ2τ 2 − 7)− 18λ2(κ′)2 + 6λ2κκ′′)

}
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w6 = λ2κ6
{
−48a1 + 16a2λ− 4a3λ− 2a3λ

3κ2 + 11a4λ− 16pλ2
}

w7 = 4λ3κ7
{
−8a1 + 5a2λ+ 6a3λ+ 5a4λ+ 2pλ2

}
w8 = 8a4λ

5κ8 − 8a1λ
4κ8 + 8pλ6κ8 + 8a2λ

5κ8 + 14a3λ
5κ8

w9 = −12a3λ
6κ9

w10 = −8a3λ
7κ10.

Since “(1 + λκ cosh θ)3 cosh3 θ” is not constant, p has to be zero. From w0 = 0,
one has κ = 0. Hence for all the cases a2 = a3 = 0, a1 = a3 = 0 and a1 = a2 = 0,
we can give the following theorems.

Theorem 3.7 Let (X, Y ) be one of (K,HII) , (H,HII), (KII , HII). Then
there are no (X, Y )-linear Weingarten tubular surfaces M1 in Minkowski 3-
space defined by (3.1) with non-degenerate second fundamental form.

Theorem 3.8 Let (X, Y, Z) be one of (K,H,KII) , (K,H,HII) , (K,KII , HII)
and (H,KII , HII) . Then there are no (X, Y, Z)-linear Weingarten tubular sur-
faces in Minkowski 3-space defined by (3.1) with non-degenerate second funda-
mental form.

Theorem 3.9 Let M1 be a tubular surface defined by (3.1) with non-degene-
rate second fundamental form. Then (K,H,KII , HII) are not linear Wein-
garten surface in Minkowski 3-space.

Definition 3.10 Let α : [a, b] → E3
1 be a unit-speed spacelike curve with

spacelike principal normal. A tubular surface of radius λ > 0 about α is the
surface with parametrization

M2(s, θ) = α(s) + λ [N(s) cosh θ −B(s) sinh θ]

a ≤ s ≤ b. If the curve α is unit-speed timelike, then the tubular surface
defined by

M3(s, θ) = α(s) + λ [N(s) cos θ +B(s) sin θ] .

For the timelike tubular surface M2, the components of the first and second
fundamental forms are

E = −λ2τ 2 + (1− λκ cosh θ)2

F = λ2τ,G = −λ2

e =
(
λτ 2 + (κ cosh θ) (1− λκ cosh θ)

)
f = −λτ
g = λ
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and the unit normal vector field is U2 = N cosh θ−B sinh θ. Since 〈U2, U2〉 = 1,
the surface M2 is a timelike. The curvatures K, H and KII are

K = − κ cosh θ

λ (1− λκ cosh θ)

H =
−1 + 2λκ cosh θ

2λ (1− λκ cosh θ)

KII =
−4λ2κ2 cosh2 θ + 6λκ cosh θ + tanh2 θ − 2

4λ (−1 + λκ cosh θ)2

respectively and the principal curvatures are obtained as follows

k1 = −1

λ

k2 =
κ cosh θ

1− λκ cosh θ
.

For the timelike tubular surface M3, from which the components of the first
and second fundamental forms are

E = λ2τ 2 − (1 + λκ cos θ)2

F = λ2τ

G = λ2

e = −λτ 2 + (κ cos θ) (1 + λκ cos θ)

f = −λτ
g = −λ

and the unit normal vector field is U3 = N cos θ + B sin θ. Since 〈U3, U3〉 = 1,
the surface M3 is a timelike surface. The curvatures K, H and KII are

K =
κ cos θ

λ (1 + λκ cos θ)

H = − 1 + 2λκ cos θ

2λ (1 + λκ cos θ)

KII = −4λ2κ2 cos2 θ + 6λκ cos θ + tanh2 θ + 2

4λ (1 + λκ cos θ)2

respectively and the principal curvatures are obtained as follows

k1 = −1

λ

k2 = − κ cos θ

1 + λκ cos θ
.

We can obtain similar theorems for the timelike tubular surfaces M2 and M3.
They can be easly proved in the similar ways for the spacelike tubular surface
M1.
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