Gen. Math. Notes, Vol. 22, No. 2, June 2014, pp.59-66
ISSN 2219-7184; Copyright (c)ICSRS Publication, 2014
www.i-csrs.org
Available free online at http://www.geman.in

Properties for a Subclass of Convex Functions

Puoi Choo Chuah ${ }^{1}$ and Aini Janteng ${ }^{2}$
${ }^{1,2}$ School of Science and Technology
Universiti Malaysia Sabah, Jalan UMS
88400 Kota Kinabalu, Sabah, Malaysia
${ }^{1}$ E-mail: colorwind.cpc@gmail.com
${ }^{2}$ E-mail: aini_jg@ums.edu.my

(Received: 14-2-14 / Accepted: 1-4-14)

Abstract

Let S be the class of functions which are analytic and univalent in the open unit disc $D=\{z:|z|<1\}$ given by $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ and a_{n} a complex number. Let T denote the class consisting of functions f of the form $f(z)=$ $z-\sum_{n=2}^{\infty} a_{n} z^{n}$ where a_{n} is a non negative real number. In this paper, we introduce a new subclass of S by adopting the idea of Ramesha et al. [3] and Sudharsan et al. [5]. We also determine coefficient estimates, growth and extreme points for f belonging to this class.

Keywords: Analytic, Univalent, Coefficient Estimates.

1 Introduction

Let S be the class of functions f which are analytic and univalent in the open unit disc $D=\{z:|z|<1\}$ given by

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

where a_{n} is a complex number. In [3], Ramesha et al. introduced the class $H(\alpha)$ as follows:

Definition 1.1 Let f be given by (1). Then, $f \in A$ for which

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\alpha z^{2} f^{\prime \prime}(z)}{f(z)}+\frac{z f^{\prime}(z)}{f(z)}\right\}>0 \tag{2}
\end{equation*}
$$

for $\alpha \geq 0$ and $\frac{f(z)}{z} \neq 0, z \in \mathcal{D}$.
Sudharsan et al. [5] introduced $S_{s}^{*}(\alpha, \beta)$ of functions analytic and univalent in D given by (1) and satisfying the condition $\left|\frac{z f^{\prime}(z)}{f(z)-f(-z)}-1\right|<\beta\left|\frac{\alpha z f^{\prime}(z)}{f(z)-f(-z)}+1\right|$ for some $0 \leq \alpha \leq 1,0<\beta \leq 1$ and $z \in D$. By developing the idea of Ramesha et al. [3], we now introduce a new subclass of S denote as $C(\alpha)$ as follows:

Definition 1.2 Let f be given by (1). Then, $f \in A$ for which

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\alpha\left(z^{2} f^{\prime \prime}(z)\right)^{\prime}}{f^{\prime}(z)}+\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}\right\}>0 \tag{3}
\end{equation*}
$$

for $0 \leq \alpha<1$.

However, for this paper we consider a subclass of T where T denotes the class consisting of functions f of the form as

$$
\begin{equation*}
f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n} \tag{4}
\end{equation*}
$$

where a_{n} is a non negative real number. For $f \in T$, we define the class $C T(\alpha)$ with α satisfying the condition $0 \leq \alpha<1$.

Definition 1.3 A function $f \in C T(\alpha)$ if and only if it satisfies

$$
\begin{equation*}
\left|\left(\frac{\alpha\left(z^{2} f^{\prime \prime}(z)\right)^{\prime}}{f^{\prime}(z)}+\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}\right)-1\right|<\left|\left(\frac{\alpha\left(z^{2} f^{\prime \prime}(z)\right)^{\prime}}{f^{\prime}(z)}+\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}\right)+1\right| \tag{5}
\end{equation*}
$$

for $z \in D$.
We note that the above condition on α, is necessary to ensure this class form subclass of S.

2 Preliminary Result

The following preliminary lemma is required for proving the main results.

Lemma 2.1 Let $f \in T$, then

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n(n-1) \alpha+(n+1)) a_{n}|z|^{n-1}<2 \tag{6}
\end{equation*}
$$

Proof: Since $f \in T, \sum_{n=2}^{\infty} n\left|a_{n}\right||z|^{n-1}<1, \sum_{n=2}^{\infty} n^{2}\left|a_{n}\right||z|^{n-1}<1$ and $\sum_{n=2}^{\infty} n^{3}\left|a_{n}\right||z|^{n-1}<$ 1 (see Silverman [4]). Thus, we obtain

$$
\begin{aligned}
& \sum_{n=2}^{\infty} n(n(n-1) \alpha+(n+1)) a_{n}|z|^{n-1} \\
& =\sum_{n=2}^{\infty} n(n(n-1) \alpha) a_{n}|z|^{n-1}+\sum_{n=2}^{\infty} n(n+1) a_{n}|z|^{n-1} \\
& =\alpha \sum_{n=2}^{\infty}\left(n^{3}-n^{2}\right) a_{n}|z|^{n-1}+\sum_{n=2}^{\infty} n^{2} a_{n}|z|^{n-1}+\sum_{n=2}^{\infty} n a_{n}|z|^{n-1} \\
& =\alpha \sum_{n=2}^{\infty} n^{3} a_{n}|z|^{n-1}-\alpha \sum_{n=2}^{\infty} n^{2} a_{n}|z|^{n-1}+\sum_{n=2}^{\infty} n^{2} a_{n}|z|^{n-1}+\sum_{n=2}^{\infty} n a_{n}|z|^{n-1} \\
& <\alpha-\alpha+1+1 \\
& =2
\end{aligned}
$$

3 Main Results

In this section, we give results concerning the coefficient estimates, growth and extreme points for the functions $f \in C T(\alpha)$.

Theorem $3.1 f \in C T(\alpha)$ if and only if

$$
\begin{equation*}
\sum_{n=2}^{\infty} n^{2}((n-1) \alpha+1) a_{n} \leq 1 \tag{7}
\end{equation*}
$$

Proof: We adopt the method used by Clunie and Keogh [1] and also by Owa [2]. First we prove the 'if' part. According to Definition 1.3

$$
\begin{aligned}
& \left|\alpha\left(z^{2} f^{\prime \prime}(z)\right)^{\prime}+\left(z f^{\prime}(z)\right)^{\prime}-f^{\prime}(z)\right|-\left|\alpha\left(z^{2} f^{\prime \prime}(z)\right)^{\prime}+\left(z f^{\prime}(z)\right)^{\prime}+f^{\prime}(z)\right| \\
& =\left|-\sum_{n=2}^{\infty}(n(n-1)(n \alpha+1)) a_{n} z^{n-1}\right|-\left|2-\sum_{n=2}^{\infty} n(n(n-1) \alpha+(n+1)) a_{n} z^{n-1}\right| \\
& \leq \sum_{n=2}^{\infty} n(n-1)(n \alpha+1) a_{n} r^{n-1}-2+\sum_{n=2}^{\infty} n(n(n-1) \alpha+(n+1)) a_{n} r^{n-1} \\
& <\sum_{n=2}^{\infty} n(n-1)(n \alpha+1) a_{n}-2+\sum_{n=2}^{\infty} n(n(n-1) \alpha+(n+1)) a_{n} \\
& =\sum_{n=2}^{\infty}(n(n-1)(n \alpha+1)+n(n(n-1) \alpha+(n+1))) a_{n}-2 \\
& =\sum_{n=2}^{\infty} 2 n^{2}((n-1) \alpha+1) a_{n}-2 \\
& \leq 0 \text { by }(7)
\end{aligned}
$$

Thus,

$$
\left|\frac{\frac{\alpha\left(z^{2} f^{\prime \prime}(z)\right)^{\prime}+\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z z}-1}{\frac{\alpha\left(z^{2} f^{\prime \prime}(z)\right)^{\prime}+\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}+1}\right|<1
$$

and hence $f \in C T(\alpha)$.
To prove the 'only if' part, let

$$
\left|\frac{\frac{\alpha\left(z^{2} f^{\prime \prime}(z)\right)^{\prime}+\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}-1}{\frac{\alpha\left(z^{2} f^{\prime \prime}(z)\right)^{\prime}+\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}+1}\right|=\left|\frac{-\sum_{n=2}^{\infty} n(n-1)(n \alpha+1) a_{n} z^{n-1}}{2-\sum_{n=2}^{\infty} n(n(n-1) \alpha+(n+1)) a_{n} z^{n-1}}\right|<1 .
$$

We note that since f is analytic, continuous and non constant in D, the maximum modulus principle gives

$$
\begin{aligned}
& \left|\frac{-\sum_{n=2}^{\infty} n(n-1)(n \alpha+1) a_{n} z^{n-1}}{2-\sum_{n=2}^{\infty} n(n(n-1) \alpha+(n+1)) a_{n} z^{n-1}}\right| \\
& =\frac{\left|\sum_{n=2}^{\infty} n(n-1)(n \alpha+1) a_{n} z^{n-1}\right|}{\left|2-\sum_{n=2}^{\infty} n(n(n-1) \alpha+(n+1)) a_{n} z^{n-1}\right|} \\
& \leq \frac{\sum_{n=2}^{\infty} n(n-1)(n \alpha+1) a_{n}|z|^{n-1}}{2-\sum_{n=2}^{\infty} n(n(n-1) \alpha+(n+1)) a_{n}|z|^{n-1}} \\
& \leq \frac{\sum_{n=2}^{\infty} n(n-1)(n \alpha+1) a_{n} r^{n-1}}{2-\sum_{n=2}^{\infty} n(n(n-1) \alpha+(n+1)) a_{n} r^{n-1}}
\end{aligned}
$$

where $\sum_{n=2}^{\infty} n(n(n-1) \alpha+(n+1)) a_{n}|z|^{n-1}<2$ from Lemma 2.1. Since $f \in C T(\alpha)$ and $0<r<1$, we obtain

$$
\begin{equation*}
\left(\frac{\sum_{n=2}^{\infty} n(n-1)(n \alpha+1) a_{n} r^{n-1}}{2-\sum_{n=2}^{\infty} n(n(n-1) \alpha+(n+1)) a_{n} r^{n-1}}\right)<1 \tag{8}
\end{equation*}
$$

Now letting $r \rightarrow 1$, in (8) and using Lemma 2.1, we obtain

$$
\sum_{n=2}^{\infty} n(n-1)(n \alpha+1) a_{n} \leq 2-\sum_{n=2}^{\infty} n(n(n-1) \alpha+(n+1)) a_{n}
$$

and hence

$$
\sum_{n=2}^{\infty} n^{2}((n-1) \alpha+1) a_{n} \leq 1
$$

as required. Thus the proof of the Theorem 3.1 is completed.
The result is sharp for functions given by

$$
f_{n}(z)=z-\frac{1}{n^{2}((n-1) \alpha+1)} z^{n}, n \geq 2
$$

Corollary 3.1 If $f \in C T(\alpha)$ then

$$
a_{n} \leq \frac{1}{n^{2}((n-1) \alpha+1)}, \quad n \geq 2
$$

Next, we give the result for growth of the class $C T(\alpha)$.

Theorem 3.2 Let the functions f be defined by (4) and belongs to the class $C T(\alpha)$. Then for $\{z: 0<|z|=r<1\}$,

$$
r-\frac{1}{4(\alpha+1)} r^{2} \leq|f(z)| \leq r+\frac{1}{4(\alpha+1)} r^{2}
$$

The result is sharp.
Proof: First, it is obvious that

$$
4(\alpha+1) \sum_{n=2}^{\infty} a_{n} \leq \sum_{n=2}^{\infty} n^{2}((n-1) \alpha+1) a_{n}
$$

and as $f \in C T(\alpha)$, using inequality in Theorem 3.1 yields

$$
\begin{equation*}
\sum_{n=2}^{\infty} a_{n} \leq \frac{1}{4(\alpha+1)} \tag{9}
\end{equation*}
$$

From (4) with $|z|=r(r<1)$, we have

$$
|f(z)| \leq r+\sum_{n=2}^{\infty} a_{n} r^{n} \leq r+\sum_{n=2}^{\infty} a_{n} r^{2}
$$

and

$$
|f(z)| \geq r-\sum_{n=2}^{\infty} a_{n} r^{n} \geq r-\sum_{n=2}^{\infty} a_{n} r^{2}
$$

Finally, using (9) in the above inequalities, gives the result in Theorem 3.2.
We note that result in Theorem 3.2 is sharp for the following function,

$$
f_{2}(z)=z-\frac{1}{4(\alpha+1)} z^{2}
$$

at $z= \pm r$.
Here, we consider extreme points for functions $f \in C T(\alpha)$.

Theorem 3.3 Let $f_{1}(z)=z$ and $f_{n}(z)=z-\frac{1}{n^{2}((n-1) \alpha+1)} z^{n}$ for $n \geq 2$. Then $f \in C T(\alpha)$ if and only if it can be expressed in the form $f(z)=\sum_{n=1}^{\infty} \lambda_{n} f_{n}(z)$ where $\lambda_{n} \geq 0$ and $\sum_{n=1}^{\infty} \lambda_{n}=1$.
Proof: Adopting the same technique used by Silverman [4], we first assume

$$
\begin{aligned}
f(z) & =\sum_{n=1}^{\infty} \lambda_{n} f_{n}(z) \\
& =z-\sum_{n=2}^{\infty} \lambda_{n}\left\{\frac{1}{n^{2}((n-1) \alpha+1)}\right\} z^{n} .
\end{aligned}
$$

Next, since

$$
\begin{aligned}
& \sum_{n=2}^{\infty} \lambda_{n}\left\{\frac{1}{n^{2}((n-1) \alpha+1)}\right\} \cdot\left\{\frac{n^{2}((n-1) \alpha+1)}{1}\right\} \\
& =\sum_{n=2}^{\infty} \lambda_{n} \\
& =1-\lambda_{1} \\
& \leq 1
\end{aligned}
$$

therefore by Theorem 3.3, $f \in C T(\alpha)$.
Conversely, suppose $f \in C T(\alpha)$. Since

$$
a_{n} \leq \frac{1}{n^{2}((n-1) \alpha+1)}, n \geq 2
$$

we may set $\lambda_{n}=n^{2}((n-1) \alpha+1) a_{n},(n \geq 2)$ and $\lambda_{1}=1-\sum_{n=2}^{\infty} \lambda_{n}$. Then

$$
\begin{aligned}
\sum_{n=1}^{\infty} \lambda_{n} f_{n}(z) & =\lambda_{1} f_{1}(z)+\sum_{n=2}^{\infty} \lambda_{n} f_{n}(z) \\
& =\lambda_{1} z+\sum_{n=2}^{\infty} \lambda_{n}\left\{z-\frac{1}{n^{2}((n-1) \alpha+1)} z^{n}\right\} \\
& =\left(1-\sum_{n=2}^{\infty} \lambda_{n}\right) z+\sum_{n=2}^{\infty} \lambda_{n} z-\sum_{n=2}^{\infty} \lambda_{n} \frac{1}{n^{2}((n-1) \alpha+1)} z^{n} \\
& =z-\sum_{n=2}^{\infty} \lambda_{n} \frac{1}{n^{2}((n-1) \alpha+1)} z^{n} \\
& =z-\sum_{n=2}^{\infty} a_{n} z^{n} \\
& =f(z)
\end{aligned}
$$

Hence, we complete the proof of Theorem 3.3.
Acknowledgements: This work was supported by FRG0268-ST-2/2010 Grant, Malaysia. The authors express their gratitude to the referee for his valuable comments.

References

[1] J. Clunie and F.R. Keogh, On starlike and convex schlicht functions, J. London Math. Soc., 35(1960), 229-233.
[2] S. Owa, On the special classes of univalent functions, Tamkang Journal, 15(1984), 123-136.
[3] C. Ramesha, S. Kumar and K.S. Padmanabhan, A sufficient condition for starlikeness, Chinese J. Math., 23(1995), 167-171.
[4] H. Silverman, Univalent function with negative coefficients, Proc. Amer. Math. Soc., 51(1) (1975), 109-116.
[5] T.V. Sudharsan, P. Balasubrahmananyam and K.G. Subramanian, On functions starlike with respect to symmetric and conjugate points, Taiwanese Journal of Mathematics, 2(1) (1998), 57-68.

