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Abstract

This paper proposes a bi-level linear programmingbbem with linear
constraints, in which the linear objective funcsoare to be maximized with
different rough goals, the suggested approachimphper is mainly based on the
iterative goal programming method of Dauer and KJeeto develop the optimal
solution of the bi-level decision- maker, then vgesuthe concepts of tolerance
membership function technique to generate the @btsmlution for this problem.
An auxiliary problem is discussed as well as am#a is presented.
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1 I ntroduction

Rough set theory has been proposed by Pawlak i&, 188 aim is to maximize or
minimize an objective function over certain sefedsible solutions. But in many
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practical situations, the decision maker may nofrba position to specify the
objective and/or the feasible set precisely buttaratan specify them in a rough
sense ([12], [13]).

Rough set models based on incomplete systems ¢@8gring rough sets, rough
fuzzy sets and fuzzy rough sets ([9], [10]), Rosghtheory has been proven to be
an excellent mathematical tool dealing with vagasadiption of objects ([3], [7],
[8], [16], [20][25]).

Bi-level programming is a powerful and robust taqle for solving hierarchical
decision making problem. It has been applied inynaal life problems such as
agriculture, bio-fuel production, economic systefmgnce, engineering, banking,
management sciences, and transportation problda{1Bl, [17], [18], [21]).

Goal programming is one powerful tool that has bgposed for the modeling,
analysis and solution of multi-objective optimizati problems [6]. Dauer and
Krueger in [4] suggested an iterative goal programgmapproach for solving
multi objective nonlinear programming problems [2].

In [5] Emam proposed a bi-level integer non-linpangramming problem with
linear or non-linear constraints, and in which tlom-linear objective function at
each level are to maximized. It proposed a two rm@annteger model and a
solution method for solving this problem. In [1Ar§] and Safaei used the global
criterion method, to solve the bi-level programmimg an interval approach on
using Karush-Kuhn-Tucker (KKT) conditions, and gbbcriterion method
converts to a single objective.

Since Pawlak proposed the concept of the roughtdes rapidly developed and
been applied in many fields. Pawlak and Slowingkili@d the rough set approach
to multi-attribute decision problems [14]. Xu an@ddrdiscussed a class of linear
multi-objective programming problems with randonugh coefficients and gave
a crisp equivalent model [22]. Youness appliedrthegh set to the classification
of the feasible area in mathematical programmingl amalled it Rough
programming [24].

2  Problem Formulation and Solution Concept

Letx; € R™, (i = 1,2) be a vector variables indicating the first deacislevel’s
choice and the second decision level's chaicg, 1, (i = 1,2).

Let F;: R™ — RVi, (i = 1,2) be the first level objective functions, and thecssl
level objective functions, respectively. Leeftfirst level decisions maker and
second level decisions maker ha¥e andN, objective function, respectively.

Therefore, the bi-level linear programming probleontains rough parameters
may be stated as follows:



On the Solution of Rough Goal Bi-Level... 61

First Level Decision M aker
max F;(x,&) = max(fll, ...,lel), (1)
X1 X1

Wherex, solves

Second L evel Decision M aker
max F,(x,&) = max(f21, ...,fZNZ), (2)
X2 X3

Subject to
X € G, (3)
G ={(x, 2)|gi(x1,22) <y, i=12,..m,
x4, 2%, = 0}.

Where

n
fk]' = Z &k].x]- ,i = 1,2, ey N

j=1
Gis the bi-level linear constraint séf.and F, are linear functions contains rough
parameters with definite goals.
Now, going back to the bi-level multi-objective éar programming problem
contains rough parameters. We can write an assdcgatal programming for this
problem with(N; + N,) goals as follows:
[First Level Decision M aker]

Achievg , (x,8) = kq4,

Achievg,, (x,£) = ky,, (4)

ACh|e\@N1(x, &.) = klNll
Where, solves
[Second L evel Decision Maker]

Achieve,; (x,£) = kyq,
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Achievg,, (x,&) = ky,, (5)

Achieviy, (x,&) = kay,,

Subject to
x € G. (6)

Wherek,y,, k,y, are scalars and represent the aspiration levelsciaged with
the objectives of the First level decision maked &econd level decision maker,
respectively.

3  The Transformation of Random Rough Coefficient
[22]

To convert the bi-level multi-objective linear pragiming problem with random
rough coefficient in the objective functions inteetrespective crisp equivalents
for solving a trust probability constrains, thisopess is usually hard work for
many cases but the transformation process is intexdlin the following theorem.

Theorem 1. Assume that random rough variablg is characterized by
=~ T -
G~ (s, V), whereey) ((5D) = (@ ca (A, -, ca@) ) is

nx

a rough variable and/¢ is a positive definite covariance matrix. It folls that
¢:(M)Tx = ([a,b],[c,d]) (where c< a < b <d) is a rough variable and
characterized by the following trust measure functi

( 0 ifd <t
d-t ifb<t<d
2(d—0) rh=r=9
Tr{ci(k)TXZt}=<1(d_t+b_t> ifa<t<b,
2\d—c b-—a
1(d_t+1> ifc<t<
2\d—-c He=t=3
\ 1 ift<c.

Then, we hav@r{A|Pr{c;()"x > f;(x)} = &;} = v, if and only if
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(b+RSfiSd—Zyi(d—c)+R ifb<M<d,
d(lb—a)+b(d—c)—2y.(d—c)(b—a)
a+R<fi < i +R ifa<M<b,
d—c+b—a
c+R<fi<d-(d-0o(2y,—1)+R ifc<M<a,
fi<c+R ifM < C.

WhereM = f; — §7*(1 — §)/xTVx andR = @71(1 — §;)/xTVFx, and® is the
standardized normal distribution afid y, € [0,1] are predetermined confidence
levels.

To proof theorem 1 above, the reader is referrdd2p

3.1 The Equivalent Crisp Problem of Bi-Level Rough Linear
Problem

The equivalent bi-level multi-objective linear pragiming problem equivalent to
the bi-level multi-objective linear programming plem contains rough
parameters with definite goals in objective funetionay be stated as follows:

[First Level Decision Maker]

max h;(x) = max (hll, ...,thl),
X1 X1

[Second L evel Decision Maker]

max h, (x) = max (hyy, ..., hZNZ),
X2 X2

Subject to
X € G,

G = {(xlle)lgi(xlle) S y;l = 1;2; "'m)
X1, %, = 0}.

Whereh,, h,are the objective functions of the first level dgéamn maker (FLDM),
and second level decision maker (SLDM).

Definition 1: For any x;(x; € G; = {x1|(x1,x,) € G}) achieves the first level
decision maker goals with under attainment or oattainment, if the decision-
making variablex,(x, € G, = {x;|(x,,x,) € G;}) achieves is the second level
decision maker goals with under attainment or aattsinment, therfx,, x,) is a
feasible solution of the rough goal bi-Level mobiective linear programming
problem.
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Definition 2: If (x1,x;) is a feasible solution of the rough goal bi-Lewallti-
objective linear programming problem, such that first level decision maker
achieves all goals; s@x;j, x;) is the Pareto optimal solution of the rough goal b
Level multi-objective linear programming problem.

4 A Goal Approach for the Bi-Level Multi-Objective
Linear Programming Problem

To solve the bi-level multi-objective linear progmming problem with definite
goals, one first get the optimal solution of thestfilevel decision maker with

definite goals, and the second level decision makeuld get his optimal solution
with definite goals, as follows:

4.1 TheFirst Level Decision Maker
First, the first level decision maker solves thiofeing problem:
AChIeVG(hll(x), A thl (X)) = (k11’ klNl)l 7) (

Subject to
x € G.

Wherek,,, ..., k1y, are scalars, and represent the aspiration lesstscated with
the objectiveshyy, ..., hyy,, respectively.

We consider the following bi-level multi-objectivmear programming problem
associated to the first goal as:

P MinimizeD; = d; + dfy, (8)

Subject to
hyy(x)+di; — d;-l = Kq1,

X € G,
di1,df; = 0.
Whered;; andd;f; are the under attainment and over attainmenteotisely, of
the first goal andd; X df; = 0.

Then the attainment problem associated with therskgoal is equivalent to the
optimization problerR,, , where:

Pi,: Minimize D, = d, + dj,, 9)
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Subject to
hip(X) +dip — diy = kqy,

hy1(0)+ dpp — diy = kyg,
dii +dii = Diy,
X € G,
di;, di; = 0.

The optimal solution of the first level decisionkeax* = (xf, xF).
4.2 The Second Level Decision Maker
Second, in the same way, the second level deasaker independently solves:
Achieve(hy (x), ..., han, () = (k21 ... kan,), oj1

Subject to
x €QG.

Wherek,, ..., k,y, are scalars, and represent the aspiration lesetscated with
the objectivesh,y, ..., hyy,, respectively.

The second level decision maker will do the santemaas the first level decision
maker till he obtain his optimal solutiari = (x7, x7).

5  Fuzzy Approach of Bi-Level Linear Programming
with Rough Parameters Problem

Now the solution of the first level decision makand second level decision
maker are disclosed. However, two solutions arealbsuifferent because of
nature between two levels goals. The first levelislen maker knows that using
the optimal decisions! as a control factors for the second level decisiaker
are not practical. It is more reasonable to havaestolerance that gives the
second level decision maker an extent feasiblerefg search for his/her optimal
solution, and reduce searching time or interactions

In this way, the range of decision variakleshould be arouns! with maximum
tolerancet; and the following membership function specifys:
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x1—(x1-t1)
t

(X§+t1)—x1
t

Xf—tlﬁxlﬁxf,

u(xy) = (11)

xf<x <xf—t,.

Where X! is the most preferred solution; ti{#f —t,) and (X} +t,) are the
worst acceptable decision; and that satisfactiotinsarly increasing with the
interval of [X§ —t;,X;| and linearly decreasing witki, Xf —t;], and other
decision are not acceptable.

First, the first level decision maker goals maysorably consideh; > hf is
absolutely acceptable antl; < h; = h;(x},x3) is absolutely unacceptable, and
that the preference witth;, hf] is linearly increasing. This due to the fact ttnat
second level decision maker obtained the optimufwiats), which in turn
provides the first level decision maker the objectfunction valuesh;, makes
anyh; > h; = h;(x$,x5) unattractive in practice.

The following membership functions of the first éwdecision maker can be
stated as:

( 1 ifh; (x) > hf,
. hy (x)—h} g .
flh; (x)] = iﬁ ifhy <h;(x) <hj, (12)
0 ifh; > h; (x).

Second, the second level decision maker goals reagonably consider the
h, > h is absolutely acceptable anH, <h, =h,(x},x{) is absolutely

unacceptable, and that the preference \flithh3] is linearly increasing. In this
way, the second level decision maker has the fatigunembership functions for
his/her goal:

(1 if h,(x) > h3,
. h, (x)—h. e
ilha ()] = { 22 £k, < hy(x) < b (13)
0 lsz > hz (X)

Finally, in order to generate the satisfactory oty which is also a Pareto
optimal solution with overall satisfaction for dkcision-makers, we can solve the
following Tchebycheff problem.

max &, (14)

Subject to
F _
(X1 +t1) —x > 5
2]

)



On the Solution of Rough Goal Bi-Level... 67

F
x; — (xF—t
1— (g 1)25,
ty

alh; ()] =6,
flh;(x)] = 6,
(%1,%,) € G,
t, >0,8 €[0,1].
Whereé is the over all satisfaction.
If the first level decision maker is satisfied wgblution then satisfactory solution
is reached. Otherwise, he/she should provide nembeeship function for the

control variable and objectives to the second ledeetision maker, until a
satisfactory solution is reached.

6  Numerical Example

To demonstrate the solution method for bi-level tbbjective linear
programming problem under random rough coefficiantbjective functions can
be written as:

[1¥ Level]

n}caxfll(x) = X1t 22+ %3,

1

n}caxflz(x) = C1%X1 + Cax5 + C3%3,
1

Wherex, solves

[2" Level]

n}chf21(x) = X1+ %, + %3,

rrjlcéz‘xfzz(x) = C1%1 T Cp%xp + C3%3,

Subject to
Te{A| Pr{& 21 + &oxp + $303 = hy} = 61} = kyy

Te{Al Pr{c; sy + 28525 + c386x3 = Ry} = 85} = kyqy

Tr{A| Pr{&7x; + gy + o3 = h3} = 61} = kyy
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Tr{A| Pr{c1$10%1 + €2811%5 + €3812%3 = hy} = 62} = ko,
%1+ 2, + 23 <1000,
221 + x5, + %3 < 2000,
4xq + 22, + 23 <9000,
%1 20,2, =>20,23 = 0.

Wherec = (¢4, ¢,,¢3) = (1.5,0.5,1.5), and assume that the rough parameters are
defines as:

§1~N(p1, ), withp, = ([2,3],[1,4D,  §&~NV(p2, 4), with p, = ([1,2],10,3]),
§3~N(p3, 1), withps = ([4,5],[3,6]),  §4~N(ps, 2), with p, = ([3,4],[2,5]),
$s~N (ps, 1), withps = ([2,3],10,3]),  §6~N (ps, 4), with pg = ([1,2],10,3]),
§7~N(p7,4), withp; = ([1,2],[0,3]),  §e~N(pg, 1), with pg = ([2,3],10,3]),
$o~N(po, 2), with py = ([2,3], [1,4]), §10~N (10, 1), With p;o = ([0,1],[0,2]),

§11~N(p11, 1), with py; = ([3,4],[2,5]), &12~N (P12, 1), With p;, =
([0,1],[0,3]),

Let §; = y; = 0.4, thend™ (1 —§;) = 0.26.
Now by using theorem 1, the equivalent crisp pnablehich equivalent to bi-
Level multi-objective linear programming problemdean rough parameters in

objective functions with definite goals, as follaws

[FLDM]

Achieveh,, = (1.6x1 + 0.6x5 + 3.615 + 0.26y 2% + 4x2 + xg) = kyq,
Achieveh,, = (3.9x1 +0.3x, + 0.9 5 + 0.26y/222 + 22 + 4x§) = ky,

Wherex, solves

[SLDM]

Achieveh,, = (0.6x1 + 0.6x0, + 1.65 + 0.26y/4x2 + 2 + 2x§) = kyy,
Achieveh,, = (O.6x1 +1.3 %, + 0.9 x5 + 0.26\x2 + 22 + xg) = ky,.
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Subject to
xX€EG={x+ x2,+ x3 <1000,
221 + x5+ x3 <2000,
4xq + 2x, + 23 <9000,
x1 = 0,2, 20,23 = 0}.

Then, calculating trust for every rough coefficensing trust measure function in
theorem 1:

Tr{&,} = 0.9, Tr {&,} = 0.9, Tr {&5} = 0.9, Tr {£,} = 0.9, Tr {&s} =
09,Tr{é}=09,Tr{&}=009,Tr{&} =09,Tr{é} =09,Tr{&,} =
0.7, Tr{é;,} =09, Tr{&,,} = 0.6

So, with trust more than or equal is 0.6 the equivalent crisp problem which
equivalent to bi-Level multi-objective linear pregnming problem under rough
parameters in objective functions.

Now, we can write an associated goal programming tifidss problem with
(N,, N,) goals as follows:-

[First Level Decision M aker]

n}(ax hy (x4, %5, x3)
1

= max [1.6.761 + 0.6x, + 3.6x3 + 0.26\/xf + 4x% 4+ x2,3.92,
X1

+0.3x, + 0.9 x5 + 0.26\/2.7612 + 22 + 4x§J,

Wherex, solves
[Second L evel Decision Maker]

n}(ax h, (x4, x5, x3)
2

= max {0.6.761 + 0.6x, + 1.6x3 + 0.26\/4.7612 + x5 + 2x3,0.6x,

+ 132, + 0923+ 0.26 /xf + x2 + x%J,

Subject to
XxX€G={x+ x,+ x3 <1000,
221 + x5, + %3 < 2000,
4x, + 2x, + 23 <9000,
%1 =202, 20,23 20.}
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1- First, thefirst level decision maker solves his’/her Problem asfollowing:

Achievel.6x; + 0.6x, + 3.6x5 + 0.26y/x2 + 4x2 + x2 = ky,
Achieve3.9x; + 0.3x, + 0.9 x5 + 0.264/242 + x2 + 4x2 = ky,

Subject to
X € G.

The aspiration levels of the goals are assumedetd;p = 220, k,, = 240,
respectively. Then, the optimization problem assted with the first goal is
formulated as follows:

P;y: Minimize Dy, = di; + diy,
Subject to
1.6x1 + 0.6x, + 3.6x5 + 0.264/x2 + 422 + x24+dy; — df; = kqy,
X € G,
di, df; = 0.

The maximum degree of attainment of probl®m is Dy; = 0.0001 with the
optimal solutionr; = (45.5717,30,30) anddy; = 0,df; = 0.0001.

The attainment problem for goal 2 of the first ledecision maker is equivalent to
problen®;,, where:

Plz: Mlnimize Dlz = dl_z + d;{z
Subject to
3.92, + 0.3%, + 0.9 %3 + 0.26/2x2 + x2 + 4x2 + dp, — df, = kyy,
1.6x; + 0.6x, + 3.6x5 + 0.264/x2 + 422 + x2 +dy; — df; = 220,
dy, +df; = 0.0001,
X € G,
di;,df; = 0.

Therefore, the optimal solution of  the model P, is
x, = (45.7385,49.9999,24.3159),d7; = 0,d; = 0.0001, dp, =

0.0027 ,df, = 0 , so the optimal solution of the bi-level multi-okjee linear
goal programming model is given ly which will be the optimal solution of the
first level decision maker = (x,, x,, x3) = (45.7385,49.9999,24.3159).

2- Second, the second level decision maker solves histher Problem as
following:

Achieve0.6x; + 0.6x, + 1.6x5 + 0.26,/4x? + x2 + 2x2 = ky,
Achieve0.6x; + 1.3 x5 + 0.9 x5 + 0.264/x% + x5 + 2% = k5,
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Subject to
x € QG.

The aspiration levels of the goals are assumedetd,h = 135,k,, = 125
respectively. Then, the optimization problem assed with the first goal is
formulated as follows:
P,1: Minimize Do, = d3; + d3;,
Subject to
0.6x1 + 0.6x, + 1.623 + 0.26/4x2 + 22 + 222 + dy; — di; = kyyq,
X € G,
d>;,d3; = 0.

The maximum degree of attainment probl®n is D;; = 0 with the optimal
solutionx = (54.9969,44.9952,26.6205) andd;; = 0,d3, = 0.

The attainment problem for goal 2 of the secondelledecision maker is
equivalent to proble®; , where:

Pzz: Minimize DZZ = dz_z + dg-z,
Subject to
0.6x; + 1.3 x5 + 0.9 x5 + 0.264/x2 + x5 + 22 + d5, — dF, = kyy,
0.6x; + 0.6, + 1.6x3 + 0.26,/4x2 + x2 + 222 +d3; — di, = 135,
d;; +d3; =0,
X € G,
ds;,d3; = 0.

Therefore, the optimal solution of the model P,, IS
x = (50.3748,36.0144,33.0098), dy; = 0,d3, = 0,d5, = 0.0026,d3, = 0, S0
the optimal solution of the bi-level multi-objeativinear goal programming
model is given by*which will be the optimal solution of the secondde
decision makex* = (50.3748,36.0144,33.0098).

3- Finally, we assume the first level decision mrakentrol decisionx! =
45.7385 with the tolerance 5, the second level decisiomken solves the
following Tchebycheff problem as follows:

Max 6,

Subject to

x € G,

—x,—56 = —50.7385,
x; —538 = 40.7385,

(16201 + 0.6, + 3.65 + 0.26,/7 + 423 + x7 ) + 2545518 § > 24545512,
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(3.9x1 + 0.3x, + 0.9 x5 + 0.26\/29012 + x2 + 4x§> + 23.91089556 6
=> 263.9082316,

(0.6x0, + 0.6, + 165 +0.26,/4x7 + 23 + 223 ) — 101100363 § >
124.889988,

(0.6, + 1.3, + 0.9 x5 + 0.26,/x7 + 27 + 23 ) + 8.0484499 § >
133.0459499, § € [0,1].

Whose, optimal solution is:(xy, x5, x35) = (45.9016,49.6429,30.000),6 =
0.9622,h,; = (240.71811,247.26846),and h, = (134.61826,138.3086)

Overall satisfaction for both decisions makers.

7  Summary and Concluding Remarks;

This paper proposed a bi- level linear programmppgblem with linear
constraints, in which the linear objective funcBoare to be maximized with
different rough goals, the suggested approachisnpaper was mainly based on
the iterative goal programming method of Dauer &mdeger to develop the
optimal solution of the bi-level decision- makeneh we used the concepts of
tolerance membership function technique to gendéhateptimal solution for this
problem.
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