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Abstract
If 1 ≤ p < ∞, Ω an open subset of Rn and K a compact subset of Ω,

we consider the space Ap (Ω\K) of all functions u ∈ bp (Ω\K) that can be
decomposed as u = v+w on Ω\K, where v ∈ bp (Ω) and w ∈ bp (Rn\K). In this
paper we introduce an analogous definitions for networks and for holomorphic
functions. In final, we develop a new type of regularity for distributions and
obtain their useful properties.
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1 Introduction

In [2] we considered the following theorem in the framework of harmonic
Bergman spaces.

Theorem 1. 1. (n > 2) : Let Ω be an open subset of Rn and K be a compact
subset of Ω. If u is harmonic on Ω\K, then u has a unique decomposition of
the form u = v+w, where v is harmonic on Ω and w is harmonic function on
Rn\K satisfying limx→∞w (x) = 0.
2. (n = 2) : Let Ω be an open subset of Rn and K be a compact subset of
Ω. If u is harmonic on Ω\K, then u has a unique decomposition of the form
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u = v + w, where v is harmonic on Ω and w is harmonic function on R2\K
satisfying limx→∞w (x)− b log |x| = 0 for some constant b.

For 1 ≤ p < ∞, an open set Ω in Rn and a compact subset K of Ω, we
defined a space Ap (Ω\K) of all functions u ∈ bp (Ω\K) such that u = v + w
on Ω\K, where v ∈ bp (Ω) and w ∈ bp (Rn\K). We introduced a new norm
on Ap (Ω\K). There are also similar decomposition theorems in the cases of
holomorphic functions(see [3]), harmonic functions on infinite trees (see [1])
and solutions of parabolic partial differential equations (see [6]). In the next
section we consider an analogous definition for harmonic functions on infinite
trees and we give the answer on an analogous problem given in Remark 2 given
in [5]. In the third section we introduce an analogous results for holomorphic
case and in final we introduce a new type of regularity for distributions on
domains outside compact set and obtain their useful properties.

2 Network Case

Let T be an infinite tree. For any subset E of T , we write
◦
E as a set of all

x ∈ T , such that x and all its neighbours are in E. We denote ∂E = E\
◦
E.

Let V (E) = E ∪ {y : y ∼ x, for some x ∈ E}. For x ∈ T , and for a function
f defined on V (x), define the Laplacian

∆f (x) =
∑
x∼xi

t (x, xi) [f (xi)− f (x)] .

We say that f is harmonic at x if ∆f (x) = 0. A function f defined on an

arbitrary set E is said to be harmonic on E if ∆f (x) = 0 for every x ∈
◦
E.

Let 1 ≤ p <∞. By Lp (E) we denote the set of all functions f on E such that

‖f‖p :=
(∑

x∈E |f (x) |p
)1/p

< ∞. Let bp (E) denote a Bergman space on E,
i.e. a set of all harmonic functions f on E such that f ∈ Lp (E).

Lemma 1. Let 1 ≤ p < ∞ and E a subset of T . Then bp (E) is a Banach
space under the ‖ · ‖p norm.

Proof. Let fn be a Cauchy sequence in bp (E). As Lp (E) is a Banach space,
there exist f ∈ Lp (E) such that ‖fn − f‖p → 0, as n → ∞. Now, for x ∈ E
we have

|fn (x)− f (x) | ≤

(∑
x∈E

|fn (x)− f (x) |p
)1/p

= ‖fn − f‖p → 0,
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as n→∞. So, fn (x)→ f (x), as n→∞. Now, for x ∈
◦
E,

∆f (x) =
∑
x∼xi

t (x, xi) (f (xi)− f (x))

= lim
n→∞

∑
x∼xi

t (x, xi) (fn (xi)− fn (x))

= lim
n→∞

∆fn (x)

= lim
n→∞

0

= 0,

so f is harmonic on E and the lemma is proved.

In [1] we can find a proof of the following theorem.

Theorem 2. Let T be an infinite tree in which every non-terminal vertex has
at least two non-terminal neighbours. Let E be a finite connected subset of T
and F = V (E). Let A be a non-empty subset of E. Suppose u is a harmonic

function on F\
◦
A. Then, there exist a harmonic function s on T\

◦
A and a

harmonic function t on F such that u = s+ t on F\
◦
A. Moreover,

i. If there are positive potentials on T , then s and t are uniquely determined if
we impose restriction |s| ≤ p outside a finite set, where p is a positive potential
on T .
ii. If there are no positive potentials on T , then s and t are uniquely deter-
mined up to an additive constant, if we impose the restriction that for some α,
[s− αH] is bounded outside a finite set where H (x) is the analogue of log |x|
in T (namely H ≥ 0 on T , unbounded, ∆H (x) = δe (x) where e is a fixed
vertex and H > 0 outside a finite set in T ).

Let 1 ≤ p < ∞. Define the space Ap
(
F\

◦
A
)

as a set of all functions

u ∈ bp
(
F\

◦
A
)

whose unique decomposition u = s+ t in Theorem 2 also satisfy

s ∈ bp
(
T\

◦
A
)

and t ∈ bp (F ).

Lemma 2. Let 1 ≤ p < ∞ and u = s + t ∈ Ap
(
F\

◦
A
)

is arbitrarily chosen.

Then

‖u‖
bp
(
F\
◦
A
) ≤ 2

p−1
p ‖u‖

Ap
(
F\
◦
A
).
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Proof. The result follows from the following inequalities

‖u‖p
bp
(
F\
◦
A
) = ‖s+ t‖p

bp
(
F\
◦
A
) ≤

(
‖s‖

bp
(
F\
◦
A
) + ‖t‖

bp
(
F\
◦
A
))p

≤ 2p−1

(
‖s‖p

bp
(
F\
◦
A
) + ‖t‖p

bp
(
F\
◦
A
)
)

≤ 2p−1

(
‖s‖p

bp
(
T\
◦
A
) + ‖t‖pbp(F )

)
= 2p−1‖u‖

Ap
(
F\
◦
A
)

Theorem 3. Let 1 ≤ p < ∞. Then Ap
(
F\

◦
A
)

is a Banach space under the

norm defined by
‖u‖p

Ap
(
F\
◦
A
) = ‖s‖p

bp
(
T\
◦
A
) + ‖t‖pbp(F ),

where u = s+ t is a decomposition of u in Ap
(
F\

◦
A
)

Proof. Let (um) be a Cauchy sequence inAp
(
F\

◦
A
)

. From the lemma 2 follows

that (um) is a Cauchy sequence in bp
(
F\

◦
A
)

. bp
(
F\

◦
A
)

is a Banach space, so

there exists u ∈ bp
(
F\

◦
A
)

such that um → u in bp
(
F\

◦
A
)

. Also,

‖um − uk‖p
Ap

(
F\
◦
A
) = ‖tm − tk‖pbp(F ) + ‖sm − sk‖p

bp
(
T\
◦
A
),

where um = sm + tm on F\
◦
A is a decomposition mentioned in the definition of

Ap
(
F\

◦
A
)

. Since (um) is a Cauchy sequence in Ap
(
F\

◦
A
)

, it follows that (tm)

is a Cauchy sequence in bp (F ) and (sm) is a Cauchy sequence in bp
(
T\

◦
A
)

.

Since bp (F ) and bp
(
T\

◦
A
)

are Banach spaces, it follows that there are t ∈

bp (F ) and s ∈ bp
(
T\

◦
A
)

such that tm → t in bp (F ) and sm → s in bp
(
T\

◦
A
)

.

Now define u′ = s+ t. We have u′ ∈ Ap
(
F\

◦
A
)

. Now,

‖um − u′‖p
Ap

(
F\
◦
A
) = ‖tm − t‖pbp(F ) + ‖sm − s‖p

bp
(
T\
◦
A
),

so um → u′ in Ap
(
F\

◦
A
)

. Since um → u in bp
(
F\

◦
A
)

and, by lemma 2,

um → u′ in bp
(
F\

◦
A
)

, it yields u = u′ ∈ Ap
(
F\

◦
A
)

. This implies that

Ap
(
F\

◦
A
)

is a Banach space, so the theorem is proved.
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Theorem 4. Let 1 ≤ p <∞. Then

Ap
(
F\

◦
A
)

= bp (F ) |
F\
◦
A
⊕ bp

(
T\

◦
A
)
|
F\
◦
A
.

Proof. From the definition of the spaceAp
(
F\

◦
A
)

it is obvious thatAp
(
F\

◦
A
)

=

bp (F ) |
F\
◦
A

+ bp
(
T\

◦
A
)
|
F\
◦
A

. So, we only need to prove that this sum is direct.

Let u ∈ bp (F ) |
F\
◦
A
∩ bp

(
T\

◦
A
)
|
F\
◦
A

. So, there exists s ∈ bp
(
T\

◦
A
)

, t ∈ bp (F ),

such that u = s = t on F\
◦
A. Then a function defined as ũ (x) = t (x) for

x ∈ F and ũ (x) = s (x) for x ∈ T\
◦
A. We obtain that ũ ∈ bp (T ) = {0}, so

we get bp (F ) |
F\
◦
A
∩ bp

(
T\

◦
A
)
|
F\
◦
A

= {0}, so the sum is direct and the proof

follows.

In [5] we remarked that it would be interesting to see when Ap (Ω\K) =
bp (Ω\K). We also proved that if K is one-element set, then the equality holds.
That was the case for harmonic functions on Euclidean domains. If we consider
the same problem in the context of infinite trees, equality never holds, as we
prove in the the following theorem.

Theorem 5. Let 1 ≤ p <∞. Then Ap
(
F\

◦
A
)
6= bp

(
F\

◦
A
)

.

Proof. As harmonic functions on finite graphs are also integrable there, we ob-

tain that Ap
(
F\

◦
A
)

= bp
(
F\

◦
A
)

holds if and only if every harmonic function

on T\
◦
A is also in bp

(
T\

◦
A
)

. This is not true because a harmonic function

u (x) = 1 on T\
◦
A is not in bp

(
T\

◦
A
)

.

By this theorem we solved an analogous problem of Remark 2 in [5] in the
case of harmonic functions on trees. A decomposition theorem also holds for
polyharmonic functions, as we see from the following theorem in [1].

Theorem 6. Let T be an infinite tree in which every non-terminal vertex has
at least two non-terminal neighbhours. Let E be a finite connected set of T and
F = V (E). Let A be a non-empty subset of E. Suppose u is an m-harmonic

function on F\
◦
A. Then, there exist an m-harmonic function s on T\

◦
A and an

m-harmonic function t on F such that u = s+ t on F\
◦
A. This representation

can be chosen to be unique up to an additive (m− 1)-harmonic function on T
if T has positive potentials; otherwise, the representation is unique up to an
m-harmonic function generated by a constant.

Remark 1. The results we have obtained for harmonic functions on infinite
trees we can also obtain for m-harmonic functions, so it would be interesting
to consider an analogous problems for m-harmonic functions in this direction.
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3 Holomorphic Case

In this section we consider the following theorem (see [3]).

Theorem 7. In the complex plane, let K be a compact set and ω be an open
set such that K ⊂ ω. Assume that there is an open disk D such that K ⊂ D ⊂
D ⊂ ω. Suppose f is analytic on ω\K. Then f = f1 + f2 on ω\K, where f1 is
analytic on ω and f2 is analytic on C\K tending to 0 at the point at infinity.
This decomposition is unique.

Let 1 ≤ p < ∞ and Ap (ω\K) be the set of all f ∈ Bp (ω\K) such that
f = f1 + f2 on ω\K, where f1 ∈ Bp (ω), f2 ∈ Bp (C\K).

Lemma 3. Let 1 ≤ p <∞ and f ∈ Ap (ω\K) is arbitrarily chosen. Then

‖f‖Bp(ω\K) ≤ 2
p−1
p ‖f‖Ap(ω\K)

Proof. The result follows from the following inequalities

‖f‖pBp(ω\K) = ‖f1 + f2‖pBp(ω\K) ≤
(
‖f1‖Bp(ω\K) + ‖f2‖Bp(ω\K)

)p
≤ 2p−1

(
‖f1‖pBp(ω\K) + ‖f2‖pBp(ω\K)

)
≤ 2p−1

(
‖f1‖pBp(ω) + ‖f2‖pBp(C\K)

)
= 2p−1‖f‖pAp(ω\K).

Lemma 4. Let 1 ≤ p <∞, n ≥ 2. If f ∈ Bp (C\K), then limz→∞ f (z) = 0.

Proof. If f ∈ Bp (C\K), then f = u + iv, where u, v ∈ bp (R2\K). This
implies u (x, y)→ 0, v (x, y)→ 0 as (x, y)→∞. Now, |f (z) |2 = |u (x, y) |2 +
|v (x, y) |2 → 0, as (x, y) → ∞ (see Lemma 2 in [5]), from where the result
follows.

Theorem 8. Ap (ω\K) is a Banach space under the norm defined by

‖f‖pAp(ω\K) = ‖f1‖pBp(ω) + ‖f2‖pBp(C\K)

where f = f1 + f2 is a decomposition of f in Ap (ω\K).

Proof. Let (um) be a Cauchy sequence in Ap (ω\K). From the lemma 3 follows
that (um) is a Cauchy sequence in Bp (ω\K). Bp (ω\K) is a Banach space, so
there exists u ∈ Bp (ω\K) such that um → u in Bp (ω\K). Also,

‖um − uk‖pAp(ω\K) = ‖vm − vk‖pbp(ω) + ‖wm − wk‖pbp(C\K),
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where um = vm + wm on ω\K is a decomposition of um in Ap (ω\K). Since
(um) is a Cauchy sequence in Ap (ω\K), it follows that (vm) is a Cauchy
sequence in Bp (ω) and (wm) is a Cauchy sequence in Bp (C\K). Since Bp (ω)
and Bp (C\K) are Banach spaces, it follows that there are v ∈ Bp (ω) and
w ∈ Bp (C\K) such that vm → v in Bp (ω) and wm → w in Bp (C\K). Now
define u′ = v + w. By lemma 4, u′ ∈ Ap (ω\K). Now,

‖um − u′‖pAp(ω\K) = ‖vm − v‖pbp(ω) + ‖wm − w‖pbp(C\K),

so um → u′ in Ap (ω\K). Since um → u in Bp (ω\K) and, by lemma 3, um → u′

in Bp (ω\K), it yields u = u′ ∈ Ap (ω\K). This implies that Ap (ω\K) is a
Banach space, so the theorem is proved.

Theorem 9. Let 1 ≤ p <∞. Then Bp (ω) and Bp (C\K) are closed subspaces
of Ap (ω\K).

Proof. The topology on Bp (ω) is the same as the subspace topology from
Ap (ω\K). Because a subspace of a complete metric space is complete if and
only if it is closed in subspace topology, it follows that Bp (ω) is closed in
Ap (ω\K). In the same way we prove that Bp (C\K) is closed in Ap (ω\K).

Theorem 10. Let 1 ≤ p < ∞. Then Ap (ω\K) is a set of all holomorphic
functions f = u+ iv on ω\K, where u and v are real valued and in Ap (ω\K).

Proof. Let f ∈ Ap (ω\K) be arbitrary. Then f = f1 + f2 on ω\K, where
f1 ∈ Bp (ω) and f2 ∈ Bp (C\K). Now, f1 = u1 + iv1 and f2 = u2 + iv2, where
u1, u2 ∈ bp (ω), v1, v2 ∈ bp (R2\K). Now, f = u + iv, where u = u1 + u2 ∈
Ap (ω\K), v = v1 + v2 ∈ Ap (ω\K). Another implication follows easily, so the
theorem is proved.

Theorem 11. Let 1 ≤ p <∞. Then

Ap (ω\K) = Bp (ω) |ω\K ⊕Bp (C\K) |ω\K

Proof. It follows immidiately from the definition of Ap (ω\K) and from the
fact that there is no non-zero function in Bp (C).

A2 (ω\K) is a Hilbert space under the inner product defined by

〈f1, f2〉A2(ω\K) = 〈g1, g2〉B2(ω) + 〈h1, h2〉B2(C\K),

where f1 = g1 + h1 and f2 = g2 + h2 are decompositions in A2 (ω\K).

Theorem 12. Let f ∈ A2 (ω\K) and z ∈ ω\K be arbitrarily chosen. Then

|f (z) | ≤
√

2‖f‖A2(ω\K)√
V (B)d (z, ∂ (ω\K))n/2
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Proof. The assertion follows directly from Theorem 2 in [5] when applied on
real and imaginary part of f .

Let z ∈ ω\K be arbitrarily chosen. Then a mapping f 7→ f (z) is a
bounded linear functional on A2 (ω\K). It follows that there exist Hω\K (z, ·) ∈
A2 (ω\K) such that f (z) = 〈f,Hω\K (z, ·)〉A2(ω\K).

Theorem 13. It holds that

Hω\K (z, ·) = Kω (z, ·) +KC\K (z, ·)

on ω\K, where Kω and KC\K are Bergman kernels on ω and C\K, respectively.

Proof. Let z ∈ ω\K be arbitrarily chosen. As Hω\K (z, ·) ∈ A2 (ω\K), there
exists unique Vω (z, ·) ∈ B2 (ω) andWC\K (z, ·) ∈ B2 (C\K) such thatHω\K (z, ·) =
Vω (z, ·) +WC\K (z, ·) on ω\K. It follows that

f (z) =

∫
ω

g (w)Vω (z, w)dw +

∫
C\K

h (w)WC\K (z, w)dw,

where f = g+h is a decomposition of f ∈ A2 (ω\K). By the fact that b2 (ω) ⊆
A2 (ω\K) and b2 (C\K) ⊆ A2 (ω\K) it follows that Vω (z, ·) = Kω (z, ·) on ω
and WC\K (z, ·) = KC\K (z, ·) on C\K, from where the assertion follows.

Now we will mention some open problems analogous to those given in [5].
1. Find all triples (p, ω,K) such that A2 (ω\K) = B2 (ω\K).
2. If A2 (ω\K) = B2 (ω\K), then Kω\K (z, ·) ∈ A2 (ω\K), so it would be
interesting to find a relation between Hω\K (z, ·) and Kω\K (z, ·) for a given
z ∈ ω\K.

4 A New Type of Regularity for Distributions

Definition 1. For u ∈ h (Ω\K), we define T u
Ω,K : D (Rn) −→ R as

T u
Ω,K (φ) =

∫
Ω

v (x)φ (x) dx+

∫
Rn\K

w (x)φ (x) dx

for all φ ∈ D (Rn), where u = v + w is a decomposition of u.

Theorem 14. T u
Ω,K is a distribution of order zero on Rn.



On a New Type of Spaces Related... 75

Proof. Linearity is obvious. LetK ′ ⊂⊂ Rn and φ ∈ D (Rn) such that supp (φ) ⊂
K ′ be arbitrarily chosen. We now have

|T u
Ω,K (φ) | = |

∫
Ω

v (x)φ (x) dx+

∫
Rn\K

w (x)φ (x) dx|

≤
∫

Ω

|v (x) ||φ (x) |dx+

∫
Rn\K

|w (x) ||φ (x) |dx

=

∫
K′∩Ω

|v (x) ||φ (x) |dx+

∫
K′∩(Rn\K)

|w (x) ||φ (x) |dx

≤ max
x∈K′∩Ω

|φ (x) |
∫
K′∩Ω

|v (x) |dx+ max
x∈K′∩(Rn\K)

|φ (x) |
∫
K′∩(Rn\K)

|w (x) |dx

≤ max
{
C1

K′ , C
2
K′

}(
max

x∈K′∩Ω
|φ (x) |+ max

x∈K′∩(Rn\K)
|φ (x) |

)
≤ 2 max

{
C1

K′ , C
2
K′

}
max
x∈K′
|φ (x) |

= CK′ max
x∈K′
|φ (x) |.

Here, CK′ = 2 max {C1
K′ , C

2
K′} and

C1
K′ =

∫
K′∩Ω

|v (x) |dx, C2
K′ =

∫
K′∩(Rn\K)

|w (x) |dx. By using Proposition 1.3.1

from [4] we finish the proof.

Definition 2. Let Ω ⊂ Rn be an open set and K ⊂⊂ Ω. We say a distribution
T ∈ D′ (Rn) is (Ω, K)-regular if there exists u ∈ h (Ω\K) such that T = T u

Ω,K

in D′ (Rn). Otherwise we say it is (Ω, K)-singular.

Definition 3. For a distribution T ∈ D (Rn) we say it is h-regular if it is
(Ω, K)-regular for some open set Ω ⊂ Rn and a compact set K ⊂⊂ Ω. Other-
wise we say it is h-singular.

If u ∈ h (Rn), then for every open set Ω ⊂ Rn and every K ⊂⊂ Ω, u = v+w
on Ω\K, where v = u on Ω and w = 0 on Rn\K. So, in this case we obtain

T u
Ω,K (φ) =

∫
Ω

u (x)φ (x) dx.

In this case T u
Ω,K doesn’t depend on K, so we denote it by T u

Ω.

Definition 4. Let Ω ⊂ Rn be an open set. We say a distribution T ∈ D′ (Rn)
is Ω-regular if there exists u ∈ h (Rn) such that T = T u

Ω in D′ (Rn). Otherwise
we say it is Ω-singular.

Definition 5. We say that a distribution T ∈ D′ (Rn) is m-regular if it is
Ω-regular for some open set Ω ⊂ Rn. Otherwise we say it is m-singular.
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In the theory of distributions we know that a distribution T is called regular
if there exists f ∈ L1

loc (Rn) such that T = Tf in D′ (Rn). Here Tf is defined
by

Tf (φ) =

∫
Rn

f (x)φ (x) dx

for all φ ∈ D (Rn) . In the next theorem we will see that every h-regular
distribution is regular.

Theorem 15. Every h-regular distribution is regular.

Proof. Let T be an arbitrarily chosen h-regular distribution. There exists an
open set Ω ⊂ Rn, K ⊂⊂ Ω and u ∈ h (Ω\K) such that T = T u

Ω,K . We have

T (φ) =

∫
Ω

v (x)φ (x) dx+

∫
R\K

w (x)φ (x) dx = Tg (φ) + Th (φ) ,

where g (x) = v (x) on Ω and zero outside Ω, and h (x) = w (x) on Rn\K and
zero on K. This implies T = Tg+h. Since g and h are in L1

loc (Rn), so is g + h.
This implies that T is a regular distribution in D′ (Rn).

From the proof of the theorem we see that T u
Ω,K = Tf , where f = u on

Ω\K, f = v on K and f = w on Rn\Ω. This is the motivation for introducing
the following definition.

Definition 6. Let Ω ⊂ Rn be an open set and K ⊂⊂ Ω. We say a function
f ∈ L1

loc (Rn) is (Ω, K)-harmonic if there exists u ∈ h (Ω\K) such that f = u
on Ω\K, f = v on K and f = w on Rn\Ω. We use notation f = uχΩ\K +
vχK + wχRn\Ω for the function of this form.

The set of all (Ω, K)-harmonic functions on Rn is a vector subspace of
L1
loc (Rn). We denote it by H (Ω, K).

Corollary 1. Let f ∈ L1
loc (Rn). Then Tf is (Ω, K)-regular if and only if

f ∈ H (Ω, K).

Theorem 16. Let Ω ⊂ Rn be an open set and K ⊂⊂ Ω. If u1, u2 ∈ h (Ω\K)
are such that T u1

Ω,K = T u2
Ω,K in D′ (Rn), then u1 = u2 on Ω\K.

Proof. Let u1 = v1 + w1 and u2 = v2 + w2 be decompositions of u1 and u2.
Then T u1

Ω,K = Tf1 , T
u2
Ω,K = Tf2 implies Tf1 = Tf2 from where we get f1 = f2 in

L1
loc (Rn). Here, f1 = u1χΩ\K + v1χK + w1χRn\Ω and f2 = u2χΩ\K + v2χK +

w2χRn\Ω. From this we get u1 = u2 a.e. on Ω\K and since both are harmonic
on Ω\K, it holds that u1 = u2 on Ω\K so the proof is finished.

Theorem 17. Let 1 ≤ p <∞ and Ω ⊂ Rn be an open set and K ⊂⊂ Ω. Let
u ∈ Ap (Ω\K) be arbitrarily chosen. If f = uχΩ\K +vχK +wχRn\Ω ∈ H (Ω, K)
is harmonic on Rn, then u must be zero function on Ω\K.
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Proof. If u ∈ Ap (Ω\K) then u ∈ Lp (Ω\K), v ∈ Lp (Ω) and w ∈ Lp (Rn\K).
From this we conclude that f ∈ Lp (Rn). If we suppose that f is harmonic on
Rn, then we now have f ∈ bp (Rn) = {0}, so f = 0 on Rn. This implies that
u = 0 on Ω\K, so the proof is finished.

Remark 2. We see that functions f ∈ H (Ω, K) are not harmonic in general
but they are in some sense piecewise harmonic. This is the reason why we take
the name (Ω, K)-harmonic for the definition of this functions.

Definition 7. Let 1 ≤ p <∞. We define a set Hp (Ω, K) to be the set of all
functions f ∈ H (Ω, K), f = uχΩ\K +vχK +wχRn\Ω, such that u ∈ Ap (Ω\K).

Theorem 18. Let 1 ≤ p <∞. It holds that Hp (Ω, K) ⊆ H (Ω, K)∩Lp (Rn).

Proof. The proof immidiately follows by using definitions of Hp (Ω, K) and
Ap (Ω, K).

We would like to know when equality holds, i.e. when is Lp (Rn)∩H (Ω, K) =
Hp (Ω, K)? For that purpose we introduce the following definition.

Definition 8. Let 1 ≤ p < ∞. We define Bp (Ω\K) to be the set of all
u ∈ bp (Ω\K) such that w ∈ Lp (Rn\Ω) in the decomposition u = v + w of u.

Definition 9. Let 1 ≤ p < ∞. We define Mp (Ω\K) to be the set of all
functions u ∈ bp (Ω\K) such that v ∈ Lp (Ω\K) and w ∈ Lp (Ω\K) in the
decomposition u = v + w of u.

Theorem 19. Let 1 ≤ p <∞. Then the following assertions are equivalent
(i) Hp (Ω, K) = H (Ω, K) ∩ Lp (Rn)
(ii) Ap (Ω\K) = Bp (Ω\K)
(iii) Bp (Ω\K) ⊆Mp (Ω\K).

Proof. (i)⇒ (ii). Suppose (i) holds. It is obvious that Ap (Ω\K) ⊆ Bp (Ω\K).
Let u ∈ Bp (Ω\K) be arbitrarily chosen. Then u = v+w, where u ∈ bp (Ω\K)
and w ∈ Lp (Rn\Ω). This implies that f = uχΩ\K + vχK +wχRn\Ω belongs to
Lp (Rn)∩H (Ω, K), which is by (i) equal to Hp (Ω, K). So, u ∈ Ap (Ω\K) and
we proved that Bp (Ω\K) ⊆ Ap (Ω\K), so (ii) holds.
(ii)⇒ (iii). Suppose u ∈ Bp (Ω\K) is arbirarily chosen. Then by (ii) we have
u ∈ Ap (Ω\K) and this obviously implies u ∈Mp (Ω\K), so (iii) holds.
(iii)⇒ (i). We only need to prove that Lp (Rn) ∩H (Ω, K) ⊆ Hp (Ω, K). Let
f = uχΩ\K + vχK + wχRn\Ω in Lp (Rn) be arbitrarily chosen. From this we
have u ∈ bp (Ω\K) and w ∈  Lp (Rn\Ω), i.e. u ∈ Bp (Ω\K) and by (iii) it holds
that u ∈Mp (Ω\K). This implies that v ∈ Lp (Ω\K) and w ∈ Lp (Ω\K). But,
we know that w ∈ Lp (Rn\Ω) which implies v ∈ Lp (Ω) and w ∈ Lp (Rn\K)
i.e. u ∈ Ap (Ω\K). This implies f ∈ Hp (Ω, K), so (i) holds. So, the theorem
is proved.
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Definition 10. Let 1 ≤ p < ∞. Let u ∈ Ap (Ω\K). We can extend T u
Ω,K on

Lq (Rn), where 1
p

+ 1
q

= 1, by

T u
Ω,K (f) =

∫
Ω

v (x) f (x) dx+

∫
Rn\K

w (x) f (x) dx

for all f ∈ Lq (Rn).

Theorem 20. Let 1 < p < ∞. Then T u
Ω,K is a bounded linear functional on

Lq (Rn) whose norm is equal to ‖f‖p, where f = uχΩ\K + vχK + wχRn\Ω.

Proof. We easily get that

T u
Ω,K (g) =

∫
Rn

f (x) g (x) dx,

so T u
Ω,K = Tf , from where the assertion follows.

Remark 3. This new type of regularity could be considered in the case of
parabolic PDE’s because the decomposition theorem holds in that case also (see
[6]). This is a new tool that gives a new approach to the problems related to the
boundary value problems for parabolic PDE’s on domains of the form Ω\K.
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[5] A. Memić, A reproducing kernel for a Hilbert space related to Harmonic
Bergman space on a domain outside compact set, Turk. J. Math., 38(2)
(2014), 311-317.

[6] N.A. Watson, A decomposition theorem for solutions of parabolic equa-
tions, Ann. Acad. Sci. Fenn. Math., 25(2001), 151-160.


