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Abstract
This paper presents a parametric study on multeotiye integer quadratic

programming problem under uncertainty. The propogedcedure presents a
guadratic multi-objective integer programming prelsl with a stochastic
parameters in the right hand sides, and all constsa occurs under certain
probability. We consider all random variables arermally distributed. We shall
be essentially concerned with three basic notidhe:set of feasible parameters;
the solvability set and the stability set of thestfkind (SSK1). An algorithm to
clarify the developed theory as well as an illustra example are presented.

Keywords Quadratic programming, integer programming, stosima
programming, Stability optimization.

1 Introduction

Deterministic optimization approaches have beem desleloped and widely used
in the process industry to accomplish off-line awdline process optimization.
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The challenging task for the academic researchn®gtly to address large-scale,
complex optimization problems under various undeties. Therefore,
investigations on the development of Chance-coim&tteoptimization approaches
are required. Chance-constrained optimization is important method for
managing risk arising from random variations inunak resource systems, but the
probabilistic formulations often pose mathematmagramming problems that
cannot be solved with exact methods. A heuristianegion method for these
problems is presented that combines a formulatorofder statistic observations
with the sample average approximation method asulsstisute for chance
constraints ([5], [6], [11]). The effectiveness efolutionary computation
methodologies in the solution of multi-objective tiapzation problems has
generated significant research interest in receatsy A number of evolutionary
multiobjective optimization methodologies have bekaveloped and are being
continuously improved in order to achieve bettefgrenance.

These techniques have illustrated their competeragainst traditional
multiobjective optimization techniques in the sadat of this type of problems
and are now considered to be a robust optimizatmm in the hands of
researchers and practitioners ([1], [3], [4], [7)he methodological development
of integer programming has grown by leaps and boumdise past four decades,
with its main focus on nonlinear integer programgniklowever, the past few
years have also witnessed certain promising thieateind methodological
achievements in linear integer programming. Thesmmt developments have
produced applications of nonlinear (mixed) integergramming across a variety
of various areas of scientific computing, enginegrimanagement science and
operations research. Its prominent applicationsude; for examples, portfolio
selection, capital budgeting, production plannirggource allocation, computer
networks, reliability networks and chemical engimeg([1], [5], [10]). The aim of
this paper is to solve a quadratic multi-objectineger programming problem
with a stochastic parameters in the right handssidad all constraints occurs
under certain probability, problem formulation aadution concept (section 2), a
parametric study of problem (CHMOIQP) (section8)ljization of Kuhn-Tucker
necessary optimality conditions for.(B) (section 4), an algorithm of
determination of the set T(x*) (section 5).

2 Problem Formulation and Solution Concept

The chance-constrained multi-objective integerdgaiéc programming problem
with random parameters in the right-hand side efdbnstraints can be stated as
follows:

(CHMOIQP): maxF(x), (2.1)
subject to
XOX.
Where
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X={xDR“F{ g () iajx. <h }2a,i=12...mx 20andntege;r,=1,2,..n}. (2.2)
=

Here x is the vector of integer decision variabdesl F(x) is a vector of k-
guadratic real-valued objective functions to be imézed. Furthermore, P means
probability anda, is a specified probability value. This means ttreg linear
constraints may be violated some of the time anch@dgt 100(1e;, ) % of the
time. For the sake of simplicity, we assume thatrdmdom parameters b(i =1,

2,...,m) are distributed normally with known mean$Efnd variances Var {b
and independently of each other.

Definition 2.1. A point X’ OX is said to be an efficient solution for problem
(CHMOIQP) if there does not exist anoth&mX such that F(x) = F(x") and
F(x)2F(x") with

P{ g,(x) ia\jxj <b }za,.(=12...m).

The basic idea in treating problem (CHMOIQP) isdonvert the probabilistic
nature of this problem into a deterministic formerd, the idea of employing
deterministic version will be illustrated by usirge interesting technique of
chance-constrained programming ([5], [8], [11]). Inhis case, the set of
constraints X of problem (CHMOIQP) can be rewritiarthe deterministic form
as:

X :{XDR‘ ifspjxj sE{b}+Kai,/Va{h},i:lZ...mxj 20andntegejr,=1,2,..n} (2.3)
j=1

Where K, is the standard normal value such th&(K, )=1-a; ; and ® ()

represents the “cumulative distribution function”f dhe standard normal
distribution evaluated at a. Thus, problem (CHMO)@&n be understood as the
following deterministic version of a multi-objediv integer quadratic
programming (MOIQP) problem :

(MOIQP): max [£(X),f2(x),...,kX)], 2.4)
subject to
XX,

In what follows, an equivalent multi-objective duatic linear programming
(MOQLP) problem associated with problem (2.1)-fZan be stated with the
help of cutting-plane technique ([1], [7], [10]) ¢@ther with Balinski algorithm
[2]. This equivalent MOQLP can be written in thddaing form:
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(MOIQP): max [£(x),f(x),...,kX)], 5.
subject to
xO[XT,

where[ X']is the convex hull of the feasible regiohdéefined by (2.3) earlier.
This convex hull is defined by:

[X]= X H{ xOR| A9x<b®, x20} @9
and in addition,
FAT b, |
b,
A =| & and b = @0
d,
_as— _ds_

The two matrices are the original constraint matAxand the right-hand side
vector b , respectively, with s-additional congttai each corresponding to an
efficient cut in the formg x<d,. By an efficient cut, we mean that a cut which is
not redundant.

Now it can be observed, from the nature of prob(@®QLP) above, that a
suitable scalarization technique for treating suploblems is to use thér
constraint method. For this purpose, we consider ftillowing integer nonlinear
programming problem with a single-objective functas:

P.(&): max fa(x),
2.8)
subject to

X (&) ={xOR"| f, (02 &,,r OK -{a}, xO[ X1}

Where & K={1, 2,...,k} which can be taken arbitrary.

It should be stated here that an efficient soluti®tior problem (CHMOIQP) can
be found by solving the scalar problem(4p and this can be done when the
minimum allowable levelssH, &, ..., &1, &+1, ..., &) for the (k-1) objectivesf
f,..., £, fs+1,..., §) are determined in the feasible region of solusidite).

It is clear from [6] that a systematic variation gfs will yield a set of efficient
solutions. On the other hand, the resulting scaasblem RB(¢) can be solved
easily at a certain parametegs= & using the cutting plane technique. If &*
X(&¥) is a unique optimal integer solution of probldy&*), then x* becomes an

efficient solution to problem (CHMOIQP) with probkty |m|cri .
=1
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3 A Parametric Study of Problem (CHMOIQP)

Now and before we go any further, we can rewritébf@gm R(€) in the following
scalar relaxed subproblem which may occur in th#ingu plane technique
process as:

Pa(€): max fa(X), (3.1)
subject to
XX «(€)]-

Where

xOR"| f,(x)z¢,,r OK -{a},
g()=> ax <C,i=12..m,
=1

X, () = . (3.2)

dax; <sd, =125,
j=1

X; 20,(j =12,...,1).

Where the s-additional constraints each correspgnid an efficient cut in the
form ax<d,. By an efficient cut, we mean that a cut whicini¢ redundant of

problem R(€) for obtaining its optimal integer solution x*.
In addition, it is supposed that:

C =E{b} +K, Vafb}, (i =12..m). (3.3)

In what follows, definitions of some basic stalyilhotions are given for the
relaxed problem f¢) above. We shall be essentially concerned withettrasic
notions: the set of feasible parameters; the sdiisabet and the stability set of
the first kind (SSK1). The qualitative and quanita analysis of these notions
have been introduced in details by ([4], [9]) foffetent classes of parametric
optimization problems. Moreover, stability resuits such problems have been
derived.

Definition 3.1. The set of feasible parameters of problesteP which is denoted
by A, is defined by:

A ={e DR X (¢) 20}

Definition 3.2. The solvability set of problems), which is denoted by B, is
defined by:
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B ={ edA | ProblemP, (¢) hasoptimal integersolutior}.

Definition 3.3. Suppose thate’ OB with a correspondir)g optimal integer
solution x*, then the stability set of the firshd&iof problem E(&) corresponding
to x*, which is denoted by S(x*), is defined by:

S(x*) ={e O B‘x * remainoptimalintegersolution of problerrPS' (e)}. :

4 Utilization qf Kuhn-Tucker Necessary Optimality
Conditions For P, (g).

Now, given an optimal point x*, which may be fouad described earlier in
Section 2, the question is: For what values of tbetor € the Kuhn-Tucker

necessary optimality conditions for the sub-probRy(g) are satisfied?

In the following, the Kuhn-Tucker necessary optiyatonditions corresponding
to problem B(¢) will have the form:

0%)((jx) +,Z:1:#f 0féx(jx) B ;d ag,x(jx) _lzzl:ul ag)fjx) -0, (121210
f,(X)ze,, rdK -{a},
g;(¥=C, (i=12..m),
t(x)=d, (1=12...s),

U =T, () +£,1=0, rOK —{a}, (4.2)
o[9,(¥) -C;]=0, (i=12..m),
u[t () -d]1=0 (1=12....9),
U, 20, rOK —{a},
620, (i=12..m),
u, =0, I={12....3.

Where all the above relations of system (4.1) abane evaluated at the optimal
integer solution x*. The variablgs, &, | are the Langrangian multipliers.

The first and last three relations of the systérth)(above represent a Polytope in
pdu—space for which its vertices can be determinadguany algorithm based
upon the simplex method. According to whether ainghe variablegy,, ri0K-{a},

o, (i=1,2,...m), w(I=1,2,...,s) is zero or positive, then the sepafameterg'a
for which the Kuhn-Tucker necessary optimality dtinds are utilized will be
determined. This set is denoted by T(x*).

5 An Algorithm of Determination of the set T(x*)

In what follows, we propose an algorithm in seradssteps to find the set of
possibles which will be denoted by T(x*). For the set T(xthe point x* remains
efficient for all values of the vectar Clearly, T(x*)J S(x*).
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Step 1. Determine the means Eftand Var{b} (i =1, 2,...m).

Step 2.Convert the original set of constraints X of prabl€CHMOIQP) into the
equivalent set of constraints. X

Step 3.Formulate the deterministic multi-objective integpiadratic problem
(MOIQP) corresponding to problem (CHMOIQP).

Step 4 (a) Use Balinslg algorithm to find all the vertices of the feasilbegion
X',

(b) Select one of the non-integer verticesx' = (xl1 lexnl)

of the solution space. In the tableau of this werthoose the row vector where
the basic variable has the largest fractional valug construct its corresponding
Gomorys fractional cut in the form x<c,.

(c) Add the first cuta x<c, to the original set of the constraints X. Thislwield
a new feasible region®X
(d) Repeat again the steps {a)(c) until, at some step, r, the obtained vertiwes

the solution space all are integers.

(e) Eliminate (drop) all the redundant constraoftthe applied cuts.

(H Add all the constraints of applied s-efficientits to the original set of
constraints X to get [X].

Step 5.Formulate the equivalent linear fractional problemh the constraints

[X].
Step 6.Formulate the integer quadratic problem with a Isadjective function
Pa(€).
Step 7.Solve k-individual integer quadratic problem @ =1,2,...,k) where
R max f(x), (r=1,2,...,k),
subject to
OX],

to find the optimal integer solutions of the k-atijees.

Step 8. Construct the payoff table and determing M, (the smallest and the
largest numbers in th& column in the payoff table).

Step 9.Determine the;'s from the formula:

t

&=+
rnrN_l

(M, =n,),r OK -{a}

where t is the number of all partitions of the g [n,, M/].
Step 10Find the seB={ ¢0OR*" n, <& < M, ,r 0K —{a} }

Step 11.Choosee, 0B and solve the problemy®*) to find its optimal integer
solution x*.

Step 12. Determine the set T(x*) by utilizing the Kuhn-Tucke&ecessary
optimality conditions (4.1) corresponding to pievh R (g).

Step 13.If T1(x*) is a one-point set, go to step 14. Otherwggeto step 14.
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Step 14.Define T,(x*) ={ eORY & -A<¢g <M, ,rOK-{a} }, where A is
any small Pre-specified positive real number.
Step 15.DetermineB - T, § *). If B—T,(X) =¢, stop. Otherwise, go to step 16.

Step 16.Choose another, = £, 0 0-T,(x*) and go to step 11.
The above algorithm terminates when the range isffBlly exhausted.

6 An lllustrative Example

Here, we provide a numerical example to clarify tleeloped theory and the
proposed algorithm. The problem under consideraisoithe following muilti-
objective integer quadratic programming probl@wolving random parameters
in the right-hand side of the constraints (CHMOIQP)

(CHMOIQP): max F(x) = [f(x), f2x)],
subject to
P{X1+ X2 < by} >0.90,
P{-X]_+3X2 < bz} >0.95,
P{3X1+X2 < bz }Z 0.90,
X1, X2 > 0 and integers.
where

f.(x) = X12 +X22' fo(%) =% +X,.

Suppose thatip(i =1, 2, 3) are normally distributed random paegers with the
following means and variances.

E {b} =1, E{by} =3, E{bs} =9,
Var {b} = 25, Var {by} = 4, Var {bs} = 4.

From standard normal tables, we have:
Ky, = Ko, =K og 01.285,K, =K o65 01.645
For the first constraint, the equivalent deterntinisonstraint is given by:
X1+ %< C = E{bi} + K, /Vafb,} =1+1.285(5) = 7.425
For the second constraint:
-x1 +3% < C = E{bg} + K, y/Vaf{b,} =3+1.645(2) =6.29

For the third constraint:

3x1+ %< Ca = E {bg} + K, [Vafb,} =9+1.285(2) = 11.57
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Therefore, problem (CHMOIQP) can be understood las torresponding
deterministic bicriterion integer linear programugpioroblem in the form:

(MOIQP): max [f,(X) =x7 +x, f,(X)=x +X,],
subject to
X+ X <7.425,
-%+3 X% < 6.29,
3+ X% <11.57,
%, X2 > 0 and integers.

Now , (MOQLP) problem associated with (MOIQP) desb can be stated with
the help of cutting-plane technique ([1], [7], [LOjogether with Balinski
algorithm [2] in the following form.

(MOQLP): max [f,(X) =x7 +x, f,(X)=x +X,],
subject to
X+ X <7.425,
-%+3 % < 6.29,
3% + % <11.57,
X1 <3,
%<2,
X, X2>0.

Using theg-constraint method [3], then problem above withiragle-objective
function becomes:

Py (€): max f, (X) = X2 + X2,
subject to
X t+X, 2E, ,
X+ % <7.425,
X+ 3% <6.29,
3x+ X <11.57
%, X2 > 0 and integers.

It can be shown easily that<x, < 7.425.

Problem R(€) can be solved & = &, =5, f,(x') = 13and its optimal integer
solution is found (X, X )= (3, 2) with probability 0.7695.

Furthermore, problem;E) can be rewritten in the following parametric foast

Py'(e): max f,(x) = x> +x2 ,
subject to
X +X, 2E,,
X+ X <7.425,
X+ 3% <6.29,
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3% + % <11.57,
X <3,
%<2,
X1, Xo=>0 .

Therefore, the Kuhn-Tucker necessary optimality dittons corresponding to
problem R'(¢) will take the following form:

2%, + fy =0, +9, =39, ~u, =0,
1+ 44y =6, =30, =0, U, =0,
X X, 2E,,
X + X, < 7425
— X, +3X,< 629,
3%, + X, <1157,
X <3
X, £ 2, #)
Hi (=X, = X, +£,) =0,
8,(x, +x%, = 7429 =0,
0, (=%, +3x, — 629)=0,
0, (3%, + X, —1157) =0,
u (% -3) =0,
u,(x, —2) =0,
H1,01,0,,05,U;,U, 20

where all tbe gbove expressions of system (#) \zakiated at the optimal integer
solution (% ,x2 ) = (3, 2)with probability 0.7695 . In addition, it can bleasvn
that

5=0,=0=0,u, >0, >0
Therefore, the set; {3, 2) is given by:
T1(3, 2) ={e0R| 2<e,<5}.

A systematic variation ofe;[IR and 2.6k €, < 5 will yield another stability set
T»(3, 2), and so on.

7 Conclusions

The general purpose of this study was to invesigaability of the efficient
solution for chance-constrained multi-objectiveteger quadratic programming
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problem. A parametric study has been carried outtlom problem under
consideration, where some basic stability notioraveh been defined and
characterized for the formulated problem.

Many aspects and general questions remain to beedtand explored in the field
of multi-objective integer optimization problemsder randomness. This paper is
an attempt to establish underlying results whiclpdfially will help others to
answer some or all of these questions.

There are however several unsolved problems, inopurion, to be studied in
future. Some of these problems are:

(1) An algorithm is required for solving multbjective integer quadratic
programming problems involving random parameterthéleft-hand side
of the constraints,

(i) An algorithm is needed for treating large-scale tivab)jective integer
guadratic nonlinear programming problems undedoamess,

(i)  An algorithm should be handled for solving intedeactional  goal
programs involving random parameters.
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