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Abstract 
     This paper presents a parametric study on multi-objective integer quadratic   
programming problem under uncertainty. The proposed procedure presents a 
quadratic multi-objective integer programming problem with a stochastic 
parameters in the right hand sides, and all constraints occurs under certain 
probability. We consider all random variables  are normally distributed. We shall 
be essentially concerned with three basic notions: the set of feasible parameters; 
the solvability set and the stability set of the first kind (SSK1).  An algorithm to 
clarify the developed theory as well as an illustrative example are presented. 
      
      Keywords: Quadratic programming, integer programming, stochastic 
programming, Stability optimization. 
 

1      Introduction 
 

Deterministic optimization approaches have been well developed and widely used 
in the process industry to accomplish off-line and on-line process optimization. 
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The challenging task for the academic research is currently to address large-scale, 
complex optimization problems under various uncertainties. Therefore, 
investigations on the development of Chance-constrained optimization approaches 
are required. Chance-constrained optimization is an important method for 
managing risk arising from random variations in natural resource systems, but the 
probabilistic formulations often pose   mathematical programming problems that 
cannot be solved with exact methods. A heuristic estimation method for these 
problems is presented that combines a formulation for order statistic observations 
with the sample average approximation method as a substitute for chance 
constraints ([5], [6], [11]).  The effectiveness of evolutionary computation 
methodologies in the solution of multi-objective optimization problems has 
generated significant research interest in recent years. A number of evolutionary 
multiobjective optimization methodologies have been developed and are being 
continuously improved in order to achieve better performance.  
These techniques have illustrated their competency against traditional 
multiobjective optimization techniques in the solution of this type of problems 
and are now considered to be a robust optimization tool in the hands of 
researchers and practitioners ([1], [3], [4], [7]).  The methodological development 
of integer programming has grown by leaps and bounds in the past four decades, 
with its main focus on nonlinear integer programming. However, the past few 
years have also witnessed certain promising theoretical and methodological 
achievements in linear integer programming. These recent developments have 
produced applications of nonlinear (mixed) integer programming across a variety 
of various areas of scientific computing, engineering, management science and 
operations research. Its prominent applications include, for examples, portfolio 
selection, capital budgeting, production planning, resource allocation, computer 
networks, reliability networks and chemical engineering([1], [5], [10]). The aim of 
this paper is to solve a quadratic multi-objective integer programming problem 
with a stochastic parameters in the right hand sides, and all constraints occurs 
under certain probability, problem formulation and solution concept  (section 2), a 
parametric study of problem (CHMOIQP) (section 3), utilization of Kuhn-Tucker 
necessary optimality conditions for Pa

'(ε) (section 4), an algorithm of 
determination of the set  T(x*) (section 5). 
 

2 Problem Formulation and Solution Concept 
  
The chance-constrained multi-objective  integer quadratic  programming problem 
with random parameters in the right-hand side of the constraints can be stated as 
follows:  
 
 (CHMOIQP):    maxF(x),                                                 (2.1) 
                           subject to 
     x∈X.      
Where 
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Here x is the vector of integer decision variables and F(x) is a vector of k-
quadratic real-valued objective functions to be maximized. Furthermore, P means 
probability and iα  is a specified probability value. This means that the linear 

constraints may be violated some of the time and at most 100(1- iα  ) % of the 
time. For the sake of simplicity, we assume that the random parameters bi,  (i =1, 
2,…,m) are distributed normally with known means E{bi} and variances Var {bi} 
and independently of each other. 
 
Definition 2.1. A point Xx* ∈  is said to be an efficient solution for problem 

(CHMOIQP) if there does not exist another Xx ∈ such that )x(F)x(F *≥  and 
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The basic idea in treating problem (CHMOIQP) is to convert the probabilistic 
nature of this problem into a deterministic form. Here, the idea of employing 
deterministic version will be illustrated by using the interesting technique of 
chance-constrained programming ([5], [8], [11]). In this case, the set of 
constraints X of problem (CHMOIQP) can be rewritten in the deterministic form 
as: 
 

 








=≥=+≤∈=′ ∑
=

n1,2,...,j integer,0,...,,2,1,}{}{
1

andxmibVarKbExaRxX j

n

j
iijij

n

iα      (2.3) 

 
Where 

i
K α  is the standard normal value such that i1)K(

i
α−=Φ α  ; and )a(Φ  

represents the “cumulative distribution function” of the standard normal 
distribution evaluated at a. Thus, problem (CHMOIQP) can be understood as the 
following deterministic version of a multi-objective integer quadratic  
programming (MOIQP) problem : 
 
(MOIQP):  max [f1(x),f2(x),…,fk(x)],                                             (2.4) 
     subject to 
                 x∈X′. 
 
In what follows, an equivalent  multi-objective quadratic linear  programming 
(MOQLP)  problem associated with problem (2.1)-(2.2) can be stated with the 
help of cutting-plane technique ([1], [7], [10]) together with Balinski algorithm 
[2]. This equivalent MOQLP can be written in the following form: 
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(MOIQP):  max [f1(x),f2(x),…,fk(x)],                                           (2.5) 
                                     subject to 
                                     ][ Xx ′∈ ,                                                           
 
where ][ X ′ is the convex hull of the feasible region X′  defined by (2.3) earlier.  
This convex hull is defined by:  
 

            }0,{][ )()()( ≥≤∈=′=′ xbxARxXX ssns
R                 (2.6) 

and in addition, 
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The two matrices are the original constraint matrix A and the right-hand side 
vector b , respectively, with s-additional constraints each corresponding to an 
efficient cut in the form ii dxa ≤ . By an efficient cut, we mean that a cut which is 

not redundant.  
Now it can be observed, from the nature of problem (MOQLP) above, that a 
suitable scalarization technique for treating such problems is to use the ∈- 
constraint method. For this purpose, we consider the following integer nonlinear 
programming problem with a single-objective function as: 
 
Pa(ε):    max fa(x),                                                                 
(2.8) 
     subject to 
 

{ }{ }]'[,,)()( XxaKrxfRxX rr
n ∈−∈≥∈= εε  

 
Where a∈K={1, 2,…,k} which can be taken arbitrary. 
It should be stated here that an efficient solution x* for problem (CHMOIQP) can 
be found by solving the scalar problem Pa(ε) and this can be done when the 
minimum allowable levels (ε1, ε2, …, εs-1, εs+1, …, εk) for the (k-1) objectives (f1, 
f2,…, fs-1, fs+1,…, fk) are determined in the feasible region of solutions X(ε). 
It is clear from [6] that a systematic variation of εi's will yield a set of efficient 
solutions. On the other hand, the resulting scalar problem Pa(ε) can be solved 
easily at a certain parameter ε= ε* using the cutting plane technique. If x*∈ 
X(ε*) is a unique optimal integer solution of problem Pa(ε*), then x* becomes an 

efficient solution to problem (CHMOIQP) with probability i

m

i
α

1=
∏  . 
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3   A Parametric Study of Problem (CHMOIQP) 
 
Now and before we go any further, we can rewrite problem Pa(ε) in the following 
scalar relaxed subproblem which may occur in the cutting plane technique  
process as:  
 
Pa

'(ε):   max f a(x),                                                                    (3.1) 
     subject to 
     x∈[X s(ε)]. 
Where 
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Where the  s-additional constraints each corresponding to an efficient cut in the 
form ii dxa ≤ . By an efficient cut, we mean that a cut which is not redundant of 

problem Pa(ε) for obtaining its optimal integer solution x*. 
In addition, it is supposed that:  
 

).m,....2,1i(,}b{VarK}b{EC iii i
=+= α                                                      (3.3) 

 
In what follows, definitions of some basic stability notions are given for the 
relaxed problem Pa

'(ε) above. We shall be essentially concerned with three basic 
notions: the set of feasible parameters; the solvability set and the stability set of 
the first kind (SSK1). The qualitative and quantitative analysis of these notions 
have been introduced in details by ([4], [9]) for different classes of parametric 
optimization problems. Moreover, stability results for such problems have been 
derived. 
 
Definition 3.1. The set of feasible parameters of problem Ps

'(ε), which is denoted 
by A, is defined by: 
 

{ }.)(XRA s
1k Φ≠ε∈ε= −  

 
Definition 3.2. The solvability set of problem Ps

'(ε), which is denoted by B, is 
defined by: 
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Definition 3.3. Suppose that B* ∈ε  with a corresponding optimal integer 
solution x*, then the stability set of the first kind of problem Ps

'(ε) corresponding 
to x*, which is denoted by S(x*), is defined by: 
   

{ }.)(Pproblemofsolutionintegeroptimalremain*xB*)x(S '
s ε∈ε= . 

 

4   Utilization of Kuhn-Tucker Necessary Optimality 
Conditions For Pa

'(εεεε). 
  
Now, given an optimal point x*, which may be found as described earlier in 
Section 2, the question is: For what values of the vector ε the Kuhn-Tucker 
necessary optimality conditions for the sub-problem Pa

'(ε) are satisfied? 
In the following, the Kuhn-Tucker necessary optimality conditions corresponding 
to problem Pa

'(ε) will have the form: 
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Where  all the above relations of system (4.1) above are evaluated at the optimal 
integer solution x*. The variables µr, δi, uj  are the Langrangian multipliers. 
The first and last three  relations of the system (4.1) above represent a Polytope in 
µδu–space for which its vertices can be determined using any algorithm based 
upon the simplex method. According to whether any of the variables µr, r∈K-{a}, 
δi, (i=1,2,…m), ul,(l=1,2,…,s)  is zero or positive, then the set of parameters ε'a 
for which the Kuhn-Tucker necessary optimality conditions are utilized will be 
determined. This set is denoted by T(x*). 
 

5    An Algorithm of Determination of the set T(x*) 
  
In what follows, we propose an algorithm in series of steps to find the set of 
possible ε which will be denoted by T(x*). For the set T(x*), the point x* remains 
efficient for all values of the vector ε. Clearly,T(x*)⊆ S(x*). 
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Step 1.  Determine the means E{bi} and Var{bi} (i =1, 2,…m). 
Step 2. Convert the original set of constraints X of problem (CHMOIQP) into the   
equivalent set of constraints X′. 
Step 3. Formulate the deterministic multi-objective  integer quadratic problem 
(MOIQP) corresponding to problem (CHMOIQP). 
Step 4. (a) Use Balinski's algorithm to find all the vertices of the feasible region 
X′. 

(b) Select one of the non-integer vertices ( )1 1 1 1
1 2, ,..., nx x x x=                                 

of the solution space. In the tableau of this vertex, choose the row vector where 
the basic variable has the largest fractional value and construct its corresponding 
Gomory's fractional cut in the form 11 cxa ≤ . 

(c) Add the first cut 11 cxa ≤  to the original set of the constraints X. This will yield 
a new feasible region X1. 

(d) Repeat again the steps (a) → (c) until, at some step, r, the obtained vertices of 

the solution space all are integers. 
(e) Eliminate (drop) all the redundant constraints of the applied cuts. 
(f) Add all the constraints of applied s-efficient cuts to the original set of 
constraints X′   to get [X′].  
Step 5. Formulate the equivalent linear fractional problem with the constraints 
[X ′].  
Step 6. Formulate the integer quadratic problem with a single-objective function 
Pa(ε). 
Step 7. Solve k-individual integer quadratic  problem Pr, (r =1,2,…,k) where 
 
            Pr:    max fr(x),  (r=1,2,…,k), 
                                      subject to 
                                      x∈ [X ′], 
             
to find the optimal integer solutions of the k-objectives. 
Step 8. Construct the payoff table and determine nr, Mr (the smallest and the 
largest numbers in the rth column in the payoff table). 
Step 9. Determine the εi's from the formula: 
 

εr = nr + }{),(
1

aKrnM
N

t
rr −∈−

−
 

            
where t is the number of all partitions of the interval [nr, Mr]. 
Step 10. Find the set { }}{,1 aKrMnRB rrr

k −∈≤≤∈= − εε  

Step 11. Choose Br ∈*ε  and solve the  problem Pa(ε*)  to find its optimal integer 
solution x*. 
Step 12. Determine the set T(x*) by utilizing the Kuhn-Tucker necessary 
optimality conditions (4.1)   corresponding to problem Ps

'(ε). 
Step 13. If  T1(x*) is a one-point set, go to step 14. Otherwise, go to step 14. 



56        Osama E. Emam 
 

  

Step 14. Define  { }}{,*)( **1
1 aKrMRxT rrr

k −∈≤≤∆−∈= − εεε , where  ∆  is  

any   small Pre-specified positive real number. 

Step 15. Determine *)(xTB i− . If φ=− *)(xTB i , stop. Otherwise, go to step 16. 

Step 16. Choose another *)(1 xTrr −ℑ∈= εε  and go to step 11. 
The above algorithm terminates when the range of B is fully exhausted. 
 

6   An Illustrative Example 
  
Here, we provide a numerical example to clarify the developed theory and the 
proposed algorithm. The problem under consideration is the following multi-
objective  integer quadratic  programming problem involving random parameters 
in the right-hand side of the constraints (CHMOIQP). 
 
(CHMOIQP):  max F(x) = [f1(x), f2(x)], 
                                    subject to 
                                                   P{x1+ x2 ≤ b1} ≥ 0.90, 
                                                   P{-x1+3x2 ≤ b2} ≥ 0.95, 
                                                   P{3x1+x2 ≤ b3 }≥ 0.90, 
x1, x2 ≥ 0 and integers. 
where 
      212

2
2

2
11 )(,)( xxxfxxxf +=+= . 

  
Suppose that bi, (i =1, 2, 3) are normally distributed random parameters with the 
following means and variances. 
 
    E {b1} = 1,  E{b2} = 3,  E{b3} = 9, 
    Var {b1} = 25,  Var {b2} = 4,  Var {b3} = 4. 
 
From standard normal tables, we have: 
 
    

1
K α = 

3
K α = 90.0K  ≅ 1.285, 

2
K α = 95.0K  ≅ 1.645 

 
For the first constraint, the equivalent deterministic constraint is given by: 
 

x1 + x2 ≤ C1 = E{b1} + }b{VarK 11α = 1+1.285(5) = 7.425 

 
For the second constraint: 
 

- x1 +3 x2 ≤ C2 = E{b2} + }b{VarK 22α = 3+1.645(2) = 6.29 

 
For the third constraint: 
 

3x1 + x2 ≤ C3 = E {b3} + }b{VarK 33α = 9+1.285(2) = 11.57 
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Therefore, problem (CHMOIQP) can be understood as the corresponding 
deterministic bicriterion integer linear programming problem in the form: 
 
(MOIQP):  max [ 212

2
2

2
11 )(,)( xxxfxxxf +=+= ], 

     subject to 
         x1 + x2 ≤ 7.425, 
        -x1+3 x2 ≤ 6.29, 
       3x1 + x2 ≤ 11.57, 
           x1, x2 ≥ 0 and integers. 
 
Now , (MOQLP)  problem associated with (MOIQP) problem  can be stated with 
the help of cutting-plane technique ([1], [7], [10]) together with Balinski 
algorithm [2] in the following form. 
 
(MOQLP):  max [ 212

2
2

2
11 )(,)( xxxfxxxf +=+= ], 

     subject to 
         x1 + x2 ≤ 7.425, 
        -x1+3 x2 ≤ 6.29, 
        3x1 + x2 ≤ 11.57, 
                                                    x1           ≤ 3, 
       x2 ≤ 2, 
           x1, x2 ≥ 0 . 
 
Using the ε-constraint method [3], then problem above with a single-objective 
function becomes: 
 
P1 (ε):    max ,)( 2

2
2
11 xxxf +=  

                 subject to 
            221 ε≥+ xx  , 
            x1 + x2 ≤ 7.425, 
             -x1+ 3 x2 ≤ 6.29, 
             3x1 + x2 ≤ 11.57 
           x1, x2 ≥ 0 and integers. 
 
It can be shown easily that  2 ≤ ε2 ≤ 7.425. 
Problem P1(ε) can be solved at ε2 =  ε2

* =5,  13)( *
1 =xf  and its optimal integer 

solution is found (x1
*, x2

*)= (3, 2)  with probability 0.7695. 
Furthermore, problem P1(ε) can be rewritten in the following parametric form as: 
 
   P1'(ε):  max ,)( 2

2
2
11 xxxf +=  

     subject to 
        221 ε≥+ xx , 
         x1 + x2 ≤ 7.425, 
         -x1+ 3x2 ≤ 6.29, 
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        3x1 + x2 ≤ 11.57, 
         x1           ≤ 3, 
       x2 ≤ 2, 
                                                       x1, x2 ≥ 0 . 
 
Therefore, the Kuhn-Tucker necessary optimality conditions corresponding to 
problem P1'(ε) will take the following form: 
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where all the above expressions of system (#) are evaluated at the optimal integer 
solution (x1

*,x2
*) = (3, 2) with probability 0.7695  . In addition, it can be shown 

that  
 
δ1 = δ2 = δ3 = 0, u1, u2 > 0, µ1 ≥0 
 
Therefore, the set T1(3, 2) is given by: 
 
T1(3, 2) = {ε∈R  2 ≤ ε2 ≤ 5 }. 
 
A systematic variation of  ε2∈R and 2.61 ≤ ε2 ≤ 5 will yield another stability set 
T2(3, 2), and so on. 
 

7   Conclusions 
  
The general purpose of this study was to investigate stability of the efficient 
solution for chance-constrained multi-objective  integer quadratic programming 
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problem. A parametric study has been carried out on the problem under 
consideration, where some basic stability notions have been defined and 
characterized for the formulated problem. 
Many aspects and general questions remain to be studied and explored in the field 
of multi-objective  integer optimization problems under randomness. This paper is 
an attempt to establish underlying results which hopefully will help others to 
answer some or all of these questions. 
There are however several unsolved problems, in our opinion, to be studied in 
future. Some of these problems are: 
 
(i)        An algorithm is required for solving multi-objective  integer quadratic  

programming problems involving random parameters in the left-hand side 
of the constraints, 

(ii)  An algorithm is needed for treating large-scale multi-objective  integer 
quadratic  nonlinear programming problems under randomness, 

(iii)  An algorithm should be handled for solving integer fractional   goal 
programs involving random parameters. 
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