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Abstract
In this paper we introduce a new class of sets, called Pp-open sets, also

using this set, we define and investigate some properties of the concept of Pp-
continuity. In particular, Pp-open sets and Pp-continuity are defined to extend
known results for preopen sets and pre-continuity.
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1 Introduction

In 1982, Mashhour et al [15] defined a new class of sets called preopen sets.
He proved that the union of any family of preopen sets is also preopen set and
introduced two types of continuity called precontinuous and weak precontinu-
ous functions. In 1987, Popa [16] defined pre-neighbourhood of a point x in a
space X. El-Deeb et al [9] defined the preclosure of a subset A as the inter-
section of all preclosed sets containing A and the preinterior of A is the union
of all preopen sets contained in A. In the present paper we introduce a new
type of preopen sets called Pp-open, this type of sets lies strictly between the
pre-θ-open sets and preopen sets. We also study its fundamental properties
and then we define further topological properties such as, Pp-neighborhood,
Pp-interior, Pp-closure, Pp-derived set and Pp-boundary of a set. Mashhour et
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al [15] defined a function f : X → Y to be pre-continuous if f−1(V ) is preopen
set in X for every open set V of Y . Long and Herrington [14] have introduced
a new class of functions called strongly θ-continuous function. We also intro-
duce and investigate the concept of Pp-continuous functions. It will be shown
that Pp-continuity is weaker than quasi θ-continuity mentioned in [20], but it
is stronger than pre-continuity [15].

2 Preliminaries

Throughout the present paper, a space x always mean a topological space
on which no separation axiom is assumed unless explicitly stated. Let A be
a subset of a space X.The closure and interior of A with respect to X are
denoted by Cl(A) and Int(A) respectively. A subset A of a space X is said
to be preopen [15] (resp., semi-open [13], α-open [18], β-open [1] and regular
open [23]), if A ⊆ Int(Cl(A)) (resp., A ⊆ Cl(Int(A)), A ⊆ Int(Cl(Int(A))),
A ⊆ Cl(Int(Cl(A))) and A = Int(Cl(A))). The complement of a preopen
(resp., regular open ) set is said to be preclosed [9] (resp., regular closed[23]).
The family of all preopen (resp., semi-open, α-open, β-open and regular open)
subsets ofX is denoted by PO(X) (resp., SO(X), αO(X), βO(X) and RO(X).
The intersection of all preclosed sets of X containing A is called the preclosure
[9] of A. The union of all preopen sets of X contained in A is called the
preinterior. A subset A of a space X is called preclopen [11], if A is both
preopen and preclosed while it is called pre-regular open [16], if PIntPCl(A) =
A. In 1968, Velicko [24] defined the concepts of δ-open and θ-open sets in X
denoted by (δO(X) and θO(X) respectively). A subset A of a space X is
called δ-open (resp., θ-open) set if for each x ∈ A, there exists an open set G
such that x ∈ G ⊆ Int(Cl(G)) ⊆ A (resp., x ∈ G ⊆ Cl(G) ⊆ A). Joseph and
Kwack [10] (resp., Di Maio and T. Noiri [12]), defined a subset A of a space
X to be θ-semi-open (resp., semi-θ-open), if for each x ∈ A, there exists a
semi-open set G such that x ∈ G ⊆ Cl(G) ⊆ A (resp., x ∈ G ⊆ SCl(G) ⊆ A).
The family of all θ-semi-open (resp., semi-θ-open) subsets of X is denoted by
θSO(X) (resp., SθO(X)). We recall that a topological X locally indiscrete [8]
if every open subset of X is closed.

Definition 2.1 [22] A space (X ,τ) is said to have the property P if the clo-
sure is preserved under finite intersection or equivalently, if the closure of
intersection of any two subsets equals the intersection of their closures.

From the above definition Paul and Bhattacharyya [22] pointed out the fol-
lowing remark:
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Remark 2.2 If a space X has the property P , then the intersection of any two
preopen sets is preopen, as a consequence of this, PO(X, τ) is a topology for
X and it is finer than τ .

Definition 2.3 The point x ∈ X is said to be a pre-θ-cluster [19] point of a
subset A, if PCl(U) ∩ A 6= φ for every U ∈ PO(X).
The set of all pre-θ-cluster points of A is called the pre-θ-closure of A and is
denoted by PClθ(A).
A subset A of a topological space (X, τ) is said to be pre-θ-closed [5] if PClθ(A) =
A. The complement of a pre-θ-closed set is called pre-θ-open and it is denoted
by PθO(X).

Lemma 2.4 [6] A subset U of a space X is pre-θ-open in X if and only if for
each x ∈ U , there exists a preopen set V with x ∈ V such that PCl(V ) ⊆ U .

Lemma 2.5 [8] Let (X,τ) be a topological space. If A ∈ αO(X) and B ∈
PO(X), then A ∩B ∈ PO(X).

The following results also can be found in [2].

Theorem 2.6 1. Let (X,τ) be a topological space. If G ∈ τ and Y ∈
PO(X), then G ∩ Y ∈ PO(X).

2. Let (Y ,τY ) be a subspace of a space (X,τ). If A ∈ PO(X, τ) and A ⊆ Y ,
then A ∈ PO(Y, τY ). Moreover, if Y is an α-open subspace of X, F ∈
PC(X, τ) and F ⊆ Y , then F ∈ PC(Y, τY ).

3. Let (Y ,τY ) be a subspace of a space (X,τ). If A ∈ PO(Y, τY ) and Y ∈
PO(X, τ), then A ∈ PO(X, τ).

Theorem 2.7 [7] For any subset A of a space (X, τ). The following state-
ments are equivalent:

1. A is clopen.

2. A is α-open and closed .

3. A is preopen and closed.

Theorem 2.8 [2] For any spaces X and Y . If A ⊆ X and B ⊆ Y then,

1. PIntX×Y (A×B) = PIntX(A)× PIntY (B).

2. PClX×Y (A×B) = PClX(A)× PClY (B).

Theorem 2.9 [3] Let (X,τ) be any space, then PO(X,τ) = PO(X, τα).
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Theorem 2.10 [8] A topological space (X, τ) is locally indiscrete if and only
if every subset of X is preopen.

Theorem 2.11 [2] A topological space (X, τ) is s∗∗-normal if and only if for
every semi-closed set F and every semi-open set G containing F , there exists
an open set H such that F ⊆ H ⊆ Cl(H) ⊆ G.

Theorem 2.12 [25] If X is s∗∗-normal, then SθO(X) = θO(X).

Definition 2.13 [9] A topological space X is said to be P-regular if for each
closed subset F of X and each point x /∈ F there exist U, V ∈ PO(X) such
that x ∈ U , F ⊆ V and U ∩ V = φ.

Definition 2.14 [21] A space X is said to be pre-regular if for each preclosed
set F and each point x /∈ F , there exist disjoint preopen sets U and V such
that x ∈ U and F ⊆ V

Lemma 2.15 [21] A space X is pre-regular if and only if for each x ∈ X and
each H ∈ PO(X) there exists G ∈ PO(X) such that x ∈ G ⊆ PCl(G) ⊆ H.

Theorem 2.16 [4] A space X is pre-regular if and only if PCl(A) = PClθ(A)
for each subset A of X.

Theorem 2.17 [17] A space X is pre-T1 if and only if the singleton set {x}
is preclosed for each point x ∈ X.

3 Pp-Open Sets

Definition 3.1 A subset A of a space X is called Pp-open, if for each x ∈
A ∈ PO(X), there exists a preclosed set F such that x ∈ F ⊆ A.

A subset B of a space X is called Pp-closed, if X \B is Pp-open. The family
of all Pp-open (Pp-closed) subsets of a topological space (X, τ) is denoted by
PpO(X, τ) or PpO(X) (PpC(X, τ) or PpC(X)).

Proposition 3.2 A subset A of a space X is Pp-open if and only if A is
preopen set and is a union of preclosed sets.

proof. Obvious.
It is clear from the definition that every Pp-open subset of a space X is

preopen, but the converse is not true in general as shown in the following
example:

Example 3.3 Consider X = {a, b, c} with the topology
τ = {φ, {a}, {a, b}, {a, c}, X}, then {a} ∈ PO(X) but {a} /∈ PpO(X).
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The following result shows that any union of Pp-open sets in a topological
space (X, τ) is Pp-open.

Proposition 3.4 Let {Aλ : λ ∈ ∆} be a collection of Pp-open sets in a topo-
logical space X, then

⋃{Aλ ∈ ∆} is Pp-open.

proof. Let Aλ is Pp-open set for each λ, then Aλ is preopen and hence
⋃{Aλ :

λ ∈ ∆} is preopen. Let X ∈ ⋃{Aλ : λ ∈ ∆}, there exist λ ∈ ∆ such that
X ∈ Aλ. Since Aλ is Pp-open for each λ, there exists a preclosed set F such
that x ∈ F ⊂ Aλ ⊆

⋃ {Aλ : λ ∈ ∆}, so x ∈ F ⊆ ⋃{Aλ : λ ∈ ∆}.
Therefore,

⋃{Aλ : λ ∈ ∆} is Pp-open set.
The following example shows that the intersection of two Pp-open sets need

not be Pp-open.

Example 3.5 Consider X = {a, b, c, d} with the topology
τ = {φ, {b}, {a, d}, {a, b, d}, X}.
Here {a, b, c} ∈ PpO(X) and {b, c, d} ∈ PpO(X), but {a, b, c} ∩ {b, c, d} =
{b, c} /∈ PpO(X).

From the above example we notice that the family of all Pp-open sets need
not be a topology on X.

Proposition 3.6 If the family of all preopen sets of a space X is a topology
on X, then the family of Pp-open is also a topology on X.

proof. It is enough to show that the finite intersection of Pp-open sets is also
PP -open set. Let A and B be two Pp-open sets, then A and B are preopen sets.
Since PO(X) is a topology on X. Then A∩B ∈ PO(X). Let x ∈ A∩B, then
x ∈ A and x ∈ B, there exists preclosed sets E and F such that x ∈ E ⊆ A
and x ∈ F ⊆ B, this implies that x ∈ E ∩ F ⊆ A ∩ B. Since any intersection
of preclosed sets is preclosed, then A ∩ B is Pp-open set. This completes the
proof.

Corollary 3.7 Let (X, τ) be a topological space. If X has a property P , then
PpO(X) forms a topology on X.

proof. Follows from Proposition 3.6.

Proposition 3.8 If a space X is pre-T1-space, then PO(X) = PpO(X).

proof. Since the space X is pre-T1, then by Theorem 2.17 every singleton
is preclosed set and hence x ∈ {x} ⊆ A. Therefore, A ∈ PpO(X). Thus
PO(X) = PpO(X).

Proposition 3.9 For any subset A of a space X. If A ∈ PθO(X), then
A ∈ PpO(X).



Pp-Open Sets and Pp-Continuous Functions 39

proof. Let A ∈ PθO(X). If A = φ, then A ∈ PpO(X). If A 6= φ, then for
each x ∈ A, there exists a preopen set G such that X ∈ G ⊆ PCl(G) ⊆ A
implies that x ∈ PCl(G) ⊆ A. Since A ∈ PθO(X) and PθO(X) ⊆ PO(X) in
general, then A ∈ PO(X). Therefore, A ∈ PpO(X).

Remark 3.10 It clear that each preregular (preclopen or θ-open) set are Pp-
open.

The following example shows that a Pp-open set need not be θ-open.

Example 3.11 Consider X = {a, b, c, d}, with the topology
τ = {φ, {a}, {a, b}, {c, d}, {a, c, d}, X}
Then the set {a, b, c} ∈ PpO(X), but {a, b, c} /∈ θO(X)

Theorem 3.12 For any space X, PCl(PInt({x})) = {x} if and only if {x}
is Pp-open.

proof. Let PCl(PInt({x})) = {x}, implies that {x} is preopen and preclosed,
then {x} is preregular open, therefore {x} ∈ PpO(X).
Conversely, let {x} be Pp-open, this implies that x ∈ {x} ⊆ {x}. Since
{x} ∈ PpO(X), then {x} ∈ PC(X) and hence {x} is pre-open and pre-closed.
Therefore, PCl(PInt({x})) = {x}.

Proposition 3.13 Let (X, τ) be a topological space, then {x} is PpO(X) if
and only if it is preclopen for every x ∈ X.

proof. Obvious.

Proposition 3.14 A subset A of a space (X, τ) is Pp-open if and only if for
each x ∈ A, there exists a Pp-open set B such that x ∈ B ⊆ A.

proof. Suppose that for each x ∈ A, there exists a Pp-open set B such that
x ∈ B ⊆ A. Thus A = ∪Bλ where Bλ ∈ PpO(X) for each λ, and by Proposition
3.4, A is Pp-open.
The other part is obvious.

Proposition 3.15 Let (X, τ) be a pre-regular space, then τ ⊆ Pp(X).

proof. Let A be any open subset of a space X. This implies that A is
preopen. If A = φ, then A ∈ PpO(X). If A 6= φ, since X is pre-regular, by
Lemma 2.15, for each x ∈ A ⊆ X, there exists a pre-open set G such that
x ∈ G ⊆ PCl(G) ⊆ A. Thus we have x ∈ PCl(G) ⊆ A. Therefore, τ ⊆
PpO(X).
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Proposition 3.16 Let (X, τ) be a topological space, and A,B ⊆ X. If A ∈
PpO(X) and B is both α-open and preclosed, then A ∩B ∈ PpO(X).

proof. Let A ∈ PpO(X) and B is α-open, then A is preopen set, and by
Lemma 2.5, A∩B ∈ PO(X). Let x ∈ A∩B, x ∈ A and x ∈ B, there exists a
preclosed set F such that x ∈ F ⊆ A. Since B is preclosed, implies that F ∩B
is preclosed, then x ∈ F ∩B ⊆ A ∩B. Thus A ∩B is Pp-open set in X.

Corollary 3.17 If a space X is locally indiscrete, then PO(X) = PpO(X).

proof. Follows from Theorem 2.10.

Proposition 3.18 If a topological space (X, τ) is locally indiscrete, then τ ⊆
PpO(X).

proof. Since X is locally indiscrete, then by Corollary 3.17, PO(X) =
PpO(X). Therefore, τ ⊆ PpO(X).

The following example shows that the converse of Proposition 3.18 is not
true.

Example 3.19 Consider X = {a, b, c, d}, with the topology
τ = {φ, {b}, {c, d}, {b, c, d}, {a, c, d}, X},
then τ ⊆ PpO(X), but X is not locally indiscrete.

Proposition 3.20 If (X, τ) is indiscrete topology, then PpO(X) is discrete
topology in X.

proof. Let X be indiscrete topology, then every subset of X is preopen, then
PO(X) = PpO(X). Therefore, PpO(X) is discrete topology on X.

The following example shows that the converse of Proposition 3.20 is not
true.

Example 3.21 Consider X = {a, b, c}, with the topology
τ = {φ, {a}, {b, c}, X}, then PpO(X) is discrete topology in X, but (X, τ) is
not indiscrete topology.

Proposition 3.22 For any topological space (X, τ), we have:

1. PpO(X) is discrete if and only if PO(X) is discrete.

2. τ is discrete if and only if PpO(X) is discrete.

proof. Obvious.

Proposition 3.23 For any subset A of a space (X, τ). The following state-
ments are equivalent:
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1. A is clopen.

2. A is Pp-open and closed .

3. A is preopen and closed.

proof. Follows from Theorem 2.7.

Proposition 3.24 For a topological space (X, τ), the following conditions are
equivalent:

1. X is locally indiscrete.

2. Every subset of X is Pp-open.

3. Every singleton in X is Pp-open.

4. Every closed subset of X is Pp-open.

proof. Follows from Theorem 2.10.

Proposition 3.25 Let X and Y be two topological spaces and X × Y be the
product topology. If A ∈ PpO(X) and B ∈ PpO(Y ), then A×B ∈ PpO(X×Y ).

proof. Let (x, y) ∈ A × B, then x ∈ A and y ∈ B. Since A ∈ PpO(X) and
B ∈ PpO(Y ), there exist preclosed sets F and E in X and Y respectively, such
that x ∈ F ⊆ A and y ∈ E ⊆ B. Therefore, (x, y) ∈ F × E ⊆ A × B. Since
A ∈ PO(X) and B ∈ PO(Y ). Then by Theorem 2.8(1), A×B ∈ PO(X × Y ).
Since F is preclosed in X and E is preclosed in Y and by Theorem 2.8 (2),
F × E is preclosed in (X × Y ). Therefore, A×B ∈ PpO(X × Y ).

Proposition 3.26 Topological spaces (X, τ) and (X, τα) have the same class
of Pp-open sets.

proof. Let A be any subset of a space X and A ∈ PpO(X, τ). If A=φ,
then A ∈ PpO(X, τα). If A 6= φ, since A ∈ PpO(X, τ), then A ∈ PO(X, τ)
and A=∪Fλ, where Fλ is preclosed for each λ Since A ∈ PO(X, τ), then by
Theorem 2.9, A ∈ PO(X, τα). Again since Fλ ∈ PC(X, τ) for each λ, then
by Theorem 2.9, Fλ ∈ PC(X, τα) for each λ. Therefore, by Proposition 3.2,
A ∈ PpO(X, τα). Hence PpO(X, τ) ⊆ PpO(X, τα). On the other hand, we
can prove similarly PpO(X, τα) ⊆ PpO(X, τ). Therefore, we get PpO(X, τα) =
PpO(X, τ).

Proposition 3.27 Let (X, τ) be any s∗∗-normal space. If A ∈ SθO(X), then
A ∈ PpO(X).
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proof. Let A ∈ SθO(X), if A = φ, then A ∈ PpO(X). If A 6= φ. Since
the space X is s∗∗-normal, then by Theorem 2.12, SθO(X) = θO(X). Hence
A ∈ θO(X). But θO(X) ⊆ PpO(X) in general. Therefore, A ∈ PpO(X)

Corollary 3.28 Let (X, τ) be any s∗∗-normal space. If A ∈ θSO(X), then
A ∈ PpO(X).

proof. Follows from Proposition 3.27, and the fact that θSO(X) ⊆ SθO(X).

Proposition 3.29 Let Y be an α-open subspace of a space (X,τ). If A ∈
PpO(X, τ) and A ⊆ Y , then A ∈ PpO(Y, τY ).

proof. Let A ∈ PpO(X, τ), then A ∈ PO(X, τ) and for each x ∈ A, there
exists a preclosed set F in X such that x ∈ F ⊆ A. Since A ∈ PO(X, τ) and
A ⊆ Y . Then by Theorem 2.6, A ∈ PO(Y, τY ). Since F preclosed set in X and
A ⊆ Y . Then by Theorem 2.6, F preclosed set in Y . Hence A ∈ PpO(Y, τY ).

Proposition 3.30 Let (Y ,τY ) be a subspace of a space (X,τ) and A ⊆ Y . If
A ∈ PpO(Y, τY ) and Y is preclopen, then A ∈ PpO(X, τ).

proof. Let A ∈ PPO(X, τY ), then A ∈ PO(X, τY ) and for each x ∈ A, there
exists a preclosed set F in Y such that x ∈ F ⊆ A. Since Y is preclopen,
then Y ∈ PO(X, τ) and since A ∈ PO(X, τY ), then by Theorem 2.6, A ∈
PO(X, τ). Again since Y is preclopen implies Y is preclosed set in X and
since F is preclosed set in Y , therefore by Theorem 2.6, F is preclosed set in
X. Hence A ∈ PPO(X, τ).

From Propositions 3.29 and 3.30, we obtain the following result:

Corollary 3.31 Let (X,τ) be a topological space and A, Y subsets of X such
that A ⊆ Y ⊆ X and Y is preclopen. Then A ∈ PpO(Y ) if and only if
A ∈ PpO(X).

Proposition 3.32 Let (Y ,τY ) be a subspace of a space (X,τ). If A ∈ PpO(Y, τY )
and Y ∈ PR(X, τ), then A ∈ PpO(X, τ).

proof. Obvious.

Corollary 3.33 Let (X,τ) be a topological space and A, Y subsets of X such
that A ⊆ Y ⊆ X and Y ∈ PR(X). Then A ∈ PpO(Y ) if and only if A ∈
PpO(X).

Corollary 3.34 Let A and Y be any subsets of a space X. If A ∈ PPO(X)
and Y is both α-open preclosed subset of X, then A ∩ Y ∈ PpO(Y ).
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proof. Follows from Proposition 3.16 and Proposition 3.29.
The following diagram shows that the relations among PPO(X), θO(X),

PθO(X), δO(X), τ , αO(X) and PO(X).

θO(X)

��

// PθO(X) // PPO(X)

&&LL
LLL

LLL
LL

δO(X) // τ // αO(X) // PO(X)

Diagram 1

Remark 3.35 In Diagram 1, we notice the following statements:

1. τ is incomparable with PpO(X).

2. δO(X) is incomparable with PpO(X).

3. αO(X) is incomparable with PpO(X).

Definition 3.36 Let A be a subset of a space X and x ∈ X, then:

1. A subset N of X is said to be Pp-neighborhood of x, if there exists a
Pp-open set U in X such that x ∈ U ⊆ N .

2. Pp-interior of a set A (briefly, PpInt(A)) is the union of all Pp-open sets
which are contained in A.

3. A point x ∈ X is said to be Pp-limit point of A if for each Pp-open set U
containing x, U ∩ (A \ {x}) 6= φ. The set of all Pp-limit points of A is
called a Pp-derived set of A and is denoted by PpD(A).

4. A point x ∈ X is said to be in Pp-closure of A if for each Pp-open set U
containing x such that U ∩ A 6= φ.

5. Pp-closure of a set A (briefly, PpCl(A).) is the intersection of all Pp-
closed sets containing A.

6. Pp-boundary of A is defined as PpCl(A) \ PpInt(A) and is denoted by
PpBd(A).

The topological properties of Pp-neighborhood, Pp-interior, Pp-closure, Pp-
derived and Pp-boundary are the same as in the supratopoology.
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4 Pp-g.Closed Sets

Definition 4.1 A subset A of X is said to be a Pp-generalized closed(briefly,
Pp-g.closed) set, if PpCl(A) ⊆ U whenever A ⊆ U and U is Pp-open set in
(X, τ). The family of all Pp-g.closed sets of a topological space (X, τ) is denoted
by PpGC(X, τ) or PpGC(X).

It is clear that every Pp-closed set is Pp-g.closed set, but the converse is not
true in general as it is shown in the following example.

Example 4.2 Considering the space (X, τ) as defined in Example 3.5. Then
we have {c} ∈ PpGC(X), but {c} /∈ PpC(X).

Proposition 4.3 The intersection of a Pp-generalized closed set and a Pp-
closed set is always Pp-generalized closed.

proof. Let A be Pp-generalized closed and F be Pp-closed set. Assume that
U be a Pp-open set such that A ∩ F ⊆ U . Set G = X \ F , then A ⊆ U ∪ G.
Since G is Pp-open, U ∪G is Pp-open and since A is Pp-generalized closed, then
PpCl(A) ⊆ U ∪G. Now, PpCl(A∩F ) ⊆ PpCl(A)∩PpCl(F ) = PpCl(A)∩F ⊆
(U ∪G) ∩ F = (U ∩ F ) ∪ (G ∩ F ) = (U ∩ F ) ∪ φ ⊆ U .

Proposition 4.4 If A is both Pp-open and Pp-generalized closed set in X, then
A is Pp-closed set.

proof. Since A is Pp-open and Pp-generalized closed set in X, PpCl(A) ⊆ A,
but A ⊆ PpCl(A). Therefore A = PpCl(A), and hence A is Pp-closed set.

The union of two Pp-g.closed sets need not be Pp-g.closed set in general. It
is shown by the following example:

Example 4.5 In Example 3.5, {a} ∈ PpGC(X) and {d} ∈ PpGC(X), but
{a} ∪ {d} = {a, d} /∈ PpGC(X).

The intersection of two Pp-g.closed sets need not be Pp-g.closed set in general.
It is shown by the following example:

Example 4.6 In Example 3.5, {a, c, d} ∈ PpGC(X) and {a, b, d} ∈ PpGC(X),
but {a, c, d} ∪ {a, b, d} = {a, d} /∈ PpGC(X).

Proposition 4.7 If a subset A of X is Pp-g.closed set and A ⊆ B ⊆ PpCl(A),
then B is a Pp-g.closed set in X.
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proof. Let A be a Pp-g.closed set such that A ⊆ B ⊆ PpCl(A). Let U
be a Pp-open set of X such that B ⊆ U . Since A is Pp-g.closed, we have
PpCl(A) ⊆ U . Now PpCl(A) ⊆ PpCl(B) ⊆ PpCl [PpCl(A)] = PpCl(A) ⊆ U .
That is PpCl(B) ⊆ U , where U is Pp-open. Therefore, B is a Pp-g.closed set
in X.

The converse of Proposition 4.7 is not true in general as it can be seen from
the following example:

Example 4.8 In Example 3.5. Let A = {a} and B = {a, b}, then A and B
are Pp-g.closed sets in (X, τ), but A ⊆ B 6⊆ PpCl(A).

Proposition 4.9 For each x ∈ X, {x} is Pp-closed or X \ {x} is Pp-g.closed
in (X, τ).

proof. Suppose that {x} is not Pp-closed, then X \ {x} is not Pp-open. Let
U be any Pp-open set such that X \ {x} ⊆ U , implies U = X. Therefore
PpCl(X \ {x}) ⊆ U . Hence X \ {x} is Pp-g.closed.

Proposition 4.10 A subset A of X is Pp-g.closed if and only if PpCl({x}) ∩
A 6= φ, holds for every x ∈ PpCl(A).

proof. Let U be a Pp-open set such that A ⊆ U and let x ∈ PpCl(A).
By assumption, there exists a point z ∈ PpCl({x}) and z ∈ A ⊆ U . Then
U ∩ {x} 6= φ, hence x ∈ U , this implies that PpCl(A) ⊆ U . Therefore, A is
Pp-g.closed.
Conversely, suppose that x ∈ PpCl(A) such that PpCl({x}) ∩ A = φ. Since
PpCl({x}) is Pp-closed. Therefore, X \PpCl({x}) is a Pp-open set in X. Since
A ⊆ X \PpCl({x}) and A is Pp-g.closed implies that PpCl(A) ⊆ X \PpCl({x})
holds, and hence x /∈ PpCl(A). This is a contradiction. Therefore, PpCl({x})∩
A 6= φ.

Proposition 4.11 A subset A of a space X is Pp-g.closed if and only if
PpCl(A) \ A does not contain any non-empty Pp-closed set.

proof. Necessity. Suppose that A is a Pp-g.closed set in X. We prove the
result by contradiction. Let F be a Pp-closed set such that F ⊆ PpCl(A) \ A
and F 6= φ. Then F ⊆ X \A which implies A ⊆ X \F . Since A is Pp-g.closed
and X \ F is Pp-open, therefore, PpCl(A) ⊆ X \ F , that is F ⊆ X \ PpCl(A).
Hence F ⊆ PpCl(A) ∩ (X \ PpCl(A)) = φ. This shows that, F = φ which is a
contradiction. Hence PpCl(A) \ A does not contain any non-empty Pp-closed
set in X.
Sufficiency. Let A ⊆ U , where U is Pp-open in X. If PpCl(A) is not contained
in U , then PpCl(A)∩X\U 6= φ. Now, since PpCl(A)∩X\U ⊆ PpCl(A)\A and
PpCl(A)∩X \U is a non-empty Pp-closed set, then we obtain a contradiction.
Therefore, A is Pp-g.closed.
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Proposition 4.12 If A is a Pp-g.closed set of a space X, then A is Pp-closed
if and only if PpCl(A) \ A is Pp-closed.

proof. Necessity.If A is a Pp-g.closed set which is also Pp-closed, then by
Proposition 4.11, PpCl(A) \ A = φ, which is Pp-closed.
Sufficiency. Let PpCl(A) \ A be a Pp-closed set and A be Pp-g.closed. Then
by Proposition 4.11, PpCl(A) \ A does not contain any non-empty Pp-closed
subset. Since PpCl(A) \ A is Pp-closed and PpCl(A) \ A = φ, this shows that
A is Pp-closed.

Proposition 4.13 Every subset of a space X is Pp-g.closed if and only if
PpO(X, τ) = PpC(X, τ).

proof. Let U ∈ PpO(X, τ). Then by hypothesis, U is Pp-g.closed which
implies that PpCl(U) ⊆ U , then PpCl(U) = U , therefore U ∈ PC(X, τ). Also
let V ∈ PpC(X, τ). Then X \ V ∈ PpO(X, τ), hence by hypothesis X \ V is
Pp-g.closed and then X \ V ∈ PpC(X, τ), thus V ∈ PpO(X, τ) according to
the above we have PpO(X, τ) = PpC(X, τ).
Conversely, if A is a subset of a space X such that A ⊆ U where U ∈
PpO(X, τ), then U ∈ PpC(X, τ) and therefore, PpCl(U) ⊆ U which shows
that A is Pp-g.closed.

5 Pp-Continuous Functions

Definition 5.1 A function f : X → Y is called Pp-continuous at a point
x ∈ X, if for each open set V of Y containing f(x), there exists a Pp-open set
U of X containing x such that f(U) ⊆ V . If f is Pp-continuous at every point
x of X, then it is called Pp-continuous.

We recall the following definitions.

Definition 5.2 A function f : X → Y is called:

1. precontinuous [15], if for each x ∈ X and each open set V of Y containing
f(x), there exists U ∈ PO(X, x) such that f(U) ⊆ V .

2. strongly θ-continuous [14], if the inverse image of each open subset of Y
is θ-open in X.

3. quasi θ-continuous [20] at a point x ∈ X, if for each θ-open set V of Y
containing f(x), there exists a θ-open set U of X containing x such that
f(U) ⊆ V .

Proposition 5.3 A function f : X → Y is Pp-continuous if and only if the
inverse image of every open set in Y is a Pp-open in X.
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proof. It is clear.
The proof of the following corollaries follows directly from their definitions

and are thus omitted.

Corollary 5.4 Every Pp-continuous function is precontinuous.

Corollary 5.5 Every quasi θ-continuous is Pp-continuous.

The examples are given below demonstrate that the converses of the pre-
vious corollaries are false.

Example 5.6 Consider X = {a, b, c} with the topology τ= σ= {φ, {a}, {b},
{a, b}, X}. Let f : (X, τ) → (X, σ) be the identity function. Then f is
precontinuous, but it is not Pp-continuous, because {a} is an open set in (X, σ)
containing f(a) = a, there exists no Pp-open set U in (X, τ) containing a such
that a ∈ f(U) ⊆ {a}.

Example 5.7 Consider X = {a, b, c, d} with the two topologies
τ = {φ, {a}, {a, b}, {c, d}, {a, c, d}, X} and
σ = {φ, {c}, {d}, {a, b}, {c, d}, {a, b, c}, {a, b, d}, X}.
Let f : (X, τ)→ (X, σ) be the identity function. Then f is Pp-continuous, but
it is not quasi θ-continuous.

Proposition 5.8 A function f : X → Y is Pp-continuous if and only if f is
pre-continuous and for each x ∈ X and each open set V of Y containing f(x),
there exists a preclosed set F of X containing x such that f(F ) ⊆ V .

proof. Let f : X → Y be a Pp-continuous and also let x ∈ X and V be any
open set of Y containing f(x). By hypothesis, there exists a Pp-open set U of
X containing x such that f(U) ⊆ V . Since U is Pp-open set. Then for each
x ∈ U , there exists a preclosed set F of X such that x ∈ F ⊆ U . Therefore,
we have f(F ) ⊆ V . Hence Pp-continuous always implies pre-continuous.
Conversely, let V be any open set of Y . We have to show that f−1(V ) is
Pp-open set in X. Since f is pre-continuous, then f−1(V ) is preopen set in X.
Let x ∈ f−1(V ), then f(x) ∈ V . By hypothesis, there exists a preclosed set F
of X containing x such that f(F ) ⊆ V , which implies that x ∈ F ⊆ f−1(V ).
Therefore, f−1(V ) is Pp-open set in X. Hence by Proposition 5.3, f is Pp-
continuous.

Here, we begin with the following characterizations of Pp-continuous func-
tions.

Proposition 5.9 For a function f : X → Y , the following statements are
equivalent:

1. f is Pp-continuous.
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2. f−1(V ) is a Pp-open set in X, for each open set V of Y .

3. f−1(F ) is a Pp-closed set in X, for each closed set F of Y .

4. f(PpCl(A)) ⊆ Cl(f(A)), for each subset A of X.

5. PpCl(f
−1(B)) ⊆ f−1(Cl(B)), for each subset B of Y .

6. f−1(Int(B)) ⊆ PpInt(f
−1(B)), for each subset B of Y .

7. Int(f(A)) ⊆ f(PpInt(A)), for each subset A of X.

proof. Straightforward.

Proposition 5.10 Let f : X → Y be a function and X is locally indiscrete
space. Then f is Pp-continuous if and only if f is Pre-continuous.

proof. Follows from Corollary 3.17.

Proposition 5.11 Let f : X → Y be a function and X is pre-T1 space. Then
f is Pp-continuous if and only if f is Pre-continuous.

proof. Follows from Proposition 3.8.

Proposition 5.12 Let f : X → Y be a Pp-continuous function. If Y is any
subset of a topological space Z, then f : X → Z is Pp-continuous.

proof. Let x ∈ X and V be any open set of Z containing f(x), then V ∩ Y
is open in Y . But f(x) ∈ Y for each x ∈ X, then f(x) ∈ V ∩ Y . Since
f : X → Y is Pp-continuous, then there exists a Pp-open set U containing x
such that f(U) ⊆ V ∩ Y ⊆ V . Therefore, f : X → Z is Pp-continuous.

Proposition 5.13 Let f : X → Y be Pp-continuous function. If A is α-open
and preclosed subset of X, then f |A : A→ Y is Pp-continuous in the subspace
A.

proof. Let V be any open set of Y . Since f is Pp-continuous. Then by
Proposition 5.3, f−1(V ) is Pp-open set in X. Since A is α-open and preclosed
subset of X. By Corollary 3.34, (f |A)−1(V ) = f−1(V )∩A is a Pp-open subset
of A. This shows that f |A : A→ Y is Pp-continuous.

Proposition 5.14 A function f : X → Y is Pp-continuous, if for each x ∈ X,
there exists a preclopen set A of X containing x such that f |A : A → Y is
Pp-continuous.
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proof. Let x ∈ X, then by hypothesis, there exists a preclopen set A con-
taining x such that f |A : A → Y is Pp-continuous. Let V be any open set of
Y containing f(x), there exists a Pp-open set U in A containing x such that
(f |A)(U) ⊆ V . Since A is preclopen set, by Proposition 3.30, U is Pp-open set
in X and hence f(U) ⊆ V . This shows that f is Pp-continuous.

Proposition 5.15 Let f : X1 → Y and g : X2 → Y be two Pp-continuous
functions. If Y is Hausdorff, then the set E = {(x1, x2) ∈ X1 ×X2 : f(x1) =
g(x2)} is Pp-closed in the product space X1 ×X2.

proof. Let (x1, x2) /∈ E. Then f(x1) 6= g(x2). Since Y is Hausdorff, there
exist open sets V1 and V2 of Y such that f(x1) ⊆ V1, g(x2) ⊆ V2 and V1 ∩ V2
= φ. Since f and g are Pp-continuous, then there exist Pp-open sets U1 and
U2 of X1 and X2 containing x1 and x2 such that f(U1) ⊆ V1 and g(U2) ⊆ V2,
respectively. Put U = U1 × U2, then (x1, x2) ∈ U and U is a Pp-open set in
X1×X2, by Proposition 3.25, and U ∩E = φ. Therefore, we obtain (x1, x2) /∈
PpCl(E). Hence E is Pp-closed in the product space X1 ×X2.

Proposition 5.16 Let f : X → Y and g : Y → Z be two functions. If f is Pp-
continuous and g is continuous. Then the composition function g ◦ f : X → Z
is Pp-continuous.

proof. Let V be any open subset of Z. Since g is continuous, g−1(V ) is open
subset of Y . Since f is Pp-continuous, then by Proposition 5.3, (g ◦ f)−1(V ) =
f−1(g−1(V )) is Pp-open subset in X. Therefore, by Proposition 5.3, g ◦ f is
Pp-continuous.

Proposition 5.17 Let f : X → Y be a Pp-continuous function and let g :
Y → Z be a strongly θ-continuous function, then g ◦ f : X → Z is Pp-
continuous.

proof. Let V be an open subset of Z. In view of strong θ-continuity of
g, g−1(V ) is a θ-open subset of Y . Again, since f is Pp-continuous, (g ◦
f)−1(V )=F−1(g−1(V )) is a Pp-open set in X. Hence g ◦ f is Pp-continuous.

Corollary 5.18 Let f : X → Y be a Pp-continuous function and let g : Y →
Z be a quasi θ-continuous function, then (g ◦ f) : X → Z is Pp-continuous.

Proposition 5.19 If fi : Xi → Yi is Pp-continuous functions for i = 1, 2.
Let f : X1 × X2 → Y1 × Y2 be a function defined as follows: f(x1, x2) =
(f1(x1), f2(x2)). Then f is Pp-continuous.

proof. Let R1 × R2 ⊆ Y1 × Y2, where Ri is open set in Yi for i = 1, 2. Then
f−1(R1×R2) = f−1

1 (R1)× f−1
2 (R2). Since fi is Pp-continuous for i = 1, 2. By

Proposition 5.3, and Proposition 3.25, f−1(R1×R2) is Pp-open set in X1×X2.
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Proposition 5.20 Let X, Y1, Y2 be topological spaces and fi : X → Yi, for
i = 1, 2, be functions. If a functions g : X → Y1 × Y2 defined as: g(x)
= (x1, x2), where fi(x) = xi, for i = 1, 2 is Pp-continuous, then fi is Pp-
continuous for i = 1, 2.

proof. Let x ∈ X and V1 be any open set in Y1 containing f1(x) = x1, then
V1 × Y2 is open in Y1 × Y2, which contain (x1, x2). Since g is Pp-continuous.
Then by Proposition 5.3, g−1(V1 \Y2) is Pp-open set in X. However, f−1(V1) =
g−1(V1 \Y2) (f−1Cl(V1) = g−1Cl(V1 \Y2). Thus f1 is Pp-continuous. Similarly,
we can prove that f2 is Pp-continuous. This completes the proof.
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