

Gen. Math. Notes, Vol. 19, No. 2, December, 2013, pp.71-82 ISSN 2219-7184; Copyright ©ICSRS Publication, 2013 www.i-csrs.org Available free online at http://www.geman.in

Semiderivations and Commutativity In Semiprime Rings¹

H. Nabiel

Department of Mathematics, Faculty of Science, Al-Azhar University 11884, Nasr City, Cairo, Egypt E-mail: hnabiel@yahoo.com

(Received: 19-9-13 / Accepted:4-11-13)

Abstract

Let R be a semiprime ring. An additive mapping $f : R \to R$ is called a semiderivation if there exists a function $g : R \to R$ such that f(xy) =f(x)g(y) + xf(y) = f(x)y + g(x)f(y) and f(g(x)) = g(f(x)) for all $x, y \in R$. In the present paper we investigate commutativity of R satisfying any one of the properties (i) [f(x), f(y)] = 0, (ii) [f(x), f(y)] = [x, y], (iii) [f(x), d(y)] =[x, y], d is a derivation on R, or (iv) $f([x, y]) = \pm [x, y]$, for all x, y in some appropriate subset of R. Also we extend two results of Bell and Martindale from prime rings to semiprime rings.

Keywords: prime ring, semiprime ring, essential ideal, derivation, semiderivation, commuting mapping, strong commutativity-preserving mapping.

1 Introduction

Throughout, R will be an associative ring. R is said to be 2-torsion-free, if $2x = 0, x \in R$ implies x = 0. As usual the commutator xy - yx for $x, y \in R$ will be denoted by [x, y]. We shall use basic commutator identities [x, yz] = [x, y]z + y[x, z] and [xy, z] = [x, z]y + x[y, z], for $x, y, z \in R$. Recall that R is prime if aRb = (0) implies a = 0 or b = 0 for every $a, b \in R$, and

 $^{^1 \}rm This$ paper is a part of the author's M.sc. thesis under the supervision of prof. M.N.Daif

is semiprime if aRa = (0) implies a = 0, for every $a \in R$. An ideal U of R is essential if for every nonzero ideal K of R we have $U \cap K \neq (0)$. If R is a ring with center Z, a mapping f from R to R is called centralizing on $S \subseteq R$ if $[x, f(x)] \in Z$ for all $x \in S$; in the special case where [x, f(x)] = 0 for all $x \in S$, the mapping f is said to be commuting on S. A mapping $f : R \to R$ is called strong commutativity-preserving (scp) on $S \subseteq R$ if [f(x), f(y)] = [x, y] for all $x, y \in S$. A derivation $d : R \to R$ is an additive map which satisfies d(xy) = d(x)y + xd(y) for all $x, y \in R$.

The present paper has been motivated by the works of Chang [7], Daif [9], Bell and Daif [3], Daif and Bell [8], and Bell and Martindale [5]. Bergen [6] has introduced the following notion. An additive mapping f of a ring R into itself is called a semiderivation if there exists a function $q: R \to R$ such that f(xy) = f(x)g(y) + xf(y) = f(x)y + g(x)f(y) and f(g(x)) = g(f(x)) for all $x, y \in R$. For g = 1 a semiderivation is of course a derivation. The other main motivating examples are of the form f(x) = x - g(x) where g is any ring endomorphism of R. Then f is a semiderivation of R with associated map gwhich is not a derivation. In [11], Herstein has shown that if R is a prime ring admitting a nonzero derivation d such that [d(x), d(y)] = 0 for all $x, y \in R$, then R is commutative whenever $charR \neq 2$, and if charR = 2, then either R is commutative or is an order in a simple algebra which is 4-dimensional over its center. In [7], Chang has given an extension of the above mentioned result of Herstein in the following way. Let $f \neq 0$ be a semiderivation of a prime ring R associated with an epimorphism q of R such that $[f(R), f(R)] = \{0\}$. Then, if char $(R) \neq 2$, R is a commutative, and if char (R) = 2, R is commutative or is an order in a simple algebra which is 4-dimensional over its center. In [9], Daif has generalized the previously mentioned result of Herstein in the following way. Let R be a two-torsion-free semiprime ring and U a nonzero ideal of R. If R admits a derivation d which is nonzero on U and [d(x), d(y)] = 0for all $x, y \in U$, then R contains a nonzero central ideal. In [8], Daif and Bell have proved that a semiprime ring R is commutative if it admits a derivation d for which either d([x, y]) = [y, x] for all $x, y \in R$ or d([x, y]) = [x, y] for all $x, y \in R$. In [3], Bell and Daif have shown that if a semiprime ring R admits a strong-commutativity preserving derivation on a nonzero right ideal U of R, then $U \subseteq Z$, the center of R. In [5], Bell and Martindale have proved the following three results.

(i) Let $f \neq 0$ be a semiderivation of a prime ring R of characteristic not 2 with associated endomorphism g of R and $U \neq 0$ be an ideal of R. Suppose that $a \in R$ such that af(U) = 0. Then a = 0.

(ii) Let f be a semiderivation of a prime ring R of characteristic not 2 with associated endomorphism g of R. If there exists a nonzero ideal U of R for which $U \cap g(R) = 0$, then there exists $\lambda \in C$ (the extended centroid of R) such

that $f(x) = \lambda(x - g(x))$ for all $x \in R$.

(iii) Let f be a semiderivation of a prime ring R of characteristic not 2 with associated endomorphism g of R. If g is not one-one and $V \neq 0$ is an ideal of R contained in ker g, then f(V) is a nonzero ideal of R, and there exists $\lambda \in C$ such that $f(x) = \lambda(x - g(x))$ for all $x \in R$.

In [1], Ali and Huang have proved the following theorem. Let R be a 2-torsion free semiprime ring and I a nonzero ideal of R. Let d be a derivation of R. If one of the following conditions holds:

(i) [d(x), d(y)] = [x, y] for all $x, y \in I$,

(ii) [d(x), d(y)] = -[x, y] for all $x, y \in I$,

(iii) for all $x, y \in I$, either [d(x), d(y)] = [x, y] or [d(x), d(y)] = -[x, y],

then d is commuting on I. Further, if $d(I) \neq 0$, then R has a nonzero central ideal.

In [10], De Filippis, Mamouni and Oukhtite have showed the following result. Let R be a prime ring of characteristic not 2 and I a nonzero ideal of R. If R admits a nonzero semiderivation f with associated function g such that f([x,y]) = [x,y] for all $x, y \in I$, then one of the following holds:

(1) R is commutative;

(2)
$$f(x) = x - g(x)$$
 for all $x \in R$, with $g([R, R]) = 0$;

(3) f(x) = x, for all $x \in I$ and g(I) = 0.

Our aim in this work is to investigate the commutativity of semiprime rings admitting semiderivations. In the first section we extend the above mentioned result of Chang [7, Theorem 2] for prime rings to semiprime rings, extend two results of Bell and Martindale ([5, Lemma 4], [5, Lemma 5]) for prime rings to semiprime rings, and give a counter example to [5, Lemma 2] in the semiprime ring case. In the second section we study commutativity for a semiprime ring R admitting a semiderivation f associated with an epimorphism g of R which satisfies [f(x), f(y)] = [x, y] for all x, y belonging to an ideal of R, or satisfies $f([x, y]) = \pm [x, y]$ for all $x, y \in R$, or admits an additive map f and a derivation d which satisfy [f(x), d(y)] = [x, y] for all x, y belonging to an ideal of R.

In order to prove our aims we need the following results:

Theorem 1.1. [2, Theorem 2.3.2]. Let R be a semiprime ring, $Q = Q_{mr}(R)$, the maximal right ring of quotients of R, $_RU_R \subseteq_R Q_R$ a subbimodule of Q and $f :_R U_R \rightarrow_R Q_R$ a homomorphism of bimodules. Then there exists an element $\lambda \in C$ (the extended centroid of R) such that $f(u) = \lambda u$ for all $u \in U$.

Lemma 1.2. [8, Lemma1]. Let R be a semiprime ring and I a nonzero ideal of R. If x in R centralizes the set [I, I], then x centralizes I.

Lemma 1.3. [3, Lemma 1]. If R is a semiprime ring, the center of a nonzero one-sided ideal is contained in the center of R; in particular, any commutative one-sided ideal is contained in the center of R.

Remark 1.4. [2, Remark 2.1.4]. If U is an essential two-sided ideal of a semiprime ring R, then l(U) = r(U) = (0).

2 Semiderivations on Semiprime Rings

In this section we begin with a theorem that extends Chang's theorem ([7, Theorem 2]) from prime rings to semiprime rings, and also generalizes Daif's theorem ([9, Theorem 2.1]) for derivations to semiderivations. To achieve this goal we modify Theorem 3 of [4] from the case of derivations to the case of semiderivations. Also we extend two results of Bell and Martindale ([5, Lemma 4], [5, Lemma 5]) on derivations to semiderivations, and give a counter example to [5, Lemma 2] in the semiprime ring case.

Lemma 2.1. Let R be a semiprime ring. If R admits a nonzero semiderivation f with associated surjective map g of R which is commuting on R, then R contains a nonzero central ideal.

Proof. We have for all $x \in R$ that [x, f(x)] = 0. Replacing x by u + v, we get

$$[u, f(v)] + [v, f(u)] = 0 \text{ for all } u, v \in R.$$
(2.1)

Replacing u by x and v by yx, and using our hypothesis and (2.1), we get

$$[x, g(y)]f(x) = 0 \text{ for all } x, y \in R.$$

$$(2.2)$$

Since g is onto we have

$$[x, y]f(x) = 0 \text{ for all } x, y \in R.$$
(2.3)

Replacing y by wy and using (2.3), we get [x, w]yf(x) = 0, which implies that

$$[x, w]Rf(x) = \{0\} \text{ for all } x, w \in R.$$
(2.4)

Since R is semiprime, consider the set $\{P_{\alpha}\}$ of prime ideals of R such that $\cap P_{\alpha} = \{0\}$. Then for each P_{α} either

(a)

$$[x,w] \in P_{\alpha} \text{ for all } x, w \in R, \tag{2.5}$$

or

(b)

$$f(x) \in P_{\alpha} \text{ for all } x \in R.$$
 (2.6)

Call P_{α} a type-one prime if it satisfies (a), and call P_{α} a type-two prime if it satisfies (b). Let P_1 and P_2 be, respectively, the intersections of all type-one and type-two primes. Note that $P_1 \cap P_2 = \{0\}$.

We now investigate a typical type-two prime $P = P_{\alpha}$. From (b), we have

$$Rf(R) \subseteq P \tag{2.7}$$

Now consider the left ideal V = Rf(R); we shall show that V is commutative, hence a two-sided central ideal. A typical element of V is a sum of elements of the form rf(s), where $r, s \in R$. Thus we need only show that commutators of the form $[r_1f(s_1), r_2f(s_2)]$ are all trivial, clearly this commutator is in P_1 by (a) and in P_2 by (2.7), hence belongs to $P_1 \cap P_2 = \{0\}$.

Assume that $V = \{0\}$ in which case $Rf(R) = \{0\}$, hence $f(R)Rf(R) = \{0\}$, since R is semiprime we have $f(R) = \{0\}$ which is a contradiction. Hence $V \neq \{0\}$. By Lemma 1.3, R contains a nonzero central ideal.

Now, we are ready to prove the first theorem of this section.

Theorem 2.2. If R is a two torsion free semiprime ring and f is a nonzero semiderivation of R associated with an epimorphism g of R such that $[f(R), f(R)] = \{0\}$, then R contains a nonzero central ideal.

Proof. We have [f(x), f(y)] = 0 for all $x, y \in R$, replacing y by yf(z), then yields

$$[f(x), f(y)]f(z) + f(y)[f(x), f(z)] + g(y)[f(x), f^{2}(z)] + [f(x), g(y)]f^{2}(z)$$

= 0 for all $x, y, z \in R$.
(2.8)

Using our hypothesis, then $[f(x), g(y)]f^2(z) = 0$ for all $x, y, z \in \mathbb{R}$. Since g is onto, we have

$$[f(x), y]f^{2}(z) = 0 \text{ for all } x, y, z \in R.$$
(2.9)

Replacing y by yw and using (2.9), we get

$$[f(x), y]Rf^{2}(z) = \{0\} \text{ for all } x, y, z \in R.$$
(2.10)

Consider the set of prime ideals P_{α} of R such that $\cap P_{\alpha} = \{0\}$. For each P_{α} , from (2.10) we either have

(a) $[f(x), y] \in P_{\alpha}$ for all $x, y \in R$,

or

(b)
$$f^2(R) \subseteq P_{\alpha}$$
.

Call P_{α} an (a)-prime ideal or a (b)-prime according to which of these conditions is satisfied.

Now consider a (b)-prime ideal P_{α} . Since $f^2(xy) = f^2(x)g^2(y) + f(x)f(g(y)) + f(x)f(g(y)) + xf^2(y)$, then $2f(x)f(g(y)) \in P_{\alpha}$, and since g is onto we get

$$2f(x)f(y) \in P_{\alpha}, \text{ for all } x, y \in R.$$
 (2.11)

Now replacing y by zy, we get $2f(x)f(z)g(y)+2f(x)zf(y) \in P_{\alpha}$, which implies

$$2f(x)zf(y) \in P_{\alpha}$$
, for all $x, y, z \in R$. (2.12)

Since P_{α} is prime, we either have $2f(x) \in P_{\alpha}$ for all $x \in R$ or $f(y) \in P_{\alpha}$ for all $y \in R$. In either case, we have $2[f(x), y] \in P_{\alpha}$ for all (b)-prime P_{α} . Also from (a), $2[f(x), y] \in P_{\alpha}$ for all (a)-prime P_{α} . So $2[f(x), y] \in \cap P_{\alpha} = \{0\}$. Since R is two torsion free, then [f(x), y] = 0 for all $x, y \in R$, in particular [f(x), x] = 0 for all $x \in R$. By Lemma 2.1, R contains a nonzero central ideal.

Lemma 2.3. [see 5, Lemma 1] Let R be a semiprime ring. If $f \neq 0$ is a semiderivation on R associated with a function g of R, and U is an essential ideal of R, then $f \neq 0$ on U.

Proof. Suppose f(U) = 0. Then for $u \in U, x \in R$ we have 0 = f(ux) = f(u)g(x) + uf(x) = uf(x), which implies 0 = Uf(x). From Remark 1.4, we have f(x) = 0, which is a contradiction.

Theorem 2.4. [see 5, Lemma 4] Let R be a semiprime ring, and f be a semiderivation on R associated with an endomorphism g of R. If there exists a nonzero essential ideal U of R for which $U \cap g(R) = 0$, then there exists $\lambda \in C$ (the extended centroid of R) such that $f(x) = \lambda(x - g(x))$ for all $x \in R$.

Proof. We let W be the ideal $\sum U(x-g(x))U$ and note that $W \neq 0$ (otherwise g would be the identity mapping, contradicting that $U \cap g(R) = 0$). We define a mapping $\phi : W \to R$ according to the rule $\sum u_i(x_i - g(x_i))v_i \to u_if(x_i)v_i$ where $u_i, v_i \in U$ and $x_i \in R$. Of course our main problem is to prove that ϕ is well-defined, consequently ϕ is an (R, R)- bimodule map of W into R. Suppose that

$$\sum u_i (x_i - g(x_i)) v_i = 0.$$
(2.13)

We attempt to show that $\phi(\sum u_i(x_i - g(x_i))v_i) = 0$, i.e., $u_if(x_i)v_i = 0$. Applying f to 2.13, we see that $0 = f(\sum u_i(x_i - g(x_i))v_i)$ $= \sum [u_if(x_iv_i) + f(u_i)g(x_iv_i) - f(u_ig(x_i))g(v_i) - u_ig(x_i)f(v_i)]$ $= \sum [u_if(x_i)v_i + u_ig(x_i)f(v_i) + f(u_i)g(x_i)g(v_i) - f(u_i)g(x_i)g(v_i) - g(u_i)f(g(x_i))g(v_i) - u_ig(x_i)f(v_i)]$ $= \sum [u_if(x_i)v_i - g(u_i)f(g(x_i))g(v_i)]$ $= \sum u_if(x_i)v_i - g(\sum u_if(x_i)v_i)$. Therefore $\sum u_if(x_i)v_i = g(\sum u_if(x_i)v_i) \in U \cap g(R) = 0$, which implies $\sum u_if(x_i)v_i = 0$, then ϕ is well-defined. Since ϕ is an (R, R)-bimodule map of W into R, from Theorem 1.1, there exists $\lambda \in C$ (the extended centroid of R) such that $\lambda w = \phi(w)$ for all $w \in W$. Now, regarding R as a subring of the central closure RC, we have for all $u, v \in U$ and $x \in R$ that $u\lambda(x - g(x))v = \lambda(u(x - g(x))v) = \phi(u(x - g(x))v) = uf(x)v$, which implies $u[\lambda(x - g(x)) - f(x)]v = 0$ for all $u, v \in U, x \in R$, i.e., $U[\lambda(x - g(x)) - f(x)]v = 0$ for all $v \in U, x \in R$. From Remark 1.4, we have $[\lambda(x - g(x)) - f(x)]v = 0$ for all $v \in U, x \in R$, i.e., $[\lambda(x - g(x)) - f(x)]U = 0$ for all $x \in R$. From Remark 1.4 we have $\lambda(x - g(x)) - f(x) = 0$, which implies $f(x) = \lambda(x - g(x)), \lambda \in C$.

Theorem 2.5. [see 5, Lemma 5]Let R be a semiprime ring, and $f \neq 0$ be a semiderivation of R associated with an endomorphism g of R. If g is not one-one and V is an essential ideal of R contained in kerg, then

(a) f(V) is a nonzero ideal of R, and

(b) there exists $\lambda \in C$ such that $f(x) = \lambda(x - g(x))$ for all $x \in R$.

Proof. (a) For $v \in V$ and $r \in R$, we see immediately from f(vr) = f(v)r + g(v)f(r) = f(v)r and f(rv) = rf(v) + f(r)g(v) = rf(v) that f(V) is an ideal of R. Furthermore $f(V) \neq 0$ in view of Lemma 2.3, and so (a) is proved.

(b) The argument establishing (a) also shows that f is an (R, R)-bimodule map of V into R. From Theorem 1.1, there exists $\lambda \in C$ such that $\lambda v = f(v)$ for all $v \in V$. For $v \in V$ and $r \in R$ we then see that $\lambda vr = f(vr) =$ $vf(r) + f(v)g(r) = vf(r) + \lambda vg(r)$. In other words, $v(f(r) + \lambda g(r) - \lambda r) =$ 0, which implies $V(f(r) + \lambda g(r) - \lambda r) = 0$, and from Remark 1.4, we get $f(r) + \lambda g(r) - \lambda r = 0$, which yields $f(r) = \lambda(r - g(r))$ for all $r \in R$. \Box

In the next remark we give a counter example to [5, Lemma 2] when R is semiprime.

Remark 2.6. We notice that [5, Lemma 2] is not true in the case when R is semiprime. Let $R = R_1 \bigoplus R_2$ where R_1 and R_2 are prime rings, R is a semiprime ring. Let $\alpha : R_1 \to R_2$ be an additive map and $\beta : R_2 \to R_2$ be a nonzero left and right R_2 -module map which is not a derivation. Define $f : R \to R$ such that $f((r_1, r_2)) = (0, \beta(r_2))$ and $g : R \to R$ such that $g((r_1, r_2)) = (\alpha(r_1), 0), r_1 \in R_1, r_2 \in R_2$. Then f is a semiderivation on R. Consider the subset $U = \{(0, r_2), r_2 \in R_2\}$, then U is an ideal of R. Let $a = (a_1, 0) \neq 0$ be an element of R, we see that af(U) = 0 but neither a nor f(U) is zero.

3 Commutativity Results for Semiprime Rings with Derivations and Semiderivations

In this section, we study commutativity for a semiprime ring R admitting a semiderivation f associated with an epimorphism g of R which satisfies [f(x), f(y)] = [x, y] for all x, y belonging to an ideal of R, or satisfies $f([x, y]) = \pm [x, y]$ for all $x, y \in R$, or admits an additive map f and a derivation d which satisfy [f(x), d(y)] = [x, y] for all x, y belonging to an ideal of R. We generalize [3, Theorem 1] of Bell and Daif and [8, Theorem 2] of Daif and Bell from the case of derivations to the case of semiderivations.

Theorem 3.1. Let R be a semiprime ring admitting a semiderivation f associated with an epimorphism g of R. Suppose that U is a nonzero ideal of R such that f is scp on U and g(U) = U. Then $U \subseteq Z$.

Note that: The condition g(U) = U may be sead as U is a g-ideal. **Proof.** For $x, y \in U$, we have [x, xy] = [f(x), f(xy)], which yields

$$f(x)[f(x), g(y)] + [f(x), x]f(y) = 0 \text{ for all } x, y \in U.$$
(3.1)

Replacing y by $yr, r \in R$, gives

$$f(x)[f(x), g(y)]g(r) + f(x)g(y)[f(x), g(r)] + [f(x), x]f(y)g(r) + [f(x), x]yf(r)$$

= 0 for all $x, y \in U, r \in R$.
(3.2)

Comparing with (3.1) yields

$$f(x)g(y)[f(x),g(r)] + [f(x),x]yf(r) = 0 \text{ for all } x,y \in U, r \in R.$$
(3.3)

Since g(U) = U, letting x = g(x), we see that f(g(x))g(y)[f(g(x)), g(r)] + [f(g(x)), g(x)]yf(r) = 0 for all $x, y \in U, r \in R$. Letting r = f(x), we see that

$$[f(g(x)), g(x)]yf^{2}(x) = 0 \text{ for all } x, y \in U.$$
(3.4)

Therefore (3.4) implies that

$$[f(g(x)), g(x)]URf^{2}(x) = \{0\} \text{ for all } x \in U.$$
(3.5)

Since R is semiprime, it must contain a family $\{P_{\alpha}|\alpha \in \wedge\}$ of prime ideals such that $\cap P_{\alpha} = \{0\}$. If P is a typical member of these and $x \in U$, (3.5) shows that $f^{2}(x) \in P$ or $[f(g(x)), g(x)]U \subseteq P$. For a fixed P, the sets of $x \in U$ for which these two conditions hold are additive subgroups of U whose union is U; therefore

$$f^{2}(U) \subseteq P \text{ or } [f(g(x)), g(x)]U \subseteq P \text{ for all } x \in U.$$
 (3.6)

Suppose that $f^2(U) \subseteq P$, then for each $y \in U$ we get [x, yf(x)] = [f(x), f(yf(x))], expanding this equation to $y[x, f(x)] = [f(x), g(y)]f^2(x) + g(y)[f(x), g(x)]f^2(x) + g(y)[f(x), g(x)]f^2$

 $f^2(x)$] implies $y[x, f(x)] \in P$, then so $UR[x, f(x)] \subseteq P$. By the primeness of P we reach to $U \subseteq P$ or $[x, f(x)] \in P$ for all $x \in U$. Either of these cases implies

$$[x, f(x)]U \subseteq P \text{ for all } x \in U.$$
(3.7)

From (3.6) now suppose that $[f(g(x)), g(x)]U \subseteq P$ for all $x \in U$, since g(U) = U we get

$$[f(x), x]U \subseteq P \text{ for all } x \in U.$$
(3.8)

From (3.7) and (3.8) we have $[x, f(x)]U = \{0\}$ and from (3.3) we have

f(x)g(y)[f(x), g(r)] = 0 for all $x, y \in U, r \in R$. Since g is onto, f(x)g(y)[f(x), r] = 0. Moreover, since g(U) = U we have f(x)y[f(x), r] = 0, which implies

$$f(x)UR[f(x), r] = \{0\} \text{ for all } x \in U, r \in R.$$
(3.9)

Since R is semiprime, it must contain a family $\{P_{\alpha} | \alpha \in \wedge\}$ of prime ideals such that $\cap P_{\alpha} = \{0\}$. If P is a typical member of these and $x \in U$, (3.9) shows that $f(x)U \subseteq P$ for all $x \in U$ or $[f(x), r] \in P$ for all $x \in U, r \in R$. For a fixed P, the sets of $x \in U$ for which these two conditions hold are additive subgroups of U whose union is U; therefore

$$f(U)U \subseteq P \text{ or } [f(U), R] \subseteq P.$$
(3.10)

Suppose that $f(U)U \subseteq P$, then $f(U)RU \subseteq P$, that is, $f(U) \subseteq P$ or $U \subseteq P$. In either event $[f(U), f(U)] \subseteq P$. Now (3.10) yields $[f(U), f(U)] = \{0\}$, then $[U,U]=\{0\}, U$ is commutative, by Lemma 1.3, $U \subseteq Z$.

The following two corollaries are immediate from the previous theorem.

Corollary 3.2. Let R be a semiprime ring. If R admits a semiderivation f which is scp on R associated with an epimorphism g of R, then R is commutative.

Corollary 3.3. Let R be a prime ring, U a nonzero ideal, and R admit a semiderivation f which is scp on U associated with an epimorphism g of R. If g(U) = U, then R is commutative.

Theorem 3.4. Let R be a semiprime ring and U a nonzero ideal of R. If R admits an additive map f and a derivation d such that [f(x), d(y)] = [x, y] for all $x, y \in U$, then $U \subseteq Z$.

Proof. For $x, y \in U$, we have [x, xy] = [f(x), d(xy)], which yields

$$d(x)[f(x), y] + [f(x), x]d(y) = 0 \text{ for all } x, y \in U.$$
(3.11)

Replacing y by yr gives

$$d(x)[f(x), yr] + [f(x), x]d(yr) = 0 \text{ for all } x, y \in U, r \in R.$$
(3.12)

Comparing with (3.11) yields

$$d(x)y[f(x), r] + [f(x), x]yd(r) = 0 \text{ for all } x, y \in U, r \in R.$$
(3.13)

Letting r = f(x), we see that [f(x), x]yd(f(x)) = 0 for all $x, y \in U$, which implies

$$[f(x), x]Ud(f(x)) = 0 = [f(x), x]URd(f(x)) \text{ for all } x \in U.$$
(3.14)

Since R is semiprime, it must contain a family $\{P_{\alpha}|\alpha \in \wedge\}$ of prime ideals such that $\cap P_{\alpha} = \{0\}$. If P is a typical member of these and $x \in U$, (3.14) shows that $d(f(x)) \in P$ or $[f(x), x]U \subseteq P$. For a fixed P, the sets of $x \in U$ for which these two conditions hold are additive subgroups of U whose union is U. Therefore,

$$d(f(U)) \subseteq P \text{ or } [f(x), x]U \subseteq P \text{ for all } x \in U.$$
(3.15)

Suppose that $d(f(U)) \subseteq P$, for $x, y \in U$, we get [x, yf(x)] = [f(x), d(yf(x))], which implies $U[x, f(x)] \subseteq P$ and $UR[x, f(x)] \subseteq P$, by the primness of P we reach to $U \subseteq P$ or $[x, f(x)] \in P$ for all $x \in U$. In either case

$$[x, f(x)]U \subseteq P \text{ for all } x \in U.$$
(3.16)

From (3.15) we have $[x, f(x)]U = \{0\}$ and from (3.13) we have d(x)y[f(x), r] = 0 and

$$d(x)UR[f(x), r] = \{0\} \text{ for all } x \in U, r \in R.$$
(3.17)

Since R is semiprime, it must contain a family $\{P_{\alpha}|\alpha \in \wedge\}$ of prime ideals such that $\cap P_{\alpha} = \{0\}$. If P is a typical member of these and $x \in U$, (3.17) shows that $d(x)U \subseteq P$ or $[f(x), R] \subseteq P$. For a fixed P, the sets of $x \in U$ for which these two conditions hold are additive subgroups of U whose union is U. Therefore,

$$d(U)U \subseteq P \text{ or } [f(U), R] \subseteq P.$$
(3.18)

Suppose that $d(U)U \subseteq P$, then $d(U)RU \subseteq P$. By the primeness of P we reach to $d(U) \subseteq P$ or $U \subseteq P$, in either case $Ud(U) \subseteq P$, then $y[f(x), d(z)] \in P$ for all $x, y, z \in U$. By our hypothesis, then $y[x, z] \in P$ which implies that $UR[U,U] \subseteq P$, by the primess of P we reach to $U \subseteq P$ or $[U,U] \subseteq P$. In either case $[U,U] \subseteq P$. By our hypothesis $[f(U), d(U)] \subseteq P$. From (3.18) we have $[f(U), d(U)] = \{0\}$, then $[U,U] = \{0\}$, U is commutative, by Lemma 1.3, $U \subseteq Z$.

The following three corollaries are immediate from the previous theorem.

Corollary 3.5. Let R be a semiprime ring and U a nonzero ideal of R. If R admits a semiderivation f and a derivation d such that [f(x), d(y)] = [x, y] for all $x, y \in U$, then $U \subseteq Z$.

Corollary 3.6. Let R be a semiprime ring . If R admits a semiderivation f and a derivation d such that [f(x), d(y)] = [x, y] for all $x, y \in R$, then R is commutative.

Corollary 3.7. Let R be a prime ring and U a nonzero ideal of R. If R admits a semiderivation f and a derivation d such that [f(x), d(y)] = [x, y] for all $x, y \in U$, then R is commutative.

In the next theorem, we prove Daif and Bell result ([8, Theorem 2]) in the setting of semiderivations.

Theorem 3.8. Let R be a semiprime ring admitting a semiderivation f associated with an epimorphism g of R for which either xy + f(xy) = yx + f(yx) for all $x, y \in R$, or xy - f(xy) = yx - f(yx) for all $x, y \in R$. Then R is commutative.

Proof. Suppose first

$$xy + f(xy) = yx + f(yx)$$
for all $x, y \in R.$ (3.19)

This can be written as

$$[x, y] = -f([x, y])$$
 for all $x, y \in R$. (3.20)

From (3.19) replace x by [x, y] and y by z and using (3.20) and our hypothesis we get, [g(x), g(y)]f(z) = f(z)[g(x), g(y)]. Since g is onto we have [x, y]f(z) = f(z)[x, y], which shows that f(z) centralizes [R, R]. From Lemma 1.2, f(z)centralizes R. By using (3.19), we get

$$[x, y] \in Z(R) \text{ for all } x, y \in R.$$

$$(3.21)$$

From Lemma 1.2, R centralizes R, which implies that R is commutative. \Box

Acknowledgements: The author is thankful to Prof M. N. Daif for the encouragement and fruitful discussion. Also he wishes to thank the referee for his valuable suggestions.

References

- [1] S. Ali and S. Huang, On derivations in semiprime rings, Algebras and Representation Theory, 15(6) (2012), 1023-1033.
- [2] K.I. Beidar, W.S. Martindale 3rd and A.V. Mikhalev, *Rings with Gener*alized Identities, Marcel Dekker, New York, (1996).

- [3] H.E. Bell and M.N. Daif, On commutativity and strong commutativity preserving maps, *Canad. Math. Bull*, 37(1994), 443-447.
- [4] H.E. Bell and W.S. Martindale, Centralizing mappings of semiprime rings, Canad. Math. Bull, 30(1987), 92-101.
- [5] H.E. Bell and W.S. Martindale, Semiderivations and commutativity in prime rings, *Canad Math. Bull*, 31(1988), 500-508.
- [6] J. Bergen, Derivations in prime rings, Canad. Math. Bull, 26(1983), 267-270.
- [7] J.C. Chang, On semiderivations of prime rings, *Chinese J. Math*, 12(1984), 255-262.
- [8] M.N. Daif and H.E. Bell, Remarks on derivations on semiprime rings, Int. J. Math. & Math. Sci, 15(1992), 205-206.
- [9] M.N. Daif, Commutativity results for semiprime rings with derivations, Int. J. Math. & Math. Sci, 21(3) (1998), 471-474.
- [10] V. De Filippis, A. Mamouni and L. Oukhtite, Semiderivations satisfying certain algebraic identities on Jordan ideals, *ISRN Algebra*, Article ID 738368(2013), 7 pages.
- [11] I.N. Herstein, A note on derivations, Canad. Math. Bull, 21(1978), 369-370.