Gen. Math. Notes, Vol. 19, No. 2, December, 2013, pp.71-82
ISSN 2219-7184; Copyright © ICSRS Publication, 2013
www.i-csrs.org
Available free online at http://www.geman.in

Semiderivations and Commutativity In Semiprime Rings ${ }^{1}$

H. Nabiel
Department of Mathematics, Faculty of Science, Al-Azhar University
11884, Nasr City, Cairo, Egypt
E-mail: hnabiel@yahoo.com

(Received: 19-9-13 / Accepted:4-11-13)

Abstract

Let R be a semiprime ring. An additive mapping $f: R \rightarrow R$ is called a semiderivation if there exists a function $g: R \rightarrow R$ such that $f(x y)=$ $f(x) g(y)+x f(y)=f(x) y+g(x) f(y)$ and $f(g(x))=g(f(x))$ for all $x, y \in R$. In the present paper we investigate commutativity of R satisfying any one of the properties (i) $[f(x), f(y)]=0$, (ii) $[f(x), f(y)]=[x, y]$, (iii) $[f(x), d(y)]=$ $[x, y], d$ is a derivation on R, or (iv) $f([x, y])= \pm[x, y]$, for all x, y in some appropriate subset of R. Also we extend two results of Bell and Martindale from prime rings to semiprime rings.

Keywords: prime ring, semiprime ring, essential ideal, derivation, semiderivation, commuting mapping, strong commutativity-preserving mapping.

1 Introduction

Throughout, R will be an associative ring. R is said to be 2 -torsion-free, if $2 x=0, x \in R$ implies $x=0$. As usual the commutator $x y-y x$ for $x, y \in R$ will be denoted by $[x, y]$. We shall use basic commutator identities $[x, y z]=[x, y] z+y[x, z]$ and $[x y, z]=[x, z] y+x[y, z]$, for $x, y, z \in R$. Recall that R is prime if $a R b=(0)$ implies $a=0$ or $b=0$ for every $a, b \in R$, and

[^0]is semiprime if $a R a=(0)$ implies $a=0$, for every $a \in R$. An ideal U of R is essential if for every nonzero ideal K of R we have $U \cap K \neq(0)$. If R is a ring with center Z, a mapping f from R to R is called centralizing on $S \subseteq R$ if $[x, f(x)] \in Z$ for all $x \in S$; in the special case where $[x, f(x)]=0$ for all $x \in S$, the mapping f is said to be commuting on S. A mapping $f: R \rightarrow R$ is called strong commutativity-preserving (scp) on $S \subseteq R$ if $[f(x), f(y)]=[x, y]$ for all $x, y \in S$. A derivation $d: R \rightarrow R$ is an additive map which satisfies $d(x y)=d(x) y+x d(y)$ for all $x, y \in R$.

The present paper has been motivated by the works of Chang [7], Daif [9], Bell and Daif [3], Daif and Bell [8], and Bell and Martindale [5]. Bergen [6] has introduced the following notion. An additive mapping f of a ring R into itself is called a semiderivation if there exists a function $g: R \rightarrow R$ such that $f(x y)=f(x) g(y)+x f(y)=f(x) y+g(x) f(y)$ and $f(g(x))=g(f(x))$ for all $x, y \in R$. For $g=1$ a semiderivation is of course a derivation. The other main motivating examples are of the form $f(x)=x-g(x)$ where g is any ring endomorphism of R. Then f is a semiderivation of R with associated map g which is not a derivation. In [11], Herstein has shown that if R is a prime ring admitting a nonzero derivation d such that $[d(x), d(y)]=0$ for all $x, y \in R$, then R is commutative whenever $\operatorname{char} R \neq 2$, and if $\operatorname{char} R=2$, then either R is commutative or is an order in a simple algebra which is 4 -dimensional over its center. In [7], Chang has given an extension of the above mentioned result of Herstein in the following way. Let $f \neq 0$ be a semiderivation of a prime ring R associated with an epimorphism g of R such that $[f(R), f(R)]=\{0\}$. Then, if char $(R) \neq 2, R$ is a commutative, and if $\operatorname{char}(R)=2, R$ is commutative or is an order in a simple algebra which is 4 -dimensional over its center. In [9], Daif has generalized the previously mentioned result of Herstein in the following way. Let R be a two-torsion-free semiprime ring and U a nonzero ideal of R. If R admits a derivation d which is nonzero on U and $[d(x), d(y)]=0$ for all $x, y \in U$, then R contains a nonzero central ideal. In [8], Daif and Bell have proved that a semiprime ring R is commutative if it admits a derivation d for which either $d([x, y])=[y, x]$ for all $x, y \in R$ or $d([x, y])=[x, y]$ for all $x, y \in R$. In [3], Bell and Daif have shown that if a semiprime ring R admits a strong-commutativity preserving derivation on a nonzero right ideal U of R, then $U \subseteq Z$, the center of R. In [5], Bell and Martindale have proved the following three results.
(i) Let $f \neq 0$ be a semiderivation of a prime ring R of characteristic not 2 with associated endomorphism g of R and $U \neq 0$ be an ideal of R. Suppose that $a \in R$ such that $a f(U)=0$. Then $a=0$.
(ii) Let f be a semiderivation of a prime ring R of characteristic not 2 with associated endomorphism g of R. If there exists a nonzero ideal U of R for which $U \cap g(R)=0$, then there exists $\lambda \in C$ (the extended centroid of R) such
that $f(x)=\lambda(x-g(x))$ for all $x \in R$.
(iii) Let f be a semiderivation of a prime ring R of characteristic not 2 with associated endomorphism g of R. If g is not one-one and $V \neq 0$ is an ideal of R contained in ker g, then $f(V)$ is a nonzero ideal of R, and there exists $\lambda \in C$ such that $f(x)=\lambda(x-g(x))$ for all $x \in R$.
In [1], Ali and Huang have proved the following theorem. Let R be a $2-$ torsion free semiprime ring and I a nonzero ideal of R. Let d be a derivation of R. If one of the following conditions holds:
(i) $[d(x), d(y)]=[x, y]$ for all $x, y \in I$,
(ii) $[d(x), d(y)]=-[x, y]$ for all $x, y \in I$,
(iii) for all $x, y \in I$, either $[d(x), d(y)]=[x, y]$ or $[d(x), d(y)]=-[x, y]$,
then d is commuting on I. Further, if $d(I) \neq 0$, then R has a nonzero central ideal.

In [10], De Filippis, Mamouni and Oukhtite have showed the following result. Let R be a prime ring of characteristic not 2 and I a nonzero ideal of R. If R admits a nonzero semiderivation f with associated function g such that $f([x, y])=[x, y]$ for all $x, y \in I$, then one of the following holds:
(1) R is commutative;
(2) $f(x)=x-g(x)$ for all $x \in R$, with $g([R, R])=0$;
(3) $f(x)=x$, for all $x \in I$ and $g(I)=0$.

Our aim in this work is to investigate the commutativity of semiprime rings admitting semiderivations. In the first section we extend the above mentioned result of Chang [7, Theorem 2] for prime rings to semiprime rings, extend two results of Bell and Martindale ([5, Lemma 4], [5, Lemma 5]) for prime rings to semiprime rings, and give a counter example to [5, Lemma 2] in the semiprime ring case. In the second section we study commutativity for a semiprime ring R admitting a semiderivation f associated with an epimorphism g of R which satisfies $[f(x), f(y)]=[x, y]$ for all x, y belonging to an ideal of R, or satisfies $f([x, y])= \pm[x, y]$ for all $x, y \in R$, or admits an additive map f and a derivation d which satisfy $[f(x), d(y)]=[x, y]$ for all x, y belonging to an ideal of R.

In order to prove our aims we need the following results:
Theorem 1.1. [2, Theorem 2.3.2]. Let R be a semiprime ring, $Q=Q_{m r}(R)$, the maximal right ring of quotients of $R,{ }_{R} U_{R} \subseteq_{R} Q_{R}$ a subbimodule of Q and $f:_{R} U_{R} \rightarrow_{R} Q_{R}$ a homomorphism of bimodules. Then there exists an element $\lambda \in C$ (the extended centroid of R) such that $f(u)=\lambda u$ for all $u \in U$.
Lemma 1.2. [8, Lemma1]. Let R be a semiprime ring and I a nonzero ideal of R. If x in R centralizes the set $[I, I]$, then x centralizes I.

Lemma 1.3. [3, Lemma 1]. If R is a semiprime ring, the center of a nonzero one-sided ideal is contained in the center of R; in particular, any commutative one-sided ideal is contained in the center of R.

Remark 1.4. [2, Remark 2.1.4]. If U is an essential two-sided ideal of a semiprime ring R, then $l(U)=r(U)=(0)$.

2 Semiderivations on Semiprime Rings

In this section we begin with a theorem that extends Chang's theorem ([7, Theorem 2]) from prime rings to semiprime rings, and also generalizes Daif's theorem ([9, Theorem 2.1]) for derivations to semiderivations. To achieve this goal we modify Theorem 3 of [4] from the case of derivations to the case of semiderivations. Also we extend two results of Bell and Martindale ([5, Lemma 4], [5, Lemma 5]) on derivations to semiderivations, and give a counter example to [5, Lemma 2] in the semiprime ring case.

Lemma 2.1. Let R be a semiprime ring. If R admits a nonzero semiderivation f with associated surjective map g of R which is commuting on R, then R contains a nonzero central ideal.

Proof. We have for all $x \in R$ that $[x, f(x)]=0$. Replacing x by $u+v$, we get

$$
\begin{equation*}
[u, f(v)]+[v, f(u)]=0 \text { for all } u, v \in R . \tag{2.1}
\end{equation*}
$$

Replacing u by x and v by $y x$, and using our hypothesis and (2.1), we get

$$
\begin{equation*}
[x, g(y)] f(x)=0 \text { for all } x, y \in R . \tag{2.2}
\end{equation*}
$$

Since g is onto we have

$$
\begin{equation*}
[x, y] f(x)=0 \text { for all } x, y \in R \tag{2.3}
\end{equation*}
$$

Replacing y by $w y$ and using (2.3), we get $[x, w] y f(x)=0$, which implies that

$$
\begin{equation*}
[x, w] R f(x)=\{0\} \text { for all } x, w \in R \tag{2.4}
\end{equation*}
$$

Since R is semiprime, consider the set $\left\{P_{\alpha}\right\}$ of prime ideals of R such that $\cap P_{\alpha}=\{0\}$. Then for each P_{α} either
(a)

$$
\begin{equation*}
[x, w] \in P_{\alpha} \text { for all } x, w \in R \tag{2.5}
\end{equation*}
$$

or
(b)

$$
\begin{equation*}
f(x) \in P_{\alpha} \text { for all } x \in R . \tag{2.6}
\end{equation*}
$$

Call P_{α} a type-one prime if it satisfies (a), and call P_{α} a type-two prime if it satisfies (b). Let P_{1} and P_{2} be, respectively, the intersections of all type-one and type-two primes. Note that $P_{1} \cap P_{2}=\{0\}$.

We now investigate a typical type-two prime $P=P_{\alpha}$. From (b), we have

$$
\begin{equation*}
R f(R) \subseteq P \tag{2.7}
\end{equation*}
$$

Now consider the left ideal $V=R f(R)$; we shall show that V is commutative, hence a two-sided central ideal. A typical element of V is a sum of elements of the form $r f(s)$, where $r, s \in R$. Thus we need only show that commutators of the form $\left[r_{1} f\left(s_{1}\right), r_{2} f\left(s_{2}\right)\right]$ are all trivial, clearly this commutator is in P_{1} by (a) and in P_{2} by (2.7), hence belongs to $P_{1} \cap P_{2}=\{0\}$.

Assume that $V=\{0\}$ in which case $R f(R)=\{0\}$, hence $f(R) R f(R)=$ $\{0\}$, since R is semiprime we have $f(R)=\{0\}$ which is a contradiction. Hence $V \neq\{0\}$. By Lemma 1.3, R contains a nonzero central ideal.

Now, we are ready to prove the first theorem of this section.
Theorem 2.2. If R is a two torsion free semiprime ring and f is a nonzero semiderivation of R associated with an epimorphism g of R such that $[f(R), f(R)]$ $=\{0\}$, then R contains a nonzero central ideal.

Proof. We have $[f(x), f(y)]=0$ for all $x, y \in R$, replacing y by $y f(z)$, then yields

$$
\begin{align*}
{[f(x), f(y)] f(z) } & +f(y)[f(x), f(z)]+g(y)\left[f(x), f^{2}(z)\right]+[f(x), g(y)] f^{2}(z) \\
& =0 \text { for all } x, y, z \in R . \tag{2.8}
\end{align*}
$$

Using our hypothesis, then $[f(x), g(y)] f^{2}(z)=0$ for all $x, y, z \in R$. Since g is onto, we have

$$
\begin{equation*}
[f(x), y] f^{2}(z)=0 \text { for all } x, y, z \in R \tag{2.9}
\end{equation*}
$$

Replacing y by $y w$ and using (2.9), we get

$$
\begin{equation*}
[f(x), y] R f^{2}(z)=\{0\} \text { for all } x, y, z \in R . \tag{2.10}
\end{equation*}
$$

Consider the set of prime ideals P_{α} of R such that $\cap P_{\alpha}=\{0\}$. For each P_{α}, from (2.10) we either have
(a) $[f(x), y] \in P_{\alpha}$ for all $x, y \in R$,
or
(b) $f^{2}(R) \subseteq P_{\alpha}$.

Call P_{α} an (a)-prime ideal or a (b)-prime according to which of these conditions is satisfied.

Now consider a (b)-prime ideal P_{α}. Since $f^{2}(x y)=f^{2}(x) g^{2}(y)+f(x) f(g(y))+$ $f(x) f(g(y))+x f^{2}(y)$, then $2 f(x) f(g(y)) \in P_{\alpha}$, and since g is onto we get

$$
\begin{equation*}
2 f(x) f(y) \in P_{\alpha}, \text { for all } x, y \in R \tag{2.11}
\end{equation*}
$$

Now replacing y by $z y$, we get $2 f(x) f(z) g(y)+2 f(x) z f(y) \in P_{\alpha}$, which implies

$$
\begin{equation*}
2 f(x) z f(y) \in P_{\alpha}, \text { for all } x, y, z \in R \tag{2.12}
\end{equation*}
$$

Since P_{α} is prime, we either have $2 f(x) \in P_{\alpha}$ for all $x \in R$ or $f(y) \in P_{\alpha}$ for all $y \in R$. In either case, we have $2[f(x), y] \in P_{\alpha}$ for all (b)-prime P_{α}. Also from (a), $2[f(x), y] \in P_{\alpha}$ for all (a)-prime P_{α}. So $2[f(x), y] \in \cap P_{\alpha}=\{0\}$. Since R is two torsion free, then $[f(x), y]=0$ for all $x, y \in R$, in particular $[f(x), x]=0$ for all $x \in R$. By Lemma 2.1, R contains a nonzero central ideal.

Lemma 2.3. [see 5, Lemma 1] Let R be a semiprime ring. If $f \neq 0$ is a semiderivation on R associated with a function g of R, and U is an essential ideal of R, then $f \neq 0$ on U.

Proof. Suppose $f(U)=0$. Then for $u \in U, x \in R$ we have $0=f(u x)=$ $f(u) g(x)+u f(x)=u f(x)$, which implies $0=U f(x)$. From Remark 1.4, we have $f(x)=0$, which is a contradiction.

Theorem 2.4. [see 5, Lemma 4] Let R be a semiprime ring, and f be a semiderivation on R associated with an endomorphism g of R. If there exists a nonzero essential ideal U of R for which $U \cap g(R)=0$, then there exists $\lambda \in C$ (the extended centroid of R) such that $f(x)=\lambda(x-g(x))$ for all $x \in R$.

Proof. We let W be the ideal $\sum U(x-g(x)) U$ and note that $W \neq 0$ (otherwise g would be the identity mapping, contradicting that $U \cap g(R)=0$). We define a mapping $\phi: W \rightarrow R$ according to the rule $\sum u_{i}\left(x_{i}-g\left(x_{i}\right)\right) v_{i} \rightarrow u_{i} f\left(x_{i}\right) v_{i}$ where $u_{i}, v_{i} \in U$ and $x_{i} \in R$. Of course our main problem is to prove that ϕ is well-defined, consequently ϕ is an (R, R) - bimodule map of W into R. Suppose that

$$
\begin{equation*}
\sum u_{i}\left(x_{i}-g\left(x_{i}\right)\right) v_{i}=0 \tag{2.13}
\end{equation*}
$$

We attempt to show that $\phi\left(\sum u_{i}\left(x_{i}-g\left(x_{i}\right)\right) v_{i}\right)=0$, i.e., $u_{i} f\left(x_{i}\right) v_{i}=0$. Applying f to 2.13, we see that $0=f\left(\sum u_{i}\left(x_{i}-g\left(x_{i}\right)\right) v_{i}\right)$
$=\sum\left[u_{i} f\left(x_{i} v_{i}\right)+f\left(u_{i}\right) g\left(x_{i} v_{i}\right)-f\left(u_{i} g\left(x_{i}\right)\right) g\left(v_{i}\right)-u_{i} g\left(x_{i}\right) f\left(v_{i}\right)\right]$
$=\sum\left[u_{i} f\left(x_{i}\right) v_{i}+u_{i} g\left(x_{i}\right) f\left(v_{i}\right)+f\left(u_{i}\right) g\left(x_{i}\right) g\left(v_{i}\right)\right.$
$\left.-f\left(u_{i}\right) g\left(x_{i}\right) g\left(v_{i}\right)-g\left(u_{i}\right) f\left(g\left(x_{i}\right)\right) g\left(v_{i}\right)-u_{i} g\left(x_{i}\right) f\left(v_{i}\right)\right]$
$=\sum\left[u_{i} f\left(x_{i}\right) v_{i}-g\left(u_{i}\right) f\left(g\left(x_{i}\right)\right) g\left(v_{i}\right)\right]$
$=\sum u_{i} f\left(x_{i}\right) v_{i}-g\left(\sum u_{i} f\left(x_{i}\right) v_{i}\right)$. Therefore $\sum u_{i} f\left(x_{i}\right) v_{i}=g\left(\sum u_{i} f\left(x_{i}\right) v_{i}\right) \in$ $U \cap g(R)=0$, which implies $\sum u_{i} f\left(x_{i}\right) v_{i}=0$, then ϕ is well-defined. Since ϕ is an (R, R)-bimodule map of W into R, from Theorem 1.1, there exists
$\lambda \in C$ (the extended centroid of R) such that $\lambda w=\phi(w)$ for all $w \in W$. Now, regarding R as a subring of the central closure $R C$, we have for all $u, v \in U$ and $x \in R$ that $u \lambda(x-g(x)) v=\lambda(u(x-g(x)) v)=\phi(u(x-g(x)) v)=u f(x) v$, which implies $u[\lambda(x-g(x))-f(x)] v=0$ for all $u, v \in U, x \in R$, i.e., $U[\lambda(x-g(x))-f(x)] v=0$ for all $v \in U, x \in R$. From Remark 1.4, we have $[\lambda(x-g(x))-f(x)] v=0$ for all $v \in U, x \in R$, i.e., $[\lambda(x-g(x))-f(x)] U=0$ for all $x \in R$. From Remark 1.4 we have $\lambda(x-g(x))-f(x)=0$, which implies $f(x)=\lambda(x-g(x)), \lambda \in C$.

Theorem 2.5. [see 5, Lemma 5]Let R be a semiprime ring, and $f \neq 0$ be a semiderivation of R associated with an endomorphism g of R. If g is not one-one and V is an essential ideal of R contained in kerg, then
(a) $f(V)$ is a nonzero ideal of R, and
(b) there exists $\lambda \in C$ such that $f(x)=\lambda(x-g(x))$ for all $x \in R$.

Proof. (a) For $v \in V$ and $r \in R$, we see immediately from $f(v r)=f(v) r+$ $g(v) f(r)=f(v) r$ and $f(r v)=r f(v)+f(r) g(v)=r f(v)$ that $f(V)$ is an ideal of R. Furthermore $f(V) \neq 0$ in view of Lemma 2.3, and so (a) is proved.
(b) The argument establishing (a) also shows that f is an (R, R)-bimodule map of V into R. From Theorem 1.1, there exists $\lambda \in C$ such that $\lambda v=f(v)$ for all $v \in V$. For $v \in V$ and $r \in R$ we then see that $\lambda v r=f(v r)=$ $v f(r)+f(v) g(r)=v f(r)+\lambda v g(r)$. In other words, $v(f(r)+\lambda g(r)-\lambda r)=$ 0 , which implies $V(f(r)+\lambda g(r)-\lambda r)=0$, and from Remark 1.4, we get $f(r)+\lambda g(r)-\lambda r=0$, which yields $f(r)=\lambda(r-g(r))$ for all $r \in R$.

In the next remark we give a counter example to [5, Lemma 2] when R is semiprime.

Remark 2.6. We notice that [5,Lemma 2] is not true in the case when R is semiprime. Let $R=R_{1} \bigoplus R_{2}$ where R_{1} and R_{2} are prime rings, R is a semiprime ring. Let $\alpha: R_{1} \rightarrow R_{2}$ be an additive map and $\beta: R_{2} \rightarrow R_{2}$ be a nonzero left and right R_{2}-module map which is not a derivation. Define $f: R \rightarrow R$ such that $f\left(\left(r_{1}, r_{2}\right)\right)=\left(0, \beta\left(r_{2}\right)\right)$ and $g: R \rightarrow R$ such that $g\left(\left(r_{1}, r_{2}\right)\right)=\left(\alpha\left(r_{1}\right), 0\right), r_{1} \in R_{1}, r_{2} \in R_{2}$. Then f is a semiderivation on R. Consider the subset $U=\left\{\left(0, r_{2}\right), r_{2} \in R_{2}\right\}$, then U is an ideal of R. Let $a=\left(a_{1}, 0\right) \neq 0$ be an element of R, we see that af $(U)=0$ but neither a nor $f(U)$ is zero.

3 Commutativity Results for Semiprime Rings with Derivations and Semiderivations

In this section, we study commutativity for a semiprime ring R admitting a semiderivation f associated with an epimorphism g of R which satisfies
$[f(x), f(y)]=[x, y]$ for all x, y belonging to an ideal of R, or satisfies $f([x, y])=$ $\pm[x, y]$ for all $x, y \in R$, or admits an additive map f and a derivation d which satisfy $[f(x), d(y)]=[x, y]$ for all x, y belonging to an ideal of R. We generalize [3, Theorem 1] of Bell and Daif and [8, Theorem 2] of Daif and Bell from the case of derivations to the case of semiderivations.

Theorem 3.1. Let R be a semiprime ring admitting a semiderivation f associated with an epimorphism g of R. Suppose that U is a nonzero ideal of R such that f is scp on U and $g(U)=U$. Then $U \subseteq Z$.

Note that: The condition $g(U)=U$ may be sead as U is a g-ideal.
Proof. For $x, y \in U$, we have $[x, x y]=[f(x), f(x y)]$, which yields

$$
\begin{equation*}
f(x)[f(x), g(y)]+[f(x), x] f(y)=0 \text { for all } x, y \in U \tag{3.1}
\end{equation*}
$$

Replacing y by $y r, r \in R$, gives

$$
\begin{align*}
f(x)[f(x), g(y)] g(r)+ & f(x) g(y)[f(x), g(r)]+[f(x), x] f(y) g(r)+[f(x), x] y f(r) \\
& 0 \text { for all } x, y \in U, r \in R . \tag{3.2}
\end{align*}
$$

Comparing with (3.1) yields

$$
\begin{equation*}
f(x) g(y)[f(x), g(r)]+[f(x), x] y f(r)=0 \text { for all } x, y \in U, r \in R . \tag{3.3}
\end{equation*}
$$

Since $g(U)=U$, letting $x=g(x)$, we see that $f(g(x)) g(y)[f(g(x)), g(r)]+$ $[f(g(x)), g(x)] y f(r)=0$ for all $x, y \in U, r \in R$. Letting $r=f(x)$, we see that

$$
\begin{equation*}
[f(g(x)), g(x)] y f^{2}(x)=0 \text { for all } x, y \in U . \tag{3.4}
\end{equation*}
$$

Therefore (3.4) implies that

$$
\begin{equation*}
[f(g(x)), g(x)] U R f^{2}(x)=\{0\} \text { for all } x \in U \tag{3.5}
\end{equation*}
$$

Since R is semiprime, it must contain a family $\left\{P_{\alpha} \mid \alpha \in \wedge\right\}$ of prime ideals such that $\cap P_{\alpha}=\{0\}$. If P is a typical member of these and $x \in U$, (3.5) shows that $f^{2}(x) \in P$ or $[f(g(x)), g(x)] U \subseteq P$. For a fixed P, the sets of $x \in U$ for which these two conditions hold are additive subgroups of U whose union is U; therefore

$$
\begin{equation*}
f^{2}(U) \subseteq P \text { or }[f(g(x)), g(x)] U \subseteq P \text { for all } x \in U \tag{3.6}
\end{equation*}
$$

Suppose that $f^{2}(U) \subseteq P$, then for each $y \in U$ we get $[x, y f(x)]=[f(x)$, $f(y f(x))]$, expanding this equation to $y[x, f(x)]=[f(x), g(y)] f^{2}(x)+g(y)[f(x)$,
$\left.f^{2}(x)\right]$ implies $y[x, f(x)] \in P$, then so $U R[x, f(x)] \subseteq P$. By the primeness of P we reach to $U \subseteq P$ or $[x, f(x)] \in P$ for all $x \in U$. Either of these cases implies

$$
\begin{equation*}
[x, f(x)] U \subseteq P \text { for all } x \in U \tag{3.7}
\end{equation*}
$$

From (3.6) now suppose that $[f(g(x)), g(x)] U \subseteq P$ for all $x \in U$, since $g(U)=$ U we get

$$
\begin{equation*}
[f(x), x] U \subseteq P \text { for all } x \in U \tag{3.8}
\end{equation*}
$$

From (3.7) and (3.8) we have $[x, f(x)] U=\{0\}$ and from (3.3) we have $f(x) g(y)[f(x), g(r)]=0$ for all $x, y \in U, r \in R$. Since g is onto, $f(x) g(y)[f(x), r]=$ 0 . Moreover, since $g(U)=U$ we have $f(x) y[f(x), r]=0$, which implies

$$
\begin{equation*}
f(x) U R[f(x), r]=\{0\} \text { for all } x \in U, r \in R \tag{3.9}
\end{equation*}
$$

Since R is semiprime, it must contain a family $\left\{P_{\alpha} \mid \alpha \in \wedge\right\}$ of prime ideals such that $\cap P_{\alpha}=\{0\}$. If P is a typical member of these and $x \in U,(3.9)$ shows that $f(x) U \subseteq P$ for all $x \in U$ or $[f(x), r] \in P$ for all $x \in U, r \in R$. For a fixed P, the sets of $x \in U$ for which these two conditions hold are additive subgroups of U whose union is U; therefore

$$
\begin{equation*}
f(U) U \subseteq P \text { or }[f(U), R] \subseteq P \tag{3.10}
\end{equation*}
$$

Suppose that $f(U) U \subseteq P$, then $f(U) R U \subseteq P$, that is, $f(U) \subseteq P$ or $U \subseteq P$. In either event $[f(U), f(U)] \subseteq P$. Now (3.10) yields $[f(U), f(U)]=\{0\}$, then $[\mathrm{U}, \mathrm{U}]=\{0\}, U$ is commutative, by Lemma $1.3, U \subseteq Z$.

The following two corollaries are immediate from the previous theorem.
Corollary 3.2. Let R be a semiprime ring. If R admits a semiderivation f which is scp on R associated with an epimorphism g of R, then R is commutative.

Corollary 3.3. Let R be a prime ring, U a nonzero ideal, and R admit a semiderivation f which is scp on U associated with an epimorphism g of R. If $g(U)=U$, then R is commutative.

Theorem 3.4. Let R be a semiprime ring and U a nonzero ideal of R. If R admits an additive map f and a derivation d such that $[f(x), d(y)]=[x, y]$ for all $x, y \in U$, then $U \subseteq Z$.

Proof. For $x, y \in U$, we have $[x, x y]=[f(x), d(x y)]$, which yields

$$
\begin{equation*}
d(x)[f(x), y]+[f(x), x] d(y)=0 \text { for all } x, y \in U \tag{3.11}
\end{equation*}
$$

Replacing y by $y r$ gives

$$
\begin{equation*}
d(x)[f(x), y r]+[f(x), x] d(y r)=0 \text { for all } x, y \in U, r \in R . \tag{3.12}
\end{equation*}
$$

Comparing with (3.11) yields

$$
\begin{equation*}
d(x) y[f(x), r]+[f(x), x] y d(r)=0 \text { for all } x, y \in U, r \in R \tag{3.13}
\end{equation*}
$$

Letting $r=f(x)$, we see that $[f(x), x] y d(f(x))=0$ for all $x, y \in U$, which implies

$$
\begin{equation*}
[f(x), x] U d(f(x))=0=[f(x), x] U R d(f(x)) \text { for all } x \in U \tag{3.14}
\end{equation*}
$$

Since R is semiprime, it must contain a family $\left\{P_{\alpha} \mid \alpha \in \wedge\right\}$ of prime ideals such that $\cap P_{\alpha}=\{0\}$. If P is a typical member of these and $x \in U,(3.14)$ shows that $d(f(x)) \in P$ or $[f(x), x] U \subseteq P$. For a fixed P, the sets of $x \in U$ for which these two conditions hold are additive subgroups of U whose union is U. Therefore,

$$
\begin{equation*}
d(f(U)) \subseteq P \text { or }[f(x), x] U \subseteq P \text { for all } x \in U \tag{3.15}
\end{equation*}
$$

Suppose that $d(f(U)) \subseteq P$, for $x, y \in U$, we get $[x, y f(x)]=[f(x), d(y f(x))]$, which implies $U[x, f(x)] \subseteq P$ and $U R[x, f(x)] \subseteq P$, by the primness of P we reach to $U \subseteq P$ or $[x, f(x)] \in P$ for all $x \in U$. In either case

$$
\begin{equation*}
[x, f(x)] U \subseteq P \text { for all } x \in U \tag{3.16}
\end{equation*}
$$

From (3.15) we have $[x, f(x)] U=\{0\}$ and from (3.13) we have $d(x) y[f(x), r]=$ 0 and

$$
\begin{equation*}
d(x) U R[f(x), r]=\{0\} \text { for all } x \in U, r \in R . \tag{3.17}
\end{equation*}
$$

Since R is semiprime, it must contain a family $\left\{P_{\alpha} \mid \alpha \in \wedge\right\}$ of prime ideals such that $\cap P_{\alpha}=\{0\}$. If P is a typical member of these and $x \in U$, (3.17) shows that $d(x) U \subseteq P$ or $[f(x), R] \subseteq P$. For a fixed P, the sets of $x \in U$ for which these two conditions hold are additive subgroups of U whose union is U. Therefore,

$$
\begin{equation*}
d(U) U \subseteq P \text { or }[f(U), R] \subseteq P \tag{3.18}
\end{equation*}
$$

Suppose that $d(U) U \subseteq P$, then $d(U) R U \subseteq P$. By the primeness of P we reach to $d(U) \subseteq P$ or $U \subseteq P$, in either case $U d(U) \subseteq P$, then $y[f(x), d(z)] \in P$ for all $x, y, z \in U$. By our hypothesis, then $y[x, z] \in P$ which implies that $U R[U, U] \subseteq P$, by the primness of P we reach to $U \subseteq P$ or $[U, U] \subseteq P$. In either case $[U, U] \subseteq P$. By our hypothesis $[f(U), d(U)] \subseteq P$. From (3.18) we have $[f(U), d(U)]=\{0\}$, then $[U, U]=\{0\}, U$ is commutative, by Lemma 1.3, $U \subseteq Z$.

The following three corollaries are immediate from the previous theorem.
Corollary 3.5. Let R be a semiprime ring and U a nonzero ideal of R. If R admits a semiderivation f and a derivation d such that $[f(x), d(y)]=[x, y]$ for all $x, y \in U$, then $U \subseteq Z$.

Corollary 3.6. Let R be a semiprime ring .If R admits a semiderivation f and a derivation d such that $[f(x), d(y)]=[x, y]$ for all $x, y \in R$, then R is commutative.

Corollary 3.7. Let R be a prime ring and U a nonzero ideal of R. If R admits a semiderivation f and a derivation d such that $[f(x), d(y)]=[x, y]$ for all $x, y \in U$, then R is commutative.

In the next theorem, we prove Daif and Bell result ([8, Theorem 2]) in the setting of semiderivations.

Theorem 3.8. Let R be a semiprime ring admitting a semiderivation f associated with an epimorphism g of R for which either $x y+f(x y)=y x+f(y x)$ for all $x, y \in R$, or $x y-f(x y)=y x-f(y x)$ for all $x, y \in R$. Then R is commutative.

Proof. Suppose first

$$
\begin{equation*}
x y+f(x y)=y x+f(y x) \text { for all } x, y \in R . \tag{3.19}
\end{equation*}
$$

This can be written as

$$
\begin{equation*}
[x, y]=-f([x, y]) \text { for all } x, y \in R . \tag{3.20}
\end{equation*}
$$

From (3.19) replace x by $[x, y]$ and y by z and using (3.20) and our hypothesis we get, $[g(x), g(y)] f(z)=f(z)[g(x), g(y)]$. Since g is onto we have $[x, y] f(z)=$ $f(z)[x, y]$, which shows that $f(z)$ centralizes $[R, R]$. From Lemma 1.2, $f(z)$ centralizes R. By using (3.19), we get

$$
\begin{equation*}
[x, y] \in Z(R) \text { for all } x, y \in R \tag{3.21}
\end{equation*}
$$

From Lemma 1.2, R centralizes R, which implies that R is commutative.
Acknowledgements: The author is thankful to Prof M. N. Daif for the encouragement and fruitful discussion. Also he wishes to thank the referee for his valuable suggestions.

References

[1] S. Ali and S. Huang, On derivations in semiprime rings, Algebras and Representation Theory, 15(6) (2012), 1023-1033.
[2] K.I. Beidar, W.S. Martindale 3rd and A.V. Mikhalev, Rings with Generalized Identities, Marcel Dekker, New York, (1996).
[3] H.E. Bell and M.N. Daif, On commutativity and strong commutativity preserving maps, Canad. Math. Bull, 37(1994), 443-447.
[4] H.E. Bell and W.S. Martindale, Centralizing mappings of semiprime rings, Canad. Math. Bull, 30(1987), 92-101.
[5] H.E. Bell and W.S. Martindale, Semiderivations and commutativity in prime rings, Canad Math. Bull, 31(1988), 500-508.
[6] J. Bergen, Derivations in prime rings, Canad. Math. Bull, 26(1983), 267270.
[7] J.C. Chang, On semiderivations of prime rings, Chinese J. Math, 12(1984), 255-262.
[8] M.N. Daif and H.E. Bell, Remarks on derivations on semiprime rings, Int. J. Math. © Math. Sci, 15(1992), 205-206.
[9] M.N. Daif, Commutativity results for semiprime rings with derivations, Int. J. Math. © Math. Sci, 21(3) (1998), 471-474.
[10] V. De Filippis, A. Mamouni and L. Oukhtite, Semiderivations satisfying certain algebraic identities on Jordan ideals, ISRN Algebra, Article ID 738368(2013), 7 pages.
[11] I.N. Herstein, A note on derivations, Canad. Math. Bull, 21(1978), 369370.

[^0]: ${ }^{1}$ This paper is a part of the author's M.sc. thesis under the supervision of prof. M.N.Daif

