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Abstract 

In this paper, we introduce the notion of boundedness in a fuzzy metric space. 
This notion is a special case of the notion of F-boundedness due to [1]. Using this 
notion, we prove a fixed point theorem for maps from a fuzzy metric space to a 
sub class of the set of bounded subsets of that fuzzy metric space, under Hadzic 
type � −norm. The proof of our theorem is non-constructive. 

       Keywords: Fuzzy metric space, F-boundedness, bounded subset of Fuzzy 
metric space, Hadzic type �- norm, set-valued M-maps. 
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1 Introduction 
 
The concept of fuzzy sets was introduced by L.A. Zadeh [8] in 1965 which 
became an active field of research for many researchers in fixed point theory. In 
1975, Karmosil and Michalek [3] introduced the concept of a fuzzy metric space 
based on fuzzy sets; this notion was further modified by George and Veermani [1] 
with the help of t-norms. Many authors made use of the definition of a fuzzy 
metric space due to George and Veermani [1] in proving fixed point theorems in 
fuzzy metric spaces. In 1978, Hadzic [2] introduced a class ℋof t– norms later 
known as Hadzic type t-norms. K.P.R. Sastry, G.V.R. Babu, and M.L. Sandhya 
[5] extended the notion of weak contraction in metric spaces and obtained a fixed 
point theorem in Menger spaces with Hadzic type � −norm. K.P.R. Rao et al. [4] 
introduced the notion of M-maps with respect to single map and a pair of maps in 
fuzzy metric spaces and obtained common fixed point theorems for two pairs of 
sub compatible maps satisfying implicit relations. 
 
In this paper we prove a fixed point theorem for maps from a fuzzy metric space X 
to    BBBB ( )X , the set of all nonempty bounded subsets of the fuzzy metric space 

��, �,∗	 where ∗ is Hadzic type� −norm. 
 

2 Preliminaries 
 
We begin with some known definitions and results.  
 
Definition 1.1: (L.A. Zadeh [8]) A fuzzy set A in a nonempty set X is a function 
with domain X and values in �0,1�. 
 
Definition 1.2: (B. Schweizer and A. Sklar [7]) A function ∗ ∶ �0,1� × �0,1� →
�0,1� is said to be a continuous t-norm if ∗ satisfies the following conditions: 
 
For �, �, �, � ∈ �0,1� 
 
(i) ∗ is commutative and associative 
(ii)  ∗ is continuous 
(iii)  � ∗ 1 = � ∀� ∈ �0,1� 
(iv) � ∗ � ≤ � ∗ ��ℎ������� ≤ ����� ≤ � 
 
Examples of continuous t-norm are a b ab∗ = and { }min ,a b a b∗ = . 

 
Definition 1.3: (A. George and P. Veeramani [1]) A  triple ��, �,∗	 is said to be 
a fuzzy metric space (FM space, briefly) if X is a nonempty set, ∗ is a continuous 
t-norm and M  is a fuzzy set on � × �0, ∞	satisfying the following conditions: 
 
For  ", #, $ ∈ � and %, � > 0. 
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(i) ��", #, �	 > 0, ��", #, 0	 = 0 
(ii)  ��", #, �	 =  1 ∀ � > 0 if and only if " =  # 
(iii) ��", #, �	 = � �#, ", �	 
(iv) ��", #, �	 ∗ ��#, $, %	 ≤ ��", $, � +  %	 
(v) ��", #, . 	: �0, ∞	 ⟶ �0,1� is continuous and +,-.→/ ��", #, �	 = 1. 

 
Then  � is called a fuzzy metric space on X. 
 
The function ��", #, �	 denotes the degree of nearness between " and # with 
respect to t. 
 
Definition 1.4: (A. George and P. Veeramani [1]) Let ��, �,∗	 be a fuzzy metric 
space. Then, 
 

(i) A sequence {"1} in � is said to be convergent to a point " ∈  �                                    
if  +,-1→/ ��"1 , ", �	 = 1 ∀� > 0. 

(ii)  A sequence {"1} in � is called a Cauchy sequence if  
 +,-1→/ �3"145, "1, �6 = 1 ∀� > 0 and  7 = 1,2, … 

(iii)A FM –space in which every Cauchy sequence is convergent is said to be 
complete. 

 
Definition 1.5: (A. George and P. Veeramani [1]) Let ��, �,∗	 be a fuzzy metric 
space. Then, a subset A of X is said to be :-bounded if 

( ) ( )0 and 0,1 , , 1 ,t r M x y t r x y A∃ > ∈ ∋ > − ∀ ∈  

 
Let ( )XB be the set of F-nonempty bounded subsets of fuzzy metric 

space��, �,∗	. 
 
K.P.R. Rao et al. [4] Introduced the following, using the notion of F-boundedness 
due to [1]. 
 
For ,A B∈ ( )XB and for every t > 0, define 

 ( ) ( ){ }, , inf , , / ,M A B t M a b t a A b Bδ = ∈ ∈  

 
Using this notation, K.P.R. Rao et al. [4] Introduced the notion of M-map. 
 
Definition 1.6: (K.P.R. Rao, K.R.K. Rao and V.C.C. Raju [4]) Let ��, �,∗	 be 
a fuzzy metric space and :f X X→ and :F X → ( )XB . Then ( ),f F is said to 

be a pair of M-maps with respect to f   if there exists a sequence { }nx in X such 

that for every 0t > , ( ), , 1nM fx z t → and { }( ), , 1M nFx z tδ → as n → ∞  for some

( )z f X∈ . 
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Implicit Relation: 
 

Let Φ denote the class of all continuous functions [ ]6
: 0,1 Rϕ +→ satisfying

( ),1,1, , ,1 0u v vϕ ≥ or ( ),1, ,1,1, 0u v vϕ ≥ or ( ), ,1,1, , 0u v v vϕ ≥  implies u v≥ . 

 
Using the above implicit relation K.P.R.Rao et.al. [4] proved the following 
theorem. 
 
Theorem 1.7: (K.P.R. Rao, K.R.K. Rao and V.C.C. Raju [4]) Let ��, �,∗	 be a 
fuzzy metric space and , :f g X X→ and  :F X → ( )XB be maps satisfying 

 

( ) ( ) ( )
( ) ( ) ( )

, , , , , , , ,
0

, , , , , , , ,

M M

M M M

Fx Gy kt M gx gy t fx Fx t

gy Gy t fx Gy t gy Fx t

δ δ
ϕ

δ δ δ
 

≥  
 

 

 
for all ( ),  and 0,1  where x y X k ϕ∈ ∈ ∈Φ , the pairs ( ) ( ),  and ,f F g G are 

compatible, 
 
(a) ( ),f F is a pair M-maps with respect to f and ( )Fx g X x X⊆ ∀ ∈  

Or 
(b) ( ),g G  is a pair M-maps with respect to g and ( )Gx f X x X⊆ ∀ ∈ . 

 
Then , , ,and f g F Ghave a unique common fixed point z X∈ such that 

{ } { } { }Fz Gz z fz gz= = = =  

 
Definition 1.8: (O. Hadzic[2]) Let ∗ be a �- norm. For any ∈ �0,1�, write 
∗< �"	 = 1 and∗= �"	 =∗ �∗< �"	, "	 =∗ �1, "	 = ".  
 
In general recursively define ∗14= �"	 =∗ �∗1 �"	, "	, for � = 0,1,2 … 
 
Suppose that given > in �0,1	 ∃ @ ∈ �0,1	  ∋ " > 1 − @ ⇒∗1 �"	 > 1 − >  ∀ � ∈
C 
 
Then the sequence {∗1} is said to be equicontinuous at 1.  
 
If {∗1} is equicontinuous at 1, then we say that ∗ is a Hadzic type �- norm. 
 
Define �DE1 by �DE1��, �	 = -,�{�, �} for �, � ∈ �0,1� . Then we observe that 
�DE1 is a continuous �- norm of Hadzic type. 

We make use of the following Lemma due to K.P.R. Sastry, G.A. Naidu and N. 
Umadevi [6]. See also [5]. 
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Lemma 1.9: Let��, �,∗) be a fuzzy metric space with continuous Hadzic type 
� −norm ∗. Assume that. Suppose0 < � < 1 and {"1} is a sequence in � such that 

��"1, "14=, �	 ≥ ��"1H=, "1, .

I
	 for � = 1,2, … … … 

 
Then  {"1}  is a Cauchy sequence in �. 
 

3 Main Result 
 
In this section, we first introduce the notion of boundedness in a fuzzy metric 
space, which is a particular case of F-boundedness. 
 
Definition 2.1: Let A be a nonempty subset of fuzzy metric space��, �,∗	. Then A 
is said to be bounded if  ,�J{���, �, �	/�, � ∈ L} > 0 ∀ � > 0. 
 
Clearly this notion is a special case of F-boundedness defined by George and 
Veeramani [1]. 
 
Thus every bounded set is F- bounded. 
 
However, a F-bounded set may not be bonded in view of the following example. 
 
Example 2.2 (i): Let H be the Heaviside function defined by 
 

  ( ) 1    if 0

0    if 0

t
H t

t

>
=  ≤

 

Let [ ]0,1X =  

 
Define ( ) ( ), , ,M x y t H t x y x y X= − − ∀ ∈ . Then X is F-bounded in��, �,∗	, ∗ 

being minimum t-norm. But X is not bounded since ( )inf , , 0M x y t = if 1t < . 

 

Example 2.2 (ii): Let [ ]0,1X = , ( ), , ,
t

M x y t x y X
t x y

= ∀ ∈
+ −

. Then it can be 

easily verified that X is bounded. 
We observe the following:  
 
Observation 2.3: Every finite set is bounded. 
Observation 2.4: If A and B are bounded, then L ∪ O is bounded. 
Observation 2.5: If A is bounded, O ⊆ L then B is bounded. 
Definition 2.6: Let BBBB ( )X  denote the set of all nonempty bounded subsets of the 

fuzzy metric space��, �,∗	. 
 
For ,A B∈     BBBB ( )X and for every 0t > , define 
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( ) ( ){ }, , inf , , / ,M A B t M a b t a A b Bδ = ∈ ∈  

 
We observe that  
 
Observation 2.7: If  L = {�}, then ( ) ( ), , , ,M MA B t a B tδ δ=  

Observation 2.8: If  L = {�}, O = {�}, then ( ) ( ), , , ,M A B t M a b tδ = . 

Observation 2.9: ( ) ( ), , , , 0M MA B t B A tδ δ= >  

Observation 2.10: ( ) { }, , 1 0 singletonM A B t t A Bδ = ∀ > ⇔ = =  

 
Proof: Let a A∈ and b B∈ . Then 
 
 ( ) ( ), , , , 1 0MM a b t A B t tδ≥ = ∀ >  

( ), , 1 0M a b t t

a b

⇒ = ∀ >
⇒ =

 

, ,  and 

                        

a A b c B a b a c

c b

∴ ∈ ∈ ⇒ = =
⇒ =

 

Thus, B is a singleton set. 
 
Similarly A is a singleton set and A B= . 
 
Conversely, { }singleton setA B a= =  

( )
( )

   , , 1 0

, , 1 0M

M a a t t

A B t tδ
⇒ = ∀ >

⇒ = ∀ >
 

 
Observation 2.11: ( ) ( ) ( ), , , , , , , ,M M MA B t s A C t C B s A B Cδ δ δ+ ≥ ∗ ∀ ∈BBBB ( )X and 

, 0s t > . 
 
Proof: Let a A∈ , b B∈ , and c C∈ . Then we have 
 

( ) ( ) ( )
( ) ( )

( ){ } ( ) ( )

, , , , , ,

, , , , 0

inf , , / , , , , , 0

M M

M M

M a b t s M a c t M c b s

A C t C B s

M a b t s a A b B A C t C B s

δ δ

δ δ

+ ≥ ∗

≥ ∗ >

+ ∈ ∈ ≥ ∗ >

 

( ) ( ) ( ), , , , , , , ,M M MA B t s A C t C B s A B Cδ δ δ+ ≥ ∗ ∀ ∈BBBB ( )X and , 0s t > . 

 
Observation 2.12: ( ), ,M A B tδ is an increasing function in t. 

 
Proof: In order to prove ( ), ,M A B tδ is increasing, we prove that 
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 ( ) ( ), , , ,M MA B t A B s t sδ δ≥ ∀ ≥  

 
We have 

 

( ) ( ) ( )
( ) ( )

( ){ } ( )
( ) ( )

, , , , , ,

, , , , ,

inf , , / , , ,

, , , ,

M

M

M

M M

M a b t M a b s A B s

M a b t A B s a A b B

M a b t a A b B A B s

A B t A B s t s

δ
δ

δ

δ δ

≥ ≥

⇒ ≥ ∀ ∈ ∈

⇒ ∈ ∈ ≥

⇒ ≥ ∀ ≥

 

 

( ), ,M A B tδ∴ is increasing in t. 

 
Definition 2.13: A sequence{ }nA in BBBB ( )X is said to converge to a X∈ if 

( ), , 1M nA a tδ → as 0n t→ ∞ ∀ >  

 
Lemma 2.14: If { }nA a→ and{ }nA b→ , thena b= . 

 
Proof: { }nA a→ and{ }nA b→  

( ), , 1M nA a tδ⇒ → and ( ), , 1M nA b tδ →  as 0n t→ ∞ ∀ > (2.14.1) 

 
We have, from observation (2.11) 
 

 ( ), , , , , ,
2 2M M n M n

t t
a b t a A A bδ δ δ   ≥ ∗   

   
  

  
∴From (2.14.1), ( ), , 1M a b tδ → as 0n t→ ∞ ∀ >  
 
∴ a b=  
 
Lemma 2.15: Let { }nA and{ }nS be sequences in BBBB ( )X converging toz X∈ . Then

( )lim , , 1M n nn
A S tδ

→∞
= . 

 
Proof: { }nA z→ and{ }nS z→

 
 

( ), , 1M nA z tδ⇒ →
 
and ( ), , 1M nS z tδ →  as 0n t→ ∞ ∀ > (2.15.1) 

 
We have, from observation (2.11) 
 

 ( ), , , , , ,
2 2M n n M n M n

t t
A S t A z z Sδ δ δ   ≥ ∗   
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∴From (2.15.1), ( ), , 1M n nA S tδ → as 0n t→ ∞ ∀ >  
 
∴ ( )lim , , 1M n nn

A S tδ
→∞

=  

 
Definition 2.16: Let ,A B∈     BBBB ( )X . We say that ( ), ,M A B tδ is attained if there 

exists ,a A b B∈ ∈  such that ( ) ( ), , , ,MM a b t A B tδ= . 

 
In example 2.2(ii), ( ), ,M X X tδ is attained (Take 0 and 1a b= = ). Also 

( ), ,M A A tδ is not attained where [0,1)A= . 

 
Lemma 2.17: Suppose 
 
(2.17.1) ,A B∈BBBB ( )X  

(2.17.2) ( ), ,M A B tδ is attained, i.e., there exist ,a A b B∈ ∈  depending on t such 

that  
 ( ) ( ), , , ,M A B t M a b tδ = . 

 
(2.17.3) ( ) ( ) ( )0,1 , , , ,M Mk A B kt A B tδ δ∃ ∈ ∋ ≥  

 
Then singleton setA B= = . 
 
Proof: From (2.17.3), we have 
 

( ) ( ) ( ), , , , , ,M M MA B kt A B t A B ktδ δ δ≥ ≥ (Since ( ), ,M A B tδ
 
is increasing in t, by 

(2.12)) 
 

( ) ( ), , , ,M MA B kt A B tδ δ⇒ =  

0λ= > , a constant, say 
 
Let ,a A b B∈ ∈  be such that ( ), ,M a b t λ=  

Let ,x A y B∈ ∈  be such that ( ) ( ), , , ,MM x y kt A B ktδ=  

Then, by (2.17.3), ( ) ( ), , , ,M x y kt M a b t=  

 
Now, 

 
( ) ( ) ( ) ( )
( ) ( )

, , , , , , , ,

, , , ,

MM a b t M x y kt A B kt M a b kt

M a b kt M a b t

δ= = ≤

⇒ ≥
 

 
Since M is increasing in t, so 
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( ) ( ) ( )
( ) ( )

( ) ( )

, , , , , ,

, , , ,

, , , ,M

M a b t M a b kt M a b t

M a b kt M a b t

M a b kt A B kt

λ
λ δ

≥ ≥

⇒ = =

∴ = =

 

 
In a similar way, we can prove that  
 

 ( ), , , ,
t

M a b M a b t
λ

  = 
 

 

Hence,  
 ( ) ( ), , , , 0M a b t M a b kt tλ = = ∀ >  

 
But from (v) of the definition of fuzzy metric space, ( ), , 1M a b t → as n → ∞  

1λ∴ =  

( ), , 1 0M A B t tδ λ∴ = = ∀ >  

{ }singletonA B∴ = = (from Observation 2.10) 

 
Before we state and prove our main result, first we introduce a subclass of BBBB ( )X

in analogy with compact subsets of a metric space. 
 
Definition 2.18: Let CCCC ( )X be a subclass of BBBB ( )X such that  

 
(2.18.1) { }x ∈     CCCC ( )X x X∀ ∈  

(2.18.2) ,A B∈     CCCC ( )X ( ), ,M A B tδ⇒ is attained 

 
Now, we state and prove our main result. This theorem may be regarded as an 
extension of Banach contraction principle to set valued maps on a fuzzy metric 
space. The proof we have given is a non-constructive proof. 
 
Theorem 2.19: Let ��, �,∗	  be any complete fuzzy metric space where ∗ is 
continuous t-norm of Hadzic type and BBBB ( )X be the set of all nonempty bounded 

subsets of X. Let CCCC ( )X be a subclass of BBBB ( )X such that 

 
(2.19.1) { }x ∈     CCCC ( )X x X∀ ∈  

(2.19.2) ,A B∈     CCCC ( )X ( ), ,M A B tδ⇒ is attained. 

 
Let :S X → CCCC ( )X such that 

 
(2.19.3) ( ) ( ) ( )0,1 , , , , ,M Mk Sx Sy kt x y t x y Xδ δ∃ ∈ ∋ ≥ ∀ ∈ , x y≠  
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Then, S has unique fixed point in X. 
 
Proof: Suppose S has no fixed point, that is, a Sa a X∉ ∀ ∈  (2.19.4) 

Let 0 ,x X∈ then 0 0x Sx∉ . 

 
Since 0 0x Sx∉ and { }0x ∈     CCCC ( )X (by 2.19.1)       

( ) ( )1 0 0 0 0 1, , , ,Mx Sx x Sx kt M x x ktδ∃ ∈ ∋ =     (by 2.19.2) 

 
Clearly 1 0x x≠        (by 2.19.4) 

∴ ( ) ( )0 0 0 1, , , ,M MSx Sx kt x x tδ δ≥      (by 2.19.3) 

 
Also, since 1 1x Sx∉ and { }1x ∈    CCCC ( )X (by 2.19.1) 

( ) ( )2 1 1 1 1 2, , , ,Mx Sx x Sx kt M x x ktδ∃ ∈ ∋ =     (by 2.19.2) 

 
Since 1 2x x≠         (by 2.19.4) 

( ) ( )1 2 1 2, , , ,M MSx Sx kt x x tδ δ≥     (by 2.19.3) 

 
Therefore  

( ) ( )
( ) ( )
( ) ( )
( ) ( )

1 2 1 2

1 1 2 1

0 1 1 0

0 1 1 2

, , , ,

, ,

, ,

, , , by(2.19.3)

M

M

M

M x x kt x x kt

x Sx kt x Sx

Sx Sx kt x Sx

M x x t x x

δ
δ
δ

=

≥ ∈

≥ ∈

≥ ≠

∵

∵

∵

 

 

( ) ( )1 2 0 1, , , ,M x x kt M x x t∴ ≥  

 
Similarly we can prove that, 3 2,x Sx∃ ∈ (hence 3 2x x≠ ) such that  

( ) ( )2 3 2 3, , , ,M x x kt M x x t≥  

 
In this way we can construct a sequence { }nx in X such that 1 1,n n n nx x x Sx+ +≠ ∈
and  

( ) ( )1 2 1, , , ,n n n nM x x kt M x x t+ + +≥ , for� = 1,2, …                 (2.19.5) 

 
From (2.19.5), we have 

( )1 2 1, , , ,n n n n

t
M x x t M x x

k+ + +
 ≥  
 

 

 
Now using Lemma 1.9, { }nx is a Cauchy sequence- 
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Since X is complete, { }nx x X→ ∈  

 
Let N be any positive integer.  
 
Now, suppose nx x n N≠ ∀ ≥  .      (2.19.6) 

 
Then 

( ) ( ) ( )
( ) ( )

1 1, , , ,

, , , by(2.19.3)

M n M n n n

n n

Sx x kt Sx Sx kt x Sx

M x x t x x

δ δ+ +≥ ∈

≥ ≠

∵

∵

  

 
Letting n → ∞ , we get 
  
 ( )1, , 1M nSx x ktδ + →       (2.19.7) 

 
Let y Sx∈ . Then, for  n N≥ , 
 

 
( ) ( ) ( )1 1, , , ,

1 as  (by 2.19.7)
M n M ny x kt Sx x kt y Sx

n

δ δ+ +≥ ∈
→ → ∞

∵

  

 

( )1

1

, , 1M n

n

y x kt

x y

δ +

+

∴ →
∴ →

 

x y∴ =  (by Lemma 2.14) 

( ) and x Sx x y y Sx∴ ∈ = ∈∵ , which is a contradiction to (2.19.4). 

 
This contradiction arose due to our supposition (2.19.6). Hence (2.19.6) is not 
valid. 
 
Hence nn N x x∃ ≥ ∋ = . 

Consequently there exists a strictly increasing sequence { } , 1,2,3,...
ll nn x x l∋ = =  

( ) ( ) ( )
( ) ( )
( ) ( )

1 1

1

1 1

1 1

1 1

, , , , ,

, ,

, , , by (2.19.3)

l l

l l l

l l

M M n n n n

M n n n n

n n n n

Sx x kt Sx x kt x x x x

Sx Sx kt x Sx

M x x t x x

δ δ

δ − −

− −

= = =

≥ ∈

≥ ≠

∵

∵

∵

 

( ) ( )
1 1, , , ,

lM n nSx x kt M x x tδ −∴ ≥  

 
On letting l → ∞  
 

 ( ) ( ) ( )
1 1 11, , , , 1

ln n n nM x x t M x x t x x− → = =∵  
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Therefore 
 ( ), , 1M Sx x ktδ =       (2.19.8) 

 
Let y Sx∈ . Then,  

 
( ) ( ) ( )

( )
, , , ,

1 by 2.19.8

M My x kt Sx x kt y Sxδ δ≥ ∈

=

∵

  

( ), , 1M y x ktδ⇒ =  
x y∴ =   

( )since  and x Sx x y y Sx∴ ∈ = ∈ , which is a contradiction to (2.19.4). 

Hence, a Sa a X∉ ∀ ∈ is false. 
Therefore there existsa X a Sa∈ ∋ ∈ . 
Hence, S has a fixed point in X. 
 
Uniqueness:  Suppose x, y is fixed points of S. 
Then x Sx∈ and y Sy∈  
 
Suppose, x y≠ . Then  
 

( ) ( ) ( ) ( )
( )

, , , , , , by 2.19.3

, , 0

M MM x y kt Sx Sy kt x y t

M x y t t

δ δ= ≥

= ∀ >
 

∴ ( ) ( ), , , , 0M x y kt M x y t t= ∀ >  

 
∴ By definition 1.3(v), x y= . 
 
Hence, fixed point of S is unique. 
 
Note: The proof we have given to Theorem 2.19 is non-constructive in nature, 
since we assumed (2.19.4) and arrived at a contradiction. 
 
Now, we give an example to support our result. 
 

Example 2.20: Let 
2 3

1 1 1
0,1, , , ,...

2 2 2
X  =  

 
. 

 

Define ( ), ,
t

M x y t
t x y

=
+ −

 and ∗  be the minimum t-norm. 

 
Define :S X →     CCCC ( )X  by 
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1 2

1 1 1
, , 0,1,2,...

2 2 2n n n
S n+ +
   = =  
   

and 0 0S =  

Then it can be easily verified that (2.19.3) holds, for 
3

4
k = . 

Further, 0is the unique fixed point of S. 
 
Observation 2.21: It may be observed that in the above example, (2.19.3) does 
not hold if x y= . 
 
Acknowledgment: 
 
The fourth author (R.Venkata Bhaskar) is grateful to 
 
1. The authorities of Raghu Engineering College for granting necessary 

permissions to carry on this research and,  
2. GITAM University for providing the necessary facilities to carry on this 

research.  
 

References 
 
[1] A. George and P. Veeramani, On some results in fuzzy metric spaces, 

Fuzzy Sets and System, 64(1994), 395-399. 
[2] O. Hadzic, A generalization of the contraction principle in probabilistic 

metric spaces, Univ. u. Nvom Sadu Zb. Road, Prirod-Mat. Fak., 10(1980), 
13-21. 

[3] I. Kramosil and J. Michelek, Fuzzy metric and statistical metric, 
Kybernetica, 11(1975), 336-344. 

[4] K.P.R. Rao, K.R.K. Rao and V.C.C. Raju, Common fixed point theorems 
in fuzzy metric space for single and set-valued M-Maps, International 
Journal of Mathematical Archive, 2(4) (2011), 503-511. 

[5] K.P.R. Sastry, G.V.R. Babu and M.L. Sandhya, Weak contractions in 
Menger spaces-II, Journal of Adv. Research in Pure Mathematics, 2(1) 
(2010), 65-73. 

[6] K.P.R. Sastry, G.A. Naidu and N. Umadevi, A common fixed point 
theorem for four self maps on a fuzzy metric space with Hadzic type �- 
norm, International Journal of Mathematical Archive, 4(1) (2013), 266-
270. 

[7] B. Schweizer and A. Sklar, Probabilistic metric spaces, Pacific J. Math., 
10(1960), 331-334. 

[8] L.A. Zadeh, Fuzzy sets, Inform and Control, 189(1965), 338-353. 


