

Gen. Math. Notes, Vol. 17, No. 1, July, 2013, pp.45-62 ISSN 2219-7184; Copyright ©ICSRS Publication, 2013 www.i-csrs.org Available free online at http://www.geman.in

## **Bc-Separation Axioms In Topological Spaces**

### Hariwan Z. Ibrahim

Department of Mathematics, Faculty of Science University of Zakho, Kurdistan-Region, Iraq E-mail: hariwan\_math@yahoo.com

(Received: 3-4-13 / Accepted: 13-5-13)

#### Abstract

In this paper, we introduce and investigate some weak separation axioms by using the notions of Bc-open sets and the Bc-closure operator. **Keywords:** Bc-open, b-open.

### 1 Introduction

Throughout this paper,  $(X, \tau)$  and  $(Y, \sigma)$  stand for topological spaces with no separation axioms assumed unless otherwise stated. For a subset A of X, the closure of A and the interior of A will be denoted by Cl(A) and Int(A), respectively.

**Definition 1.1** [1] A subset A of a space X is said to be b-open if  $A \subseteq Int(Cl(A)) \cup Cl(Int(A))$ . The family of all b-open subsets of a topological space  $(X, \tau)$  is denoted by  $BO(X, \tau)$  or (Briefly. BO(X)).

**Definition 1.2** [2] A subset A of a space X is called Bc-open if for each  $x \in A \subseteq BO(X)$ , there exists a closed set F such that  $x \in F \subseteq A$ . The family of all Bc-open subsets of a topological space  $(X, \tau)$  is denoted by  $BcO(X, \tau)$  or (Briefly. BcO(X)).

**Definition 1.3** [2] For any subset A in the space X, the Bc-closure of A, denoted by BcCl(A), is defined by the intersection of all Bc-closed sets containing A.

### 2 Bc-g.Closed Sets

In this section, we define and study some properties of Bc-g.closed sets.

**Definition 2.1** A subset A of X is said to be a Bc-generalized closed (briefly, Bc-g.closed) set if  $BcCl(A) \subseteq U$  whenever  $A \subseteq U$  and U is a Bc-open set in  $(X, \tau)$ . A subset A of X is Bc-g.open if its complement  $X \setminus A$  is Bc-g.closed in X.

It is clear that every Bc-closed set is Bc-g.closed. But the converse is not true in general as it is shown in the following example.

**Example 2.2** Consider  $X = \{a, b, c\}$  with the topology  $\tau = \{\phi, \{a\}, \{b\}, \{a, c\}, X\}$ . Now, if we let  $A = \{a\}$ , since the only Bc-open supersets of A are  $\{a, c\}$  and X, then A is Bc-g.closed. But it is easy to see that A is not Bc-closed.

**Proposition 2.3** If A is Bc-open and Bc-g.closed then A is Bc-closed.

Proof. Suppose that A is Bc-open and Bc-g.closed. Since A is Bc-open and  $A \subseteq A$ , we have  $BcCl(A) \subseteq A$ , also  $A \subseteq BcCl(A)$ , therefore BcCl(A) = A. That is A is Bc-closed.

**Proposition 2.4** The intersection of a Bc-g.closed set and a Bc-closed set is always Bc-g.closed.

Proof. Let A be Bc-g.closed and F be Bc-closed. Assume that U is Bc-open set such that  $A \cap F \subseteq U$ , set  $G = X \setminus F$ . Then  $A \subseteq U \cup G$ , since G is Bc-open, then  $U \cup G$  is Bc-open and since A is Bc-g.closed, then  $BcCl(A) \subseteq U \cup G$ . Now by Theorem 3.17 (10) [2],  $BcCl(A \cap F) \subseteq BcCl(A) \cap BcCl(F) = BcCl(A) \cap F \subseteq (U \cup G) \cap F = (U \cap F) \cup (G \cap F) = (U \cap F) \cup \phi \subseteq U$ .

**Proposition 2.5** If a subset A of X is Bc-g.closed and  $A \subseteq B \subseteq BcCl(A)$ , then B is a Bc-g.closed set in X.

Proof. Let A be a Bc-g.closed set such that  $A \subseteq B \subseteq BcCl(A)$ . Let U be a Bc-open set of X such that  $B \subseteq U$ . Since A is Bc-g.closed, we have  $BcCl(A) \subseteq U$ . Now  $BcCl(A) \subseteq BcCl(B) \subseteq BcCl(A) = BcCl(A) \subseteq U$ . That is  $BcCl(B) \subseteq U$ , where U is Bc-open. Therefore B is a Bc-g.closed set in X.

**Proposition 2.6** For each  $x \in X$ ,  $\{x\}$  is Bc-closed or  $X \setminus \{x\}$  is Bcg.closed in  $(X, \tau)$ . Proof. Suppose that  $\{x\}$  is not Bc-closed, then  $X \setminus \{x\}$  is not Bc-open. Let U be any Bc-open set such that  $X \setminus \{x\} \subseteq U$ , implies U = X. Therefore  $BcCl(X \setminus \{x\}) \subseteq U$ . Hence  $X \setminus \{x\}$  is Bc-g.closed.

**Proposition 2.7** A subset A of X is Bc-g.closed if and only if  $BcCl(\{x\}) \cap A \neq \phi$ , holds for every  $x \in BcCl(A)$ .

Proof. Let U be a Bc-open set such that  $A \subseteq U$  and let  $x \in BcCl(A)$ . By assumption, there exists a point  $z \in BcCl(\{x\})$  and  $z \in A \subseteq U$ . Then,  $U \cap \{x\} \neq \phi$ , hence  $x \in U$ , this implies  $BcCl(A) \subseteq U$ . Therefore A is Bc-g.closed.

**Conversely**, suppose that  $x \in BcCl(A)$  such that  $BcCl(\{x\}) \cap A = \phi$ . Since,  $BcCl(\{x\})$  is Bc-closed. Therefore,  $X \setminus BcCl(\{x\})$  is a Bc-open set in X. Since  $A \subseteq X \setminus (BcCl(\{x\}))$  and A is Bc-g.closed implies that  $BcCl(A) \subseteq X \setminus BcCl(\{x\})$  holds, and hence  $x \notin BcCl(A)$ . This is a contradiction. Therefore  $BcCl(\{x\}) \cap A \neq \phi$ .

**Proposition 2.8** A set A of a space X is Bc-g.closed if and only if  $BcCl(A) \setminus A$  does not contain any non-empty Bc-closed set.

Proof. Necessity. Suppose that A is a Bc-g.closed set in X. We prove the result by contradiction. Let F be a Bc-closed set such that  $F \subseteq BcCl(A) \setminus A$  and  $F \neq \phi$ . Then  $F \subseteq X \setminus A$  which implies  $A \subseteq X \setminus F$ . Since A is Bc-g.closed and  $X \setminus F$  is Bc-open, therefore  $BcCl(A) \subseteq X \setminus F$ , that is  $F \subseteq X \setminus BcCl(A)$ . Hence  $F \subseteq BcCl(A) \cap (X \setminus BcCl(A)) = \phi$ . This shows that,  $F = \phi$  which is a contradiction. Hence  $BcCl(A) \setminus A$  does not contain any non-empty Bc-closed set in X.

**Sufficiency.** Let  $A \subseteq U$ , where U is Bc-open in X. If BcCl(A) is not contained in U, then  $BcCl(A) \cap X \setminus U \neq \phi$ . Now, since  $BcCl(A) \cap X \setminus U \subseteq BcCl(A) \setminus A$  and  $BcCl(A) \cap X \setminus U$  is a non-empty Bc-closed set, then we obtain a contradication and therefore A is Bc-g.closed.

**Proposition 2.9** If A is a Bc-g.closed set of a space X, then the following are equivalent:

- 1. A is Bc-closed.
- 2.  $BcCl(A) \setminus A$  is Bc-closed.

Proof. (1)  $\Rightarrow$  (2). If A is a Bc-g.closed set which is also Bc-closed, then,  $BcCl(A) \setminus A = \phi$ , which is Bc-closed.

 $(2) \Rightarrow (1)$ . Let  $BcCl(A) \setminus A$  be a Bc-closed set and A be Bc-g.closed. Then by Proposition 2.8,  $BcCl(A) \setminus A$  does not contain any non-empty Bc-closed subset. Since  $BcCl(A) \setminus A$  is Bc-closed and  $BcCl(A) \setminus A = \phi$ , this shows that A is Bc-closed. **Proposition 2.10** For a space  $(X, \tau)$ , the following are equivalent:

- 1. Every subset of X is Bc-g.closed.
- 2.  $BcO(X, \tau) = BcC(X, \tau)$ .

Proof. (1)  $\Rightarrow$  (2). Let  $U \in BcO(X, \tau)$ . Then by hypothesis, U is Bc-g.closed which implies that  $BcCl(U) \subseteq U$ , so, BcCl(U) = U, therefore  $U \in BcC(X, \tau)$ . Also let  $V \in BcC(X, \tau)$ . Then  $X \setminus V \in BcO(X, \tau)$ , hence by hypothesis  $X \setminus V$ is Bc-g.closed and then  $X \setminus V \in BcC(X, \tau)$ , thus  $V \in BcO(X, \tau)$  according to the above we have  $BcO(X, \tau) = BcC(X, \tau)$ .

 $(2) \Rightarrow (1)$ . If A is a subset of a space X such that  $A \subseteq U$  where  $U \in BcO(X, \tau)$ , then  $U \in BcC(X, \tau)$  and therefore  $BcCl(U) \subseteq U$  which shows that A is Bc-g.closed.

### **3 Bc-** $T_k$ (k = 0, 1, 2)

In this section, some new types of separation axioms are defined and studied in topological spaces namely, Bc- $T_k$  for  $k = 0, \frac{1}{2}, 1, 2$  and Bc- $D_k$  for k = 0, 1, 2, and also some properties of these spaces are explained.

The following definitions are introduced via Bc-open sets.

**Definition 3.1** A topological space  $(X, \tau)$  is said to be:

- 1. Bc-T<sub>0</sub> if for each pair of distinct points x, y in X, there exists a Bc-open set U such that either  $x \in U$  and  $y \notin U$  or  $x \notin U$  and  $y \in U$ .
- 2. Bc-T<sub>1</sub> if for each pair of distinct points x, y in X, there exist two Bc-open sets U and V such that  $x \in U$  but  $y \notin U$  and  $y \in V$  but  $x \notin V$ .
- 3.  $Bc-T_2$  if for each distinct points x, y in X, there exist two disjoint Bcopen sets U and V containing x and y respectively.
- 4. Bc- $T_{\frac{1}{2}}$  if every Bc-g.closed set is Bc-closed.

**Proposition 3.2** A topological space  $(X, \tau)$  is  $Bc-T_0$  if and only if for each pair of distinct points x, y of X,  $BcCl(\{x\}) \neq BcCl(\{y\})$ .

Proof. Necessity. Let  $(X, \tau)$  be a Bc- $T_0$  space and x, y be any two distinct points of X. There exists a Bc-open set U containing x or y, say x but not y. Then  $X \setminus U$  is a Bc-closed set which does not contain x but contains y. Since  $BcCl(\{y\})$  is the smallest Bc-closed set containing y,  $BcCl(\{y\}) \subseteq X \setminus U$  and therefore  $x \notin BcCl(\{y\})$ . Consequently  $BcCl(\{x\}) \neq BcCl(\{y\})$ .

Sufficiency. Suppose that  $x, y \in X, x \neq y$  and  $BcCl(\{x\}) \neq BcCl(\{y\})$ . Let

z be a point of X such that  $z \in BcCl(\{x\})$  but  $z \notin BcCl(\{y\})$ . We claim that  $x \notin BcCl(\{y\})$ . For, if  $x \in BcCl(\{y\})$  then  $BcCl(\{x\}) \subseteq BcCl(\{y\})$ . This contradicts the fact that  $z \notin BcCl(\{y\})$ . Consequently x belongs to the Bc-open set  $X \setminus BcCl(\{y\})$  to which y does not belong.

**Proposition 3.3** The following statements are equivalent for a topological space  $(X, \tau)$ :

- 1.  $(X, \tau)$  is  $Bc-T_{\frac{1}{2}}$ .
- 2. Each singleton  $\{x\}$  of X is either Bc-closed or Bc-open.

Proof. (1)  $\Rightarrow$  (2). Suppose  $\{x\}$  is not Bc-closed. Then by Proposition 2.6,  $X \setminus \{x\}$  is Bc-g.closed. Now since  $(X, \tau)$  is Bc- $T_{\frac{1}{2}}$ ,  $X \setminus \{x\}$  is Bc-closed, that is  $\{x\}$  is Bc-open.

 $(2) \Rightarrow (1)$ . Let A be any Bc-g.closed set in  $(X, \tau)$  and  $x \in BcCl(A)$ . By (2), we have  $\{x\}$  is Bc-closed or Bc-open. If  $\{x\}$  is Bc-closed then  $x \notin A$  will imply  $x \in BcCl(A) \setminus A$ , which is not possible by Proposition 2.8. Hence  $x \in A$ . Therefore, BcCl(A) = A, that is A is Bc-closed. So,  $(X, \tau)$  is Bc- $T_{\frac{1}{2}}$ . On the other hand, if  $\{x\}$  is Bc-open then as  $x \in BcCl(A), \{x\} \cap A \neq \phi$ . Hence  $x \in A$ . So A is Bc-closed.

**Proposition 3.4** A topological space  $(X, \tau)$  is  $Bc-T_1$  if and only if the singletons are Bc-closed sets.

Proof. Let  $(X, \tau)$  be Bc- $T_1$  and x any point of X. Suppose  $y \in X \setminus \{x\}$ , then  $x \neq y$  and so there exists a Bc-open set U such that  $y \in U$  but  $x \notin U$ . Consequently  $y \in U \subseteq X \setminus \{x\}$ , that is  $X \setminus \{x\} = \cup \{U : y \in X \setminus \{x\}\}$  which is Bc-open.

**Conversely,** suppose  $\{p\}$  is Bc-closed for every  $p \in X$ . Let  $x, y \in X$  with  $x \neq y$ . Now  $x \neq y$  implies  $y \in X \setminus \{x\}$ . Hence  $X \setminus \{x\}$  is a Bc-open set contains y but not x. Similarly  $X \setminus \{y\}$  is a Bc-open set contains x but not y. Accordingly X is a Bc- $T_1$  space.

**Proposition 3.5** The following statements are equivalent for a topological space  $(X, \tau)$ :

- 1. X is  $Bc-T_2$ .
- 2. Let  $x \in X$ . For each  $y \neq x$ , there exists a Bc-open set U containing x such that  $y \notin BcCl(U)$ .
- 3. For each  $x \in X$ ,  $\cap \{BcCl(U) : U \in BcO(X) \text{ and } x \in U\} = \{x\}.$

Proof. (1)  $\Rightarrow$  (2). Since X is Bc- $T_2$ , there exist disjoint Bc-open sets U and V containing x and y respectively. So,  $U \subseteq X \setminus V$ . Therefore,  $BcCl(U) \subseteq X \setminus V$ . So  $y \notin BcCl(U)$ .

 $(2) \Rightarrow (3)$ . If possible for some  $y \neq x$ , we have  $y \in BcCl(U)$  for every Bc-open set U containing x, which then contradicts (2).

(3)  $\Rightarrow$  (1). Let  $x, y \in X$  and  $x \neq y$ . Then there exists a Bc-open set U containing x such that  $y \notin BcCl(U)$ . Let  $V = X \setminus BcCl(U)$ , then  $y \in V$  and  $x \in U$  and also  $U \cap V = \phi$ .

**Proposition 3.6** Let  $(X, \tau)$  be a topological space, then the following statements are hold:

- 1. Every  $Bc-T_2$  space is  $Bc-T_1$ .
- 2. Every Bc- $T_1$  space is Bc- $T_{\frac{1}{2}}$ .
- 3. Every  $Bc-T_{\frac{1}{2}}$  space is  $Bc-T_0$ .

Proof.

- 1. The proof is straightforward from the definitions.
- 2. The proof is obvious by Proposition 3.4.
- 3. Let x and y be any two distinct points of X. By Proposition 3.3, the singleton set  $\{x\}$  is Bc-closed or Bc-open.
  - (a) If  $\{x\}$  is Bc-closed, then  $X \setminus \{x\}$  is Bc-open. So  $y \in X \setminus \{x\}$  and  $x \notin X \setminus \{x\}$ . Therefore, we have X is Bc-T<sub>0</sub>.
  - (b) If  $\{x\}$  is Bc-open. Then  $x \in \{x\}$  and  $y \notin \{x\}$ . Therefore, we have X is Bc- $T_0$ .

**Definition 3.7** A subset A of a topological space X is called a BcDifference set (briefly, BcD-set) if there are  $U, V \in BcO(X, \tau)$  such that  $U \neq X$  and  $A = U \setminus V$ .

It is true that every Bc-open set U different from X is a BcD-set if A = Uand  $V = \phi$ . So, we can observe the following.

**Remark 3.8** Every proper Bc-open set is a BcD-set.

Now we define another set of separation axioms called Bc- $D_k$ , for k = 0, 1, 2, by using the *BcD*-sets.

**Definition 3.9** A topological space  $(X, \tau)$  is said to be:

- Bc-D<sub>0</sub> if for any pair of distinct points x and y of X there exists a BcDset of X containing x but not y or a BcD-set of X containing y but not x.
- 2. Bc-D<sub>1</sub> if for any pair of distinct points x and y of X there exists a BcDset of X containing x but not y and a BcD-set of X containing y but not x.
- 3. Bc-D<sub>2</sub> if for any pair of distinct points x and y of X there exist disjoint BcD-set G and E of X containing x and y, respectively.

**Remark 3.10** For a topological space  $(X, \tau)$ , the following properties hold:

- 1. If  $(X, \tau)$  is Bc-T<sub>k</sub>, then it is Bc-D<sub>k</sub>, for k = 0, 1, 2.
- 2. If  $(X, \tau)$  is  $Bc-D_k$ , then it is  $Bc-D_{k-1}$ , for k = 1, 2.

Proof. Obvious.

**Proposition 3.11** A space X is  $Bc-D_0$  if and only if it is  $Bc-T_0$ .

Proof. Suppose that X is Bc- $D_0$ . Then for each distinct pair  $x, y \in X$ , at least one of x, y, say x, belongs to a BcD-set G but  $y \notin G$ . Let  $G = U_1 \setminus U_2$  where  $U_1 \neq X$  and  $U_1, U_2 \in BcO(X, \tau)$ . Then  $x \in U_1$ , and for  $y \notin G$  we have two cases: (a)  $y \notin U_1$ , (b)  $y \in U_1$  and  $y \in U_2$ . In case (a),  $x \in U_1$  but  $y \notin U_1$ .

In case (b),  $y \in U_2$  but  $x \notin U_2$ .

Thus in both the cases, we obtain that X is  $Bc-T_0$ .

**Conversely**, if X is  $Bc-T_0$ , by Remark 3.10 (1), X is  $Bc-D_0$ .

**Proposition 3.12** A space X is  $Bc-D_1$  if and only if it is  $Bc-D_2$ .

Proof. Necessity. Let  $x, y \in X$ ,  $x \neq y$ . Then there exist BcD-sets  $G_1, G_2$ in X such that  $x \in G_1$ ,  $y \notin G_1$  and  $y \in G_2$ ,  $x \notin G_2$ . Let  $G_1 = U_1 \setminus U_2$  and  $G_2 = U_3 \setminus U_4$ , where  $U_1, U_2, U_3$  and  $U_4$  are Bc-open sets in X. From  $x \notin G_2$ , it follows that either  $x \notin U_3$  or  $x \in U_3$  and  $x \in U_4$ . We discuss the two cases separately.

(i)  $x \notin U_3$ . By  $y \notin G_1$  we have two subcases:

(a)  $y \notin U_1$ . Since  $x \in U_1 \setminus U_2$ , it follows that  $x \in U_1 \setminus (U_2 \cup U_3)$ , and since  $y \in U_3 \setminus U_4$  we have  $y \in U_3 \setminus (U_1 \cup U_4)$ . Therefore  $(U_1 \setminus (U_2 \cup U_3)) \cap (U_3 \setminus (U_1 \cup U_4)) = \phi$ . (b)  $y \in U_1$  and  $y \in U_2$ . We have  $x \in U_1 \setminus U_2$ , and  $y \in U_2$ . Therefore  $(U_1 \setminus U_2) \cap U_2 = \phi$ .

(*ii*)  $x \in U_3$  and  $x \in U_4$ . We have  $y \in U_3 \setminus U_4$  and  $x \in U_4$ . Hence  $(U_3 \setminus U_4) \cap U_4 = \phi$ . Therefore X is Bc-D<sub>2</sub>.

sufficiency. Follows from Remark 3.10 (2).

**Corollary 3.13** If  $(X, \tau)$  is  $Bc-D_1$ , then it is  $Bc-T_0$ .

Proof. Follows from Remark 3.10 (2) and Proposition 3.11.

**Definition 3.14** A point  $x \in X$  which has only X as the Bc-neighbourhood is called a Bc-neat point.

**Proposition 3.15** For a  $Bc-T_0$  topological space  $(X, \tau)$  the following are equivalent:

- 1.  $(X, \tau)$  is Bc-D<sub>1</sub>.
- 2.  $(X, \tau)$  has no Bc-neat point.

Proof. (1)  $\Rightarrow$  (2). Since  $(X, \tau)$  is Bc- $D_1$ , then each point x of X is contained in a BcD-set  $A = U \setminus V$  and thus in U. By definition  $U \neq X$ . This implies that x is not a Bc-neat point.

 $(2) \Rightarrow (1)$ . If X is Bc- $T_0$ , then for each distinct pair of points  $x, y \in X$ , at least one of them, x (say) has a Bc-neighbourhood U containing x and not y. Thus U which is different from X is a BcD-set. If X has no Bc-neat point, then y is not a Bc-neat point. This means that there exists a Bc-neighbourhood V of y such that  $V \neq X$ . Thus  $y \in V \setminus U$  but not x and  $V \setminus U$  is a BcD-set. Hence X is Bc- $D_1$ .

**Corollary 3.16** A  $Bc-T_0$  space X is not  $Bc-D_1$  if and only if there is a unique Bc-neat point in X.

Proof. We only prove the uniqueness of the Bc-neat point. If x and y are two Bc-neat points in X, then since X is Bc- $T_0$ , at least one of x and y, say x, has a Bc-neighbourhood U containing x but not y. Hence  $U \neq X$ . Therefore x is not a Bc-neat point which is a contradiction.

**Definition 3.17** A topological space  $(X, \tau)$ , is said to be Bc-symmetric if for x and y in X,  $x \in BcCl(\{y\})$  implies  $y \in BcCl(\{x\})$ .

**Proposition 3.18** If  $(X, \tau)$  is a topological space, then the following are equivalent:

- 1.  $(X, \tau)$  is a Bc-symmetric space.
- 2.  $\{x\}$  is Bc-g.closed, for each  $x \in X$ .

**Bc-Separation Axioms In Topological Spaces** 

Proof. (1)  $\Rightarrow$  (2). Assume that  $\{x\} \subseteq U \in BcO(X)$ , but  $BcCl(\{x\}) \not\subseteq U$ . Then  $BcCl(\{x\}) \cap X \setminus U \neq \phi$ . Now, we take  $y \in BcCl(\{x\}) \cap X \setminus U$ , then by hypothesis  $x \in BcCl(\{y\}) \subseteq X \setminus U$  and  $x \notin U$ , which is a contradiction. Therefore  $\{x\}$  is Bc-g.closed, for each  $x \in X$ . (2)  $\Rightarrow$  (1). Assume that  $x \in BcCl(\{y\})$ , but  $y \notin BcCl(\{x\})$ . Then  $\{y\} \subseteq$  $X \setminus BcCl(\{x\})$  and hence  $BcCl(\{y\}) \subseteq X \setminus BcCl(\{x\})$ . Therefore  $x \in X \setminus$  $BcCl(\{x\})$ , which is a contradiction and hence  $y \in BcCl(\{x\})$ .

**Corollary 3.19** If a topological space  $(X, \tau)$  is a Bc-T<sub>1</sub> space, then it is Bc-symmetric.

Proof. In a Bc- $T_1$  space, every singleton is Bc-closed (Proposition 3.4) and therefore is Bc-g.closed. Then by Proposition 3.18,  $(X, \tau)$  is Bc-symmetric.

**Corollary 3.20** For a topological space  $(X, \tau)$ , the following statements are equivalent:

- 1.  $(X, \tau)$  is Bc-symmetric and Bc-T<sub>0</sub>.
- 2.  $(X, \tau)$  is Bc-T<sub>1</sub>.

Proof. By Corollary 3.19 and Proposition 3.6, it suffices to prove only  $(1) \Rightarrow (2)$ .

Let  $x \neq y$  and as  $(X, \tau)$  is Bc- $T_0$ , we may assume that  $x \in U \subseteq X \setminus \{y\}$  for some  $U \in BcO(X)$ . Then  $x \notin BcCl(\{y\})$  and hence  $y \notin BcCl(\{x\})$ . There exists a Bc-open set V such that  $y \in V \subseteq X \setminus \{x\}$  and thus  $(X, \tau)$  is a Bc- $T_1$ space.

**Proposition 3.21** If  $(X, \tau)$  is a Bc-symmetric space, then the following statements are equivalent:

- 1.  $(X, \tau)$  is a Bc-T<sub>0</sub> space.
- 2.  $(X, \tau)$  is a Bc- $T_{\frac{1}{2}}$  space.
- 3.  $(X, \tau)$  is a Bc-T<sub>1</sub> space.

Proof. (1)  $\Leftrightarrow$  (3). Obvious from Corollary 3.20. (3)  $\Rightarrow$  (2) and (2)  $\Rightarrow$  (1). Directly from Proposition 3.6.

**Corollary 3.22** For a Bc-symmetric space  $(X, \tau)$ , the following are equivalent:

- 1.  $(X, \tau)$  is  $Bc-T_0$ .
- 2.  $(X, \tau)$  is Bc-D<sub>1</sub>.

3.  $(X, \tau)$  is Bc-T<sub>1</sub>.

Proof. (1)  $\Rightarrow$  (3). Follows from Corollary 3.20. (3)  $\Rightarrow$  (2)  $\Rightarrow$  (1). Follows from Remark 3.10 and Corollary 3.13.

**Definition 3.23** Let A be a subset of a topological space  $(X, \tau)$ . The Bckernel of A, denoted by Bcker(A) is defined to be the set

$$Bcker(A) = \cap \{ U \in BcO(X) \colon A \subseteq U \}.$$

**Proposition 3.24** Let  $(X, \tau)$  be a topological space and  $x \in X$ . Then  $y \in Bcker(\{x\})$  if and only if  $x \in BcCl(\{y\})$ .

Proof. Suppose that  $y \notin Bcker(\{x\})$ . Then there exists a Bc-open set V containing x such that  $y \notin V$ . Therefore, we have  $x \notin BcCl(\{y\})$ . The proof of the converse case can be done similarly.

**Proposition 3.25** Let  $(X, \tau)$  be a topological space and A be a subset of X. Then,  $Bcker(A) = \{x \in X : BcCl(\{x\}) \cap A \neq \phi\}.$ 

Proof. Let  $x \in Bcker(A)$  and suppose  $BcCl(\{x\}) \cap A = \phi$ . Hence  $x \notin X \setminus BcCl(\{x\})$  which is a Bc-open set containing A. This is impossible, since  $x \in Bcker(A)$ . Consequently,  $BcCl(\{x\}) \cap A \neq \phi$ . Next, let  $x \in X$  such that  $BcCl(\{x\}) \cap A \neq \phi$  and suppose that  $x \notin Bcker(A)$ . Then, there exists a Bc-open set V containing A and  $x \notin V$ . Let  $y \in BcCl(\{x\}) \cap A$ . Hence, V is a Bc-neighbourhood of y which does not contain x. By this contradiction  $x \in Bcker(A)$  and the claim.

**Proposition 3.26** The following properties hold for the subsets A, B of a topological space  $(X, \tau)$ :

- 1.  $A \subseteq Bcker(A)$ .
- 2.  $A \subseteq B$  implies that  $Bcker(A) \subseteq Bcker(B)$ .
- 3. If A is Bc-open in  $(X, \tau)$ , then A = Bcker(A).
- 4. Bcker(Bcker(A)) = Bcker(A).

Proof. (1), (2) and (3) are immediate consequences of Definition 3.23. To prove (4), first observe that by (1) and (2), we have  $Bcker(A) \subseteq Bcker(Bcker(A))$ . If  $x \notin Bcker(A)$ , then there exists  $U \in BcO(X, \tau)$  such that  $A \subseteq U$  and  $x \notin U$ . Hence  $Bcker(A) \subseteq U$ , and so we have  $x \notin Bcker(Bcker(A))$ . Thus Bcker(Bcker(A)) = Bcker(A). **Bc-Separation Axioms In Topological Spaces** 

**Proposition 3.27** If a singleton  $\{x\}$  is a BcD-set of  $(X, \tau)$ , then Bcker $(\{x\}) \neq X$ .

Proof. Since  $\{x\}$  is a *BcD*-set of  $(X, \tau)$ , then there exist two subsets  $U_1, U_2 \in BcO(X, \tau)$  such that  $\{x\} = U_1 \setminus U_2, \{x\} \subseteq U_1$  and  $U_1 \neq X$ . Thus, we have that  $Bcker(\{x\}) \subseteq U_1 \neq X$  and so  $Bcker(\{x\}) \neq X$ .

**Proposition 3.28** For a  $Bc-T_{\frac{1}{2}}$  topological space  $(X, \tau)$  with at least two points,  $(X, \tau)$  is a  $Bc-D_1$  space if and only if  $Bcker(\{x\}) \neq X$  holds for every point  $x \in X$ .

Proof. Necessity. Let  $x \in X$ . For a point  $y \neq x$ , there exists a BcD-set U such that  $x \in U$  and  $y \notin U$ . Say  $U = U_1 \setminus U_2$ , where  $U_i \in BcO(X, \tau)$  for each  $i \in \{1, 2\}$  and  $U_1 \neq X$ . Thus, for the point x, we have a Bc-open set  $U_1$  such that  $\{x\} \subseteq U_1$  and  $U_1 \neq X$ . Hence,  $Bcker(\{x\}) \neq X$ .

**Sufficiency.** Let x and y be a pair of distinct points of X. We prove that there exist BcD-sets A and B containing x and y, respectively, such that  $y \notin A$  and  $x \notin B$ . Using Proposition 3.3, we can take the subsets A and B for the following four cases for two points x and y.

Case1.  $\{x\}$  is Bc-open and  $\{y\}$  is Bc-closed in  $(X, \tau)$ . Since  $Bcker(\{y\}) \neq X$ , then there exists a Bc-open set V such that  $y \in V$  and  $V \neq X$ . Put  $A = \{x\}$ and  $B = \{y\}$ . Since  $B = V \setminus (X \setminus \{y\})$ , then V is a Bc-open set with  $V \neq X$ and  $X \setminus \{y\}$  is Bc-open, and B is a required BcD-set containing y such that  $x \notin B$ . Obviously, A is a required BcD-set containing x such that  $y \notin A$ .

Case 2.  $\{x\}$  is Bc-closed and  $\{y\}$  is Bc-open in  $(X, \tau)$ . The proof is similar to Case 1.

Case 3.  $\{x\}$  and  $\{y\}$  are Bc-open in  $(X, \tau)$ . Put  $A = \{x\}$  and  $B = \{y\}$ .

Case 4.  $\{x\}$  and  $\{y\}$  are Bc-closed in  $(X, \tau)$ . Put  $A = X \setminus \{y\}$  and  $B = X \setminus \{x\}$ . For each case of the above, the subsets A and B are the required *BcD*-sets. Therefore,  $(X, \tau)$  is a Bc- $D_1$  space.

**Definition 3.29** A function  $f : X \to Y$  is called a Bc-open function if the image of every Bc-open set in X is a Bc-open set in Y.

**Proposition 3.30** Suppose that  $f : X \to Y$  is Bc-open and surjective. If X is Bc-T<sub>k</sub>, then Y is Bc-T<sub>k</sub>, for k = 0, 1, 2.

Proof. We prove only the case for  $Bc-T_1$  space the others are similarly.

Let X be a Bc- $T_1$  space and let  $y_1, y_2 \in Y$  with  $y_1 \neq y_2$ . Since f is surjective, so there exist distinct points  $x_1, x_2$  of X such that  $f(x_1) = y_1$  and  $f(x_2) = y_2$ . Since X is a Bc- $T_1$  space, there exist Bc-open sets G and H such that  $x_1 \in G$ but  $x_2 \notin G$  and  $x_2 \in H$  but  $x_1 \notin H$ . Since f is a Bc-open function, f(G) and f(H) are Bc-open sets of Y such that  $y_1 = f(x_1) \in f(G)$  but  $y_2 = f(x_2) \notin$ f(G), and  $y_2 = f(x_2) \in f(H)$  but  $y_1 = f(x_1) \notin f(H)$ . Hence Y is a Bc- $T_1$ space.

### 4 **Bc-** $R_k$ (k = 0, 1)

In this section, new classes of topological spaces called  $Bc-R_0$  and  $Bc-R_1$  spaces are introduced.

**Definition 4.1** A topological space  $(X, \tau)$ , is said to be  $Bc-R_0$  if U is a Bc-open set and  $x \in U$  then  $BcCl(\{x\}) \subseteq U$ .

**Proposition 4.2** For a topological space  $(X, \tau)$ , the following properties are equivalent:

- 1.  $(X, \tau)$  is  $Bc-R_0$ .
- 2. For any  $F \in BcC(X)$ ,  $x \notin F$  implies  $F \subseteq U$  and  $x \notin U$  for some  $U \in BcO(X)$ .
- 3. For any  $F \in BcC(X)$ ,  $x \notin F$  implies  $F \cap BcCl(\{x\}) = \phi$ .
- 4. For any distinct points x and y of X, either  $BcCl(\{x\}) = BcCl(\{y\})$  or  $BcCl(\{x\}) \cap BcCl(\{y\}) = \phi$ .

Proof. (1)  $\Rightarrow$  (2). Let  $F \in BcC(X)$  and  $x \notin F$ . Then by (1),  $BcCl(\{x\}) \subseteq X \setminus F$ . Set  $U = X \setminus BcCl(\{x\})$ , then U is a Bc-open set such that  $F \subseteq U$  and  $x \notin U$ .

(2)  $\Rightarrow$  (3). Let  $F \in BcC(X)$  and  $x \notin F$ . There exists  $U \in BcO(X)$  such that  $F \subseteq U$  and  $x \notin U$ . Since  $U \in BcO(X)$ ,  $U \cap BcCl(\{x\}) = \phi$  and  $F \cap BcCl(\{x\}) = \phi$ .

 $(3) \Rightarrow (4)$ . Suppose that  $BcCl(\{x\}) \neq BcCl(\{y\})$  for distinct points  $x, y \in X$ . There exists  $z \in BcCl(\{x\})$  such that  $z \notin BcCl(\{y\})$  (or  $z \in BcCl(\{y\})$ ) such that  $z \notin BcCl(\{x\})$ ). There exists  $V \in BcO(X)$  such that  $y \notin V$  and  $z \in V$ ; hence  $x \in V$ . Therefore, we have  $x \notin BcCl(\{y\})$ . By (3), we obtain  $BcCl(\{x\}) \cap BcCl(\{y\}) = \phi$ .

 $(4) \Rightarrow (1).$  let  $V \in BcO(X)$  and  $x \in V$ . For each  $y \notin V$ ,  $x \neq y$  and  $x \notin BcCl(\{y\})$ . This shows that  $BcCl(\{x\}) \neq BcCl(\{y\})$ . By (4),  $BcCl(\{x\}) \cap BcCl(\{y\}) = \phi$  for each  $y \in X \setminus V$  and hence  $BcCl(\{x\}) \cap (\bigcup_{y \in X \setminus V} BcCl(\{y\})) = \phi$ . On other hand, since  $V \in BcO(X)$  and  $y \in X \setminus V$ , we have  $BcCl(\{y\}) \subseteq X \setminus V$  and hence  $X \setminus V = \bigcup_{y \in X \setminus V} BcCl(\{y\})$ . Therefore, we obtain  $(X \setminus V) \cap BcCl(\{x\}) = \phi$  and  $BcCl(\{x\}) \subseteq V$ . This shows that  $(X, \tau)$  is a Bc- $R_0$  space.

**Proposition 4.3** A topological space  $(X, \tau)$  is  $Bc-T_1$  if and only if  $(X, \tau)$  is a  $Bc-T_0$  and a  $Bc-R_0$  space.

Proof. Necessity. Let U be any Bc-open set of  $(X, \tau)$  and  $x \in U$ . Then by Proposition 3.4, we have  $BcCl(\{x\}) \subseteq U$  and so by Proposition 3.6, it is clear that X is a Bc- $T_0$  and a Bc- $R_0$  space.

56

**Sufficiency.** Let x and y be any distinct points of X. Since X is Bc- $T_0$ , there exists a Bc-open set U such that  $x \in U$  and  $y \notin U$ . As  $x \in U$  implies that  $BcCl(\{x\}) \subseteq U$ . Since  $y \notin U$ , so  $y \notin BcCl(\{x\})$ . Hence  $y \in V = X \setminus BcCl(\{x\})$  and it is clear that  $x \notin V$ . Hence it follows that there exist Bc-open sets U and V containing x and y respectively, such that  $y \notin U$  and  $x \notin V$ . This implies that X is Bc- $T_1$ .

**Proposition 4.4** For a topological space  $(X, \tau)$ , the following properties are equivalent:

- 1.  $(X, \tau)$  is  $Bc-R_0$ .
- 2.  $x \in BcCl(\{y\})$  if and only if  $y \in BcCl(\{x\})$ , for any points x and y in X.

Proof. (1)  $\Rightarrow$  (2). Assume that X is Bc- $R_0$ . Let  $x \in BcCl(\{y\})$  and V be any Bc-open set such that  $y \in V$ . Now by hypothesis,  $x \in V$ . Therefore, every Bc-open set which contain y contains x. Hence  $y \in BcCl(\{x\})$ .

 $(2) \Rightarrow (1)$ . Let U be a Bc-open set and  $x \in U$ . If  $y \notin U$ , then  $x \notin BcCl(\{y\})$  and hence  $y \notin BcCl(\{x\})$ . This implies that  $BcCl(\{x\}) \subseteq U$ . Hence  $(X, \tau)$  is Bc- $R_0$ .

From Definition 3.17 and Proposition 4.4, the notions of Bc-symmetric and Bc- $R_0$  are equivalent.

**Proposition 4.5** The following statements are equivalent for any points x and y in a topological space  $(X, \tau)$ :

- 1.  $Bcker(\{x\}) \neq Bcker(\{y\}).$
- 2.  $BcCl(\{x\}) \neq BcCl(\{y\}).$

Proof. (1)  $\Rightarrow$  (2). Suppose that  $Bcker(\{x\}) \neq Bcker(\{y\})$ , then there exists a point z in X such that  $z \in Bcker(\{x\})$  and  $z \notin Bcker(\{y\})$ . From  $z \in Bcker(\{x\})$  it follows that  $\{x\} \cap BcCl(\{z\}) \neq \phi$  which implies  $x \in BcCl(\{z\})$ . By  $z \notin Bcker(\{y\})$ , we have  $\{y\} \cap BcCl(\{z\}) = \phi$ . Since  $x \in BcCl(\{z\})$ ,  $BcCl(\{x\}) \subseteq BcCl(\{z\})$  and  $\{y\} \cap BcCl(\{x\}) = \phi$ . Therefore, it follows that  $BcCl(\{x\}) \neq BcCl(\{y\})$ . Now  $Bcker(\{x\}) \neq Bcker(\{y\})$  implies that  $BcCl(\{x\}) \neq BcCl(\{y\})$ .

 $(2) \Rightarrow (1)$ . Suppose that  $BcCl(\{x\}) \neq BcCl(\{y\})$ . Then there exists a point z in X such that  $z \in BcCl(\{x\})$  and  $z \notin BcCl(\{y\})$ . Then, there exists a Bc-open set containing z and therefore x but not y, namely,  $y \notin Bcker(\{x\})$  and thus  $Bcker(\{x\}) \neq Bcker(\{y\})$ .

**Proposition 4.6** Let  $(X, \tau)$  be a topological space. Then  $\cap \{BcCl(\{x\}) : x \in X\} = \phi$  if and only if  $Bcker(\{x\}) \neq X$  for every  $x \in X$ .

Proof. Necessity. Suppose that  $\cap \{BcCl(\{x\}) : x \in X\} = \phi$ . Assume that there is a point y in X such that  $Bcker(\{y\}) = X$ . Let x be any point of X. Then  $x \in V$  for every Bc-open set V containing y and hence  $y \in BcCl(\{x\})$  for any  $x \in X$ . This implies that  $y \in \cap \{BcCl(\{x\}) : x \in X\}$ . But this is a contradiction.

**Sufficiency.** Assume that  $Bcker(\{x\}) \neq X$  for every  $x \in X$ . If there exists a point y in X such that  $y \in \cap \{BcCl(\{x\}) : x \in X\}$ , then every Bc-open set containing y must contain every point of X. This implies that the space X is the unique Bc-open set containing y. Hence  $Bcker(\{y\}) = X$  which is a contradiction. Therefore,  $\cap \{BcCl(\{x\}) : x \in X\} = \phi$ .

**Proposition 4.7** A topological space  $(X, \tau)$  is  $Bc-R_0$  if and only if for every x and y in X,  $BcCl(\{x\}) \neq BcCl(\{y\})$  implies  $BcCl(\{x\}) \cap BcCl(\{y\}) = \phi$ .

Proof. Necessity. Suppose that  $(X, \tau)$  is  $Bc-R_0$  and  $x, y \in X$  such that  $BcCl(\{x\}) \neq BcCl(\{y\})$ . Then, there exists  $z \in BcCl(\{x\})$  such that  $z \notin BcCl(\{y\})$  (or  $z \in BcCl(\{y\})$  such that  $z \notin BcCl(\{x\})$ ). There exists  $V \in BcO(X)$  such that  $y \notin V$  and  $z \in V$ , hence  $x \in V$ . Therefore, we have  $x \notin BcCl(\{y\})$ . Thus  $x \in [X \setminus BcCl(\{y\})] \in BcO(X)$ , which implies  $BcCl(\{x\}) \subseteq [X \setminus BcCl(\{y\})]$  and  $BcCl(\{x\}) \cap BcCl(\{y\}) = \phi$ .

**Sufficiency.** Let  $V \in BcO(X)$  and let  $x \in V$ . We still show that  $BcCl(\{x\}) \subseteq V$ . Let  $y \notin V$ , that is  $y \in X \setminus V$ . Then  $x \neq y$  and  $x \notin BcCl(\{y\})$ . This shows that  $BcCl(\{x\}) \neq BcCl(\{y\})$ . By assumption,  $BcCl(\{x\}) \cap BcCl(\{y\}) = \phi$ . Hence  $y \notin BcCl(\{x\})$  and therefore  $BcCl(\{x\}) \subseteq V$ .

**Proposition 4.8** A topological space  $(X, \tau)$  is  $Bc-R_0$  if and only if for any points x and y in X,  $Bcker(\{x\}) \neq Bcker(\{y\})$  implies  $Bcker(\{x\}) \cap$  $Bcker(\{y\}) = \phi$ .

Proof. Suppose that  $(X, \tau)$  is a Bc- $R_0$  space. Thus by Proposition 4.5, for any points x and y in X if  $Bcker(\{x\}) \neq Bcker(\{y\})$  then  $BcCl(\{x\}) \neq$  $BcCl(\{y\})$ . Now we prove that  $Bcker(\{x\}) \cap Bcker(\{y\}) = \phi$ . Assume that  $z \in Bcker(\{x\}) \cap Bcker(\{y\})$ . By  $z \in Bcker(\{x\})$  and Proposition 3.24, it follows that  $x \in BcCl(\{z\})$ . Since  $x \in BcCl(\{x\})$ , by Proposition 4.2,  $BcCl(\{x\}) = BcCl(\{z\})$ . Similarly, we have  $BcCl(\{y\}) = BcCl(\{z\}) =$  $BcCl(\{x\})$ . This is a contradiction. Therefore, we have  $Bcker(\{x\}) \cap Bcker(\{y\}) = \phi$ .

**Conversely,** let  $(X, \tau)$  be a topological space such that for any points x and y in X,  $Bcker(\{x\}) \neq Bcker(\{y\})$  implies  $Bcker(\{x\}) \cap Bcker(\{y\}) = \phi$ . If  $BcCl(\{x\}) \neq BcCl(\{y\})$ , then by Proposition 4.5,  $Bcker(\{x\}) \neq Bcker(\{y\})$ . Hence,  $Bcker(\{x\}) \cap Bcker(\{y\}) = \phi$  which implies  $BcCl(\{x\}) \cap BcCl(\{y\}) = \phi$ . Because  $z \in BcCl(\{x\})$  implies that  $x \in Bcker(\{z\})$  and therefore  $Bcker(\{x\}) \cap Bcker(\{x\}) \cap Bcker(\{z\}) \neq \phi$ . By hypothesis, we have  $Bcker(\{x\}) = Bcker(\{z\})$ . Then  $z \in BcCl(\{x\}) \cap BcCl(\{y\})$  implies that  $Bcker(\{x\}) = Bcker(\{z\}) = Bcker(\{y\})$ . This is a contradiction. Therefore,  $BcCl(\{x\}) \cap BcCl(\{y\}) = \phi$  and by Proposition 4.2,  $(X, \tau)$  is a Bc- $R_0$  space.

**Proposition 4.9** For a topological space  $(X, \tau)$ , the following properties are equivalent:

- 1.  $(X, \tau)$  is a Bc-R<sub>0</sub> space.
- 2. For any non-empty set A and  $G \in BcO(X)$  such that  $A \cap G \neq \phi$ , there exists  $F \in BcC(X)$  such that  $A \cap F \neq \phi$  and  $F \subseteq G$ .
- 3. For any  $G \in BcO(X)$ , we have  $G = \bigcup \{F \in BcC(X) : F \subseteq G\}$ .
- 4. For any  $F \in BcC(X)$ , we have  $F = \cap \{G \in BcO(X) : F \subseteq G\}$ .
- 5. For every  $x \in X$ ,  $BcCl(\{x\}) \subseteq Bcker(\{x\})$ .

Proof. (1)  $\Rightarrow$  (2). Let A be a non-empty subset of X and  $G \in BcO(X)$ such that  $A \cap G \neq \phi$ . There exists  $x \in A \cap G$ . Since  $x \in G \in BcO(X)$ ,  $BcCl(\{x\}) \subseteq G$ . Set  $F = BcCl(\{x\})$ , then  $F \in BcC(X)$ ,  $F \subseteq G$  and  $A \cap F \neq \phi$ .

 $(2) \Rightarrow (3).$  Let  $G \in BcO(X)$ , then  $G \supseteq \cup \{F \in BcC(X): F \subseteq G\}$ . Let x be any point of G. There exists  $F \in BcC(X)$  such that  $x \in F$  and  $F \subseteq G$ . Therefore, we have  $x \in F \subseteq \cup \{F \in BcC(X): F \subseteq G\}$  and hence  $G = \cup \{F \in BcC(X): F \subseteq G\}$ .

 $(3) \Rightarrow (4)$ . Obvious.

 $(4) \Rightarrow (5).$  Let x be any point of X and  $y \notin Bcker(\{x\})$ . There exists  $V \in BcO(X)$  such that  $x \in V$  and  $y \notin V$ , hence  $BcCl(\{y\}) \cap V = \phi$ . By (4),  $(\cap \{G \in BcO(X): BcCl(\{y\}) \subseteq G\}) \cap V = \phi$  and there exists  $G \in BcO(X)$ such that  $x \notin G$  and  $BcCl(\{y\}) \subseteq G$ . Therefore  $BcCl(\{x\}) \cap G = \phi$  and  $y \notin BcCl(\{x\}).$  Consequently, we obtain  $BcCl(\{x\}) \subseteq Bcker(\{x\}).$ 

 $(5) \Rightarrow (1)$ . Let  $G \in BcO(X)$  and  $x \in G$ . Let  $y \in Bcker(\{x\})$ , then  $x \in BcCl(\{y\})$  and  $y \in G$ . This implies that  $Bcker(\{x\}) \subseteq G$ . Therefore, we obtain  $x \in BcCl(\{x\}) \subseteq Bcker(\{x\}) \subseteq G$ . This shows that  $(X, \tau)$  is a Bc- $R_0$  space.

**Corollary 4.10** For a topological space  $(X, \tau)$ , the following properties are equivalent:

- 1.  $(X, \tau)$  is a Bc-R<sub>0</sub> space.
- 2.  $BcCl(\{x\}) = Bcker(\{x\})$  for all  $x \in X$ .

Proof. (1)  $\Rightarrow$  (2). Suppose that  $(X, \tau)$  is a Bc- $R_0$  space. By Proposition 4.9,  $BcCl(\{x\}) \subseteq Bcker(\{x\})$  for each  $x \in X$ . Let  $y \in Bcker(\{x\})$ , then  $x \in BcCl(\{y\})$  and by Proposition 4.2,  $BcCl(\{x\}) = BcCl(\{y\})$ . Therefore,  $y \in BcCl(\{x\})$  and hence  $Bcker(\{x\}) \subseteq BcCl(\{x\})$ . This shows that  $BcCl(\{x\}) = Bcker(\{x\})$ .

 $(2) \Rightarrow (1)$ . Follows from Proposition 4.9.

**Proposition 4.11** For a topological space  $(X, \tau)$ , the following properties are equivalent:

- 1.  $(X, \tau)$  is a Bc-R<sub>0</sub> space.
- 2. If F is Bc-closed, then F = Bcker(F).
- 3. If F is Bc-closed and  $x \in F$ , then  $Bcker(\{x\}) \subseteq F$ .
- 4. If  $x \in X$ , then  $Bcker(\{x\}) \subseteq BcCl(\{x\})$ .

Proof. (1)  $\Rightarrow$  (2). Let F be a Bc-closed and  $x \notin F$ . Thus  $(X \setminus F)$  is a Bc-open set containing x. Since  $(X, \tau)$  is Bc- $R_0$ ,  $BcCl(\{x\}) \subseteq (X \setminus F)$ . Thus  $BcCl(\{x\}) \cap F = \phi$  and by Proposition 3.25,  $x \notin Bcker(F)$ . Therefore Bcker(F) = F.

 $(2) \Rightarrow (3)$ . In general,  $A \subseteq B$  implies  $Bcker(A) \subseteq Bcker(B)$ . Therefore, it follows from (2), that  $Bcker(\{x\}) \subseteq Bcker(F) = F$ .

 $(3) \Rightarrow (4)$ . Since  $x \in BcCl(\{x\})$  and  $BcCl(\{x\})$  is Bc-closed, by (3),  $Bcker(\{x\}) \subseteq BcCl(\{x\})$ .

 $(4) \Rightarrow (1)$ . We show the implication by using Proposition 4.4. Let  $x \in BcCl(\{y\})$ . Then by Proposition 3.24,  $y \in Bcker(\{x\})$ . Since  $x \in BcCl(\{x\})$  and  $BcCl(\{x\})$  is Bc-closed, by (4), we obtain  $y \in Bcker(\{x\}) \subseteq BcCl(\{x\})$ . Therefore  $x \in BcCl(\{y\})$  implies  $y \in BcCl(\{x\})$ . The converse is obvious and  $(X, \tau)$  is Bc- $R_0$ .

**Definition 4.12** A topological space  $(X, \tau)$ , is said to be  $Bc-R_1$  if for x, yin X with  $BcCl(\{x\}) \neq BcCl(\{y\})$ , there exist disjoint Bc-open sets U and V such that  $BcCl(\{x\}) \subseteq U$  and  $BcCl(\{y\}) \subseteq V$ .

**Proposition 4.13** A topological space  $(X, \tau)$  is  $Bc-R_1$  if it is  $Bc-T_2$ .

Proof. Let x and y be any points of X such that  $BcCl(\{x\}) \neq BcCl(\{y\})$ . By Proposition 3.6 (1), every Bc- $T_2$  space is Bc- $T_1$ . Therefore, by Proposition 3.4,  $BcCl(\{x\}) = \{x\}, BcCl(\{y\}) = \{y\}$  and hence  $\{x\} \neq \{y\}$ . Since  $(X, \tau)$  is Bc- $T_2$ , there exist disjoint Bc-open sets U and V such that  $BcCl(\{x\}) = \{x\} \subseteq U$ and  $BcCl(\{y\}) = \{y\} \subseteq V$ . This shows that  $(X, \tau)$  is Bc- $R_1$ . **Bc-Separation Axioms In Topological Spaces** 

**Proposition 4.14** For a topological space  $(X, \tau)$ , the following are equivalent:

- 1.  $(X, \tau)$  is Bc-T<sub>2</sub>.
- 2.  $(X, \tau)$  is  $Bc-R_1$  and  $Bc-T_1$ .
- 3.  $(X, \tau)$  is Bc-R<sub>1</sub> and Bc-T<sub>0</sub>.

Proof. Straightforward.

**Proposition 4.15** For a topological space  $(X, \tau)$ , the following statements are equivalent:

- 1.  $(X, \tau)$  is Bc-R<sub>1</sub>.
- 2. If  $x, y \in X$  such that  $BcCl(\{x\}) \neq BcCl(\{y\})$ , then there exist Bc-closed sets  $F_1$  and  $F_2$  such that  $x \in F_1$ ,  $y \notin F_1$ ,  $y \in F_2$ ,  $x \notin F_2$  and  $X = F_1 \cup F_2$ .

Proof. Obvious.

**Proposition 4.16** If  $(X, \tau)$  is  $Bc-R_1$ , then  $(X, \tau)$  is  $Bc-R_0$ .

Proof. Let U be Bc-open such that  $x \in U$ . If  $y \notin U$ , since  $x \notin BcCl(\{y\})$ , we have  $BcCl(\{x\}) \neq BcCl(\{y\})$ . So, there exists a Bc-open set V such that  $BcCl(\{y\}) \subseteq V$  and  $x \notin V$ , which implies  $y \notin BcCl(\{x\})$ . Hence  $BcCl(\{x\}) \subseteq U$ . Therefore,  $(X, \tau)$  is Bc- $R_0$ .

**Corollary 4.17** A topological space  $(X, \tau)$  is  $Bc-R_1$  if and only if for  $x, y \in X$ ,  $Bcker(\{x\}) \neq Bcker(\{y\})$ , there exist disjoint Bc-open sets U and V such that  $BcCl(\{x\}) \subseteq U$  and  $BcCl(\{y\}) \subseteq V$ .

Proof. Follows from Proposition 4.5.

**Proposition 4.18** A topological space  $(X, \tau)$  is  $Bc-R_1$  if and only if  $x \in X \setminus BcCl(\{y\})$  implies that x and y have disjoint Bc-open neighbourhoods.

Proof. Necessity. Let  $x \in X \setminus BcCl(\{y\})$ . Then  $BcCl(\{x\}) \neq BcCl(\{y\})$ , so, x and y have disjoint Bc-open neighbourhoods.

**Sufficiency.** First, we show that  $(X, \tau)$  is Bc- $R_0$ . Let U be a Bc-open set and  $x \in U$ . Suppose that  $y \notin U$ . Then,  $BcCl(\{y\}) \cap U = \phi$  and  $x \notin BcCl(\{y\})$ . There exist Bc-open sets  $U_x$  and  $U_y$  such that  $x \in U_x$ ,  $y \in U_y$  and  $U_x \cap U_y = \phi$ . Hence,  $BcCl(\{x\}) \subseteq BcCl(U_x)$  and  $BcCl(\{x\}) \cap U_y \subseteq BcCl(U_x) \cap U_y = \phi$ . Therefore,  $y \notin BcCl(\{x\})$ . Consequently,  $BcCl(\{x\}) \subseteq U$  and  $(X, \tau)$  is Bc- $R_0$ . Next, we show that  $(X, \tau)$  is Bc- $R_1$ . Suppose that  $BcCl(\{x\}) \neq BcCl(\{y\})$ . Then, we can assume that there exists  $z \in BcCl(\{x\})$  such that  $z \notin BcCl(\{y\})$ . There exist Bc-open sets  $V_z$  and  $V_y$  such that  $z \in V_z$ ,  $y \in V_y$  and  $V_z \cap V_y = \phi$ . Since  $z \in BcCl(\{x\})$ ,  $x \in V_z$ . Since  $(X, \tau)$  is Bc- $R_0$ , we obtain  $BcCl(\{x\}) \subseteq V_z$ ,  $BcCl(\{y\}) \subseteq V_y$  and  $V_z \cap V_y = \phi$ . This shows that  $(X, \tau)$  is Bc- $R_1$ .

# References

- [1] D. Andrijevi, On b-open sets, Mat. Vesnik, 48(1996), 59-64.
- [2] H.Z. Ibrahim, Bc-open sets in topological spaces, Advances in Pure Math., 3(2013), 34-40.