Gen. Math. Notes, Vol. 10, No. 2, June 2012, pp. 36-42
ISSN 2219-7184; Copyright © ICSRS Publication, 2012
www.i-csrs.org
Available free online at http://www.geman.in

Spacelike Biharmonic New Type B-Slant Helices According to Bishop Frame in the Lorentzian Heisenberg Group \boldsymbol{H}^{3}

Talat Körpınar and Essin Turhan
Firat University, Department of Mathematics 23119, Elazığ, Turkey
E-mails: talatkorpinar@gmail.com, essin.turhan@gmail.com

(Received: 20-5-12 / Accepted: 12-6-12)

Abstract

In this paper, we study biharmonic spacelike new type B-slant helices according to Bishop frame in the Lorentzian Heisenberg group H^{3}. We give necessary and sufficient conditions for new type B-slant helices to be biharmonic. We characterize these curves in the Lorentzian Heisenberg group H^{3}. Additionally, we illustrate our results.

Keywords: Bienergy, Bishop frame, Lorentzian Heisenberg group.

1 Introduction

Jiang derived the first and the second variation formula for the bienergy in $[7,8]$, showing that the Euler--Lagrange equation associated to E_{2} is

$$
\begin{aligned}
& \tau_{2}(f)=-J^{f}(\tau(f))=-\Delta \tau(f)-\operatorname{trace} R^{N}(d f, \tau(f)) d f \\
& =0
\end{aligned}
$$

where J^{f} is the Jacobi operator of f. The equation $\tau_{2}(f)=0$ is called the biharmonic equation. Since J^{f} is linear, any harmonic map is biharmonic.

Therefore, we are interested in proper biharmonic maps, that is non-harmonic biharmonic maps.
This study is organised as follows: Firstly, we give necessary and sufficient conditions for new type B-slant helices to be biharmonic. We characterize this curves in the Lorentzian Heisenberg group H^{3}. Secondly, we study biharmonic spacelike new type B-slant helices according to Bishop frame in the Lorentzian Heisenberg group H^{3}. Finally, we illustrate our results.

2 The Lorentzian Heisenberg Group H^{3}

The Heisenberg group Heis ${ }^{3}$ is a Lie group which is diffeomorphic to R^{3} and the group operation is defined as

$$
(x, y, z) *(\bar{x}, \bar{y}, \bar{z})=(x+\bar{x}, y+\bar{y}, z+\bar{z}-\bar{x} y+x \bar{y}) .
$$

The identity of the group is $(0,0,0)$ and the inverse of (x, y, z) is given by $(-x,-y,-z)$. The left-invariant Lorentz metric on H^{3} is

$$
g=-d x^{2}+d y^{2}+(x d y+d z)^{2} .
$$

The following set of left-invariant vector fields forms an orthonormal basis for the corresponding Lie algebra:

$$
\begin{equation*}
\left\{\mathbf{e}_{1}=\frac{\partial}{\partial z}, \mathbf{e}_{2}=\frac{\partial}{\partial y}-x \frac{\partial}{\partial z}, \mathbf{e}_{3}=\frac{\partial}{\partial x}\right\} . \tag{1}
\end{equation*}
$$

The characterising properties of this algebra are the following commutation relations, [13]:

$$
g\left(\mathbf{e}_{1}, \mathbf{e}_{1}\right)=g\left(\mathbf{e}_{2}, \mathbf{e}_{2}\right)=1, g\left(\mathbf{e}_{3}, \mathbf{e}_{3}\right)=-1 .
$$

Proposition 2.1. For the covariant derivatives of the Levi-Civita connection of the left-invariant metric g, defined above the following is true:

$$
\nabla=\frac{1}{2}\left(\begin{array}{ccc}
0 & \mathbf{e}_{3} & \mathbf{e}_{2} \tag{2}\\
\mathbf{e}_{3} & 0 & \mathbf{e}_{1} \\
\mathbf{e}_{2} & -\mathbf{e}_{1} & 0
\end{array}\right),
$$

where the (i, j)-element in the table above equals $\nabla_{\mathbf{e}_{i}} \mathbf{e}_{j}$ for our basis

$$
\left\{\mathbf{e}_{k}, k=1,2,3\right\} .
$$

3 Spacelike Biharmonic New Type B-Slant Helices with Bishop Frame In The Lorentzian Heisenberg Group H^{3}

Let $\gamma: I \rightarrow \mathrm{H}^{3}$ be a non geodesic spacelike curve on the Lorentzian Heisenberg group H^{3} parametrized by arc length. Let $\{\mathbf{t}, \mathbf{n}, \mathbf{b}\}$ be the Frenet frame fields tangent to the Lorentzian Heisenberg group H^{3} along γ defined as follows: \mathbf{t} is the unit vector field γ^{\prime} tangent to γ, \mathbf{n} is the unit vector field in the direction of $\nabla_{\mathbf{t}} \mathbf{t}$ (normal to γ), and \mathbf{b} is chosen so that $\{\mathbf{t}, \mathbf{n}, \mathbf{b}\}$ is a positively oriented orthonormal basis. Then, we have the following Frenet formulas:

$$
\begin{align*}
& \nabla_{\mathrm{t}} \mathbf{t}=\boldsymbol{k}, \\
& \nabla_{\mathrm{t}} \mathbf{n}=\boldsymbol{\mathbf { t }}+\boldsymbol{\mathrm { t }}, \tag{1}\\
& \nabla_{\mathrm{T}} \mathbf{B}=\boldsymbol{\pi},
\end{align*}
$$

where κ is the curvature of γ and τ is its torsion and

$$
\begin{aligned}
& g(\mathbf{t}, \mathbf{t})=1, g(\mathbf{n}, \mathbf{n})=-1, g(\mathbf{b}, \mathbf{b})=1, \\
& g(\mathbf{t}, \mathbf{n})=g(\mathbf{t}, \mathbf{b})=g(\mathbf{n}, \mathbf{b})=0 .
\end{aligned}
$$

In the rest of the paper, we suppose everywhere $\kappa \neq 0$ and $\tau \neq 0$.
The Bishop frame or parallel transport frame is an alternative approach to defining a moving frame that is well defined even when the curve has vanishing second derivative. The Bishop frame is expressed as

$$
\begin{align*}
& \nabla_{\mathbf{t}} \mathbf{t}=k_{1} \mathbf{m}_{1}-k_{2} \mathbf{m}_{2}, \\
& \nabla_{\mathbf{t}} \mathbf{m}_{1}=k_{\mathbf{1}} \mathbf{t}, \tag{2}\\
& \nabla_{\mathbf{t}} \mathbf{m}_{2}=k_{\mathbf{2}} \mathbf{t}
\end{align*}
$$

where

$$
\begin{aligned}
& g(\mathbf{t}, \mathbf{t})=1, g\left(\mathbf{m}_{1}, \mathbf{m}_{1}\right)=-1, g\left(\mathbf{m}_{2}, \mathbf{m}_{2}\right)=1, \\
& g\left(\mathbf{T}, \mathbf{M}_{1}\right)=g\left(\mathbf{t}, \mathbf{m}_{2}\right)=g\left(\mathbf{m}_{1}, \mathbf{m}_{2}\right)=0 .
\end{aligned}
$$

Here, we shall call the set $\left\{\mathbf{t}, \mathbf{m}_{1}, \mathbf{m}_{2}\right\}$ as Bishop trihedra, k_{1} and k_{2} as Bishop curvatures.
Also, $\tau(s)=\psi^{\prime}(s)$ and $\kappa(s)=\sqrt{\left|k_{2}^{2}-k_{1}^{2}\right|}$. Thus, Bishop curvatures are defined by

$$
\begin{aligned}
& k_{1}=\kappa(s) \sinh \psi(s), \\
& k_{2}=\kappa(s) \cosh \psi(s) .
\end{aligned}
$$

With respect to the orthonormal basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ we can write

$$
\mathbf{t}=t^{1} \mathbf{e}_{1}+t^{2} \mathbf{e}_{2}+t^{3} \mathbf{e}_{3}
$$

$$
\begin{align*}
& \mathbf{m}_{1}=m_{1}^{1} \mathbf{e}_{1}+m_{1}^{2} \mathbf{e}_{2}+m_{1}^{3} \mathbf{e}_{3}, 5 \tag{3}\\
& \mathbf{m}_{2}=m_{2}^{1} \mathbf{e}_{1}+m_{2}^{2} \mathbf{e}_{2}+m_{2}^{3} \mathbf{e}_{3} .
\end{align*}
$$

Theorem 3.1. $\gamma: I \rightarrow \mathrm{H}^{3}$ is a spacelike biharmonic curve with Bishop frame if and only if

$$
\begin{align*}
& k_{1}^{2}-k_{2}^{2}=\text { constant }=C \neq 0, \\
& k_{1}^{\prime \prime}+\left[k_{1}^{2}-k_{2}^{2}\right] k_{1}=-k_{1}\left[1+\left(m_{2}^{1}\right)^{2}\right]+k_{2} m_{1}^{1} m_{2}^{1}, \tag{4}\\
& k_{2}^{\prime \prime}+\left[k_{1}^{2}-k_{2}^{2}\right] k_{2}=-k_{1} m_{1}^{1} m_{2}^{1}-k_{2}\left[-1+\left(m_{1}^{1}\right)^{2}\right]
\end{align*}
$$

To separate a spacelike new type slant helix according to Bishop frame from that of Frenet- Serret frame, in the rest of the paper, we shall use notation for the curve defined above as spacelike new type B -slant helix.

Theorem 3.2. Let $\gamma: I \rightarrow \mathrm{H}^{3}$ be a unit speed biharmonic spacelike new type B - slant helix with non-zero curvatures. Then the equation of biharmonic spacelike new type B - slant helix are

$$
\begin{align*}
& \mathbf{x}(s)=\frac{1}{\mathrm{C}_{0}} \cos \mathrm{Q} \cosh \left[\mathrm{C}_{0} s+\mathrm{C}_{1}\right]+\mathrm{C}_{2}, \\
& \mathbf{y}(s)=\frac{1}{\mathrm{C}_{0}} \cos \mathrm{Q} \sinh \left[\mathrm{C}_{0} s+\mathrm{C}_{1}\right]+\mathrm{C}_{3}, \tag{5}\\
& \mathbf{z}(s)=\sin \mathrm{Q} s-\frac{\mathrm{C}_{2}}{\mathrm{C}_{0}} \cos \mathrm{Q} \sinh \left[\mathrm{C}_{0} s+\mathrm{C}_{1}\right] \\
& -\frac{1}{4 \mathrm{C}_{0}} \cos ^{2} \mathrm{Q}\left(2\left[\mathrm{C}_{0} s+\mathrm{C}_{1}\right]+\sinh 2\left[\mathrm{C}_{0} s+\mathrm{C}_{1}\right]\right)+\mathrm{C}_{4},
\end{align*}
$$

where $\mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ are constants of integration and

$$
\mathrm{C}_{0}=\frac{\sqrt{k_{2}^{2}-k_{1}^{2}}}{\cos \mathrm{Q}}-\sin \mathrm{Q}
$$

Proof. The vector \mathbf{m}_{2} is a unit spacelike vector, we reach

$$
\begin{equation*}
\mathbf{m}_{2}=\cos \mathbf{Q} \mathbf{e}_{1}+\sin \mathbf{Q} \cosh \mathbf{A}(s) \mathbf{e}_{2}+\sin \mathbf{Q} \sinh \mathrm{A}(s) \mathbf{e}_{3} . \tag{8}
\end{equation*}
$$

On the other hand, using Bishop formulas Eq.(4) and Eq.(1), we have

$$
\begin{equation*}
\mathbf{m}_{1}=\sinh \mathrm{A}(s) \mathbf{e}_{2}+\cosh \mathrm{A}(s) \mathbf{e}_{3} . \tag{9}
\end{equation*}
$$

It is apparent that

$$
\begin{equation*}
\mathbf{t}=\sin \mathbf{Q} \mathbf{e}_{1}+\cos \mathrm{Q} \cosh \mathrm{~A}(s) \mathbf{e}_{2}+\cos \mathrm{Q} \sinh \mathrm{~A}(s) \mathbf{e}_{3} . \tag{10}
\end{equation*}
$$

A straightforward computation shows that

$$
\begin{equation*}
\nabla_{\mathbf{t}} \mathbf{t}=\left(t_{1}^{\prime}\right) \mathbf{e}_{1}+\left(t_{2}^{\prime}+t_{1} t_{3}\right) \mathbf{e}_{2}+\left(t_{3}^{\prime}+t_{1} t_{2}\right) \mathbf{e}_{3} . \tag{11}
\end{equation*}
$$

Therefore, we use Bishop formulas Eq.(4) and above equation we get

$$
\begin{equation*}
\mathrm{A}(s)=\left[\frac{\sqrt{k_{2}^{2}-k_{1}^{2}}}{\cos \mathrm{Q}}-\sin \mathrm{Q}\right] s+\mathrm{C}_{1}, \tag{12}
\end{equation*}
$$

where C_{1} is a constant of integration.
From Eq.(10), we get

$$
\begin{align*}
& \qquad \mathbf{t}=\left(\cos \mathrm{Q} \sinh \left[\mathrm{C}_{0} s+\mathrm{C}_{1}\right], \cos \mathrm{Q} \cosh \left[\mathrm{C}_{0} s+\mathrm{C}_{1}\right], \sin \mathrm{Q}-x \cos \mathrm{Q} \cosh \left[\mathrm{C}_{0} s+\mathrm{C}_{1}\right]\right), \\
& \text { where }, \quad \mathrm{C}_{0}=\frac{\sqrt{k_{2}^{2}-k_{1}^{2}}}{\cos \mathrm{Q}}-\sin \mathrm{Q} . \tag{13}
\end{align*}
$$

Therefore, by Eq (13) and taking into account Eq.(12), we obtain the system Eq.(12). This completes the proof.

Corollary 3.3. Let $\gamma: I \rightarrow \mathrm{H}^{3}$ be a unit speed biharmonic spacelike new type B - slant helix with non-zero Bishop curvatures. Then the equation of γ is

$$
\begin{aligned}
\gamma(s)= & {\left[\sin \mathrm{Q} s-\frac{\mathrm{C}_{2}}{\mathrm{C}_{0}} \cos \mathrm{Q} \sinh \left[\mathrm{C}_{0} s+\mathrm{C}_{1}\right]\right.} \\
& -\frac{1}{4 \mathrm{C}_{0}} \cos ^{2} \mathrm{Q}\left(2\left[\mathrm{C}_{0} s+\mathrm{C}_{1}\right]+\sinh 2\left[\mathrm{C}_{0} s+\mathrm{C}_{1}\right]\right)+\mathrm{C}_{4} \\
& \left.+\left[\frac{1}{\mathrm{C}_{0}} \cos \mathrm{Q} \cosh \left[\mathrm{C}_{0} s+\mathrm{C}_{1}\right]+\mathrm{C}_{2}\right]\left[\frac{1}{\mathrm{C}_{0}} \cos \mathrm{Q} \sinh \left[\mathrm{C}_{0} s+\mathrm{C}_{1}\right]+\mathrm{C}_{3}\right]\right] \mathbf{e}_{1} \\
& +\left[\frac{1}{\mathrm{C}_{0}} \cos \mathrm{Q} \sinh \left[\mathrm{C}_{0} s+\mathrm{C}_{1}\right]+\mathrm{C}_{3}\right] \mathrm{e}_{2}+\left[\frac{1}{\mathrm{C}_{0}} \cos \mathrm{Q} \cosh \left[\mathrm{C}_{0} s+\mathrm{C}_{1}\right]+\mathrm{C}_{2}\right] \mathbf{e}_{3},
\end{aligned}
$$

where $\mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ are constants of integration and

$$
\mathrm{C}_{0}=\frac{\sqrt{k_{2}^{2}-k_{1}^{2}}}{\cos \mathrm{Q}}-\sin \mathrm{Q}
$$

If we use Mathematica in above system, we get:

Fig.1.

References

[1] L.R. Bishop, There is More Than One Way to Frame a Curve, Amer. Math. Monthly, 82(3) (1975), 246-251.
[2] B. Bukcu, M.K. Karacan, Bishop frame of the spacelike curve with a spacelike binormal in Minkowski 3 space, Selçuk Journal of Applied Mathematics, 11(1) (2010), 15-25.
[3] J. Eells and J.H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86 (1964), 109-160.
[4] R.T. Farouki and C.A. Neff, Algebraic properties of plane offset curves, Comput. Aided Geom. Design, 7 (1990), 101-127.
[5] A. Gray, Modern Differential Geometry of Curves and Surfaces with Mathematica, CRC Press, (1998).
[6] G.Y. Jiang, 2-harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser., A 7(2) (1986), 130-144.
[7] K. Onda, Lorentz Ricci solitons on 3-dimensional lie groups, Geom Dedicata, 147(1) (2010), 313-322.
[8] T. Körpınar and E. Turhan, On characterization of B-canal surfaces in terms of biharmonic B-slant helices according to Bishop frame in Heisenberg group Heis ${ }^{3}$, J. Math. Anal. Appl., 382(2011), 57-65.
[9] E. Loubeau and C. Oniciuc, On the biharmonic and harmonic indices of the Hopf map, Transactions of the American Mathematical Society, 359(11) (2007), 5239-5256.
[10]W. Lü, Rationality of the offsets to algebraic curves and surfaces, Appl. Math. (A Journal of Chinese Universities), 9(Ser.B) (1994), 265-278.
[11] B. O'Neill, Semi-Riemannian Geometry, Academic Press, New York, (1983).
[12]M. Peternell and H. Pottmann, Computing rational parametrizations of canal surfaces, J. Symb. Comput., 23(1997), 255-266.
[13]S. Rahmani, Metriqus de Lorentz sur les groupes de Lie unimodulaires, de dimension trois, Journal of Geometry and Physics, 9(1992), 295-302.
[14]U. Shani and D.H. Ballard, Splines as embeddings for generalized cylinders, Comput. Vision Graphics Image Process, 27(1984), 129-156.
[15]E. Turhan and T. Körpınar, On characterization of timelike horizontal biharmonic curves in the Lorentzian Heisenberg group Heis ${ }^{3}$, Zeitschrift für Naturforschung A- A Journal of Physical Sciences, 65a(2010), 641-648.
[16]E. Turhan and T. Körpınar, On characterization canal surfaces around timelike horizontal biharmonic curves in Lorentzian Heisenberg group Heis ${ }^{3}$, Zeitschrift für Naturforschung A- A Journal of Physical Sciences, 66a(2011), 441-449.

