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Abstract

In this paper we consider the decay rate and the blow up of solutions for the
initial and Dirichlet boundary value problem for coupled a class of nonlinear
higher order wave equations, in a bounded domain.
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1 Introduction

In this paper we consider the following initial-boundary value problem






















utt + Pu+ ut = f1 (u, v) , (x, t) ∈ Ω× (0, T ) ,
vtt + Pv + vt = f2 (u, v) , (x, t) ∈ Ω× (0, T ) ,
u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,
v (x, 0) = v0 (x) , vt (x, 0) = v1 (x) , x ∈ Ω,
Dαu (x, t) = Dαv (x, t) = 0, |α| ≤ m− 1, x ∈ ∂Ω,

(1.1)

where P = (−△)m , m ≥ 1 is a natural number, Ω is a bounded domain

with smooth boundary ∂Ω in Rn; α = (α1, α2, ..., αn) , |α| =
n
∑

i=1

αi, Dα =

n
∏

i=1

∂αi

∂x
αi
i

, x = (x1, x2, ..., xn) .
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The motivation of our work is due to some results regarding higher-order
wave equation. A single wave equation of the problem (1.1) becomes as fol-
lowing

utt + (−△)m u+ g (ut) = |u|p−1
u. (1.2)

Whenm = 1 and g (ut) = ut, the equation in (1.2) becomes a wave equation

utt −△u+ ut = |u|p−1
u, (1.3)

was considered by many authors, see [2, 4, 5]. In [4], Ikehata showed certain
decay rate for the total energy E (t) and L2 norm of a solution to equation
(1.3). Also, in [2, 5], the authors obtained a time-decay result.

When m = 2, the equation in (1.2) becomes a Petrovsky equation, studied
by many authors [8, 11], for g (ut) = |ut|q−1

ut (q > 1).
Recently, Ye [12] investigated equation (1.2) for m ≥ 1 and g (ut) =

|ut|q−1
ut (q > 1), and showed the existence of global solutions if the initial

energy is sufficiently small. Also, Zhou et. al. [13] extended the results of [12].
In this paper, under some restrictions on the initial data, we establish the

uniform decay rates. After that, we show blow up of solution with negative
and nonnegative initial energy, using the same techniques as in [7].

This paper is organized as follows. In section 2, we present some lemmas,
and the local existence theorem. In section 3, the global existence and the
decay of the solution are given. In section 4, we show the blow up properties
of solution.

2 Preliminaries

In this section, we shall give some assumptions and lemmas which will be used
throughout this work. Let ‖.‖ and ‖.‖p denote the usual L2 (Ω) norm and
Lp (Ω) norm, respectively.

Concerning the functions f1 (u, v) and f2 (u, v) , we take

f1 (u, v) =
[

k |u+ v|2(r+1) (u+ v) + l |u|r u |v|r+2
]

,

f2 (u, v) =
[

k |u+ v|2(r+1) (u+ v) + l |u|r+2 |v|r v
]

,

where k, l > 0 are constants and r satisfies

{

−1 < r if n ≤ 2m,

−1 < r ≤ 3m−n
n−2m

if n > 2m.
(2.1)

According to the above equalities can easily verify that

u f1 (u, v) + vf2 (u, v) = 2 (r + 2)F (u, v) , ∀ (u, v) ∈ R2, (2.2)
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where

F (u, v) =
1

2 (r + 2)

[

k |u+ v|2(r+2) + 2l |uv|r+2
]

. (2.3)

We have the following result.

Lemma 2.1 [9]. There exist two positive constants c0 and c1 such that

c0

(

|u|2(r+2) + |v|2(r+2)
)

≤ 2 (r + 2)F (u, v) ≤ c1

(

|u|2(r+2) + |v|2(r+2)
)

(2.4)

is satisfied.
Let’s define

J (t) =
1

2

(

∥

∥

∥
P

1
2u
∥

∥

∥

2

+
∥

∥

∥
P

1
2v
∥

∥

∥

2
)

−
∫

Ω

F (u, v) dx, (2.5)

I (t) =
∥

∥

∥
P

1
2u
∥

∥

∥

2

+
∥

∥

∥
P

1
2v
∥

∥

∥

2

− 2 (r + 2)

∫

Ω

F (u, v) dx, (2.6)

and also the energy function as follows

E (t) =
1

2

(

‖ut‖2 + ‖vt‖2
)

+
1

2

(

∥

∥

∥
P

1
2u
∥

∥

∥

2

+
∥

∥

∥
P

1
2v
∥

∥

∥

2
)

−
∫

Ω

F (u, v) dx. (2.7)

Lemma 2.2. E (t) is a nonincreasing function for t ≥ 0 and

E ′ (t) = −
(

‖ut‖2 + ‖vt‖2
)

≤ 0. (2.8)

Proof. Multiplying first equation of (1.1) by ut and second equation by
vt, integrating over Ω using integrating by parts and summing up the product
results, we get

E (t)− E (0) = −
∫ t

0

(

‖uτ‖2 + ‖vτ‖2
)

dτ for t ≥ 0. (2.9)

Moreover, the following energy inequality holds:

E (t) +

∫ t

s

(

‖uτ‖2 + ‖vτ‖2
)

dτ ≤ E (s) , for 0 ≤ s ≤ t < T. (2.10)

Lemma 2.3 (Sobolev-Poincare inequality) [1]. If 2 ≤ p ≤ 2q

[n−2q]+
(2 ≤ p < ∞

if n = 2q) , then

‖u‖p ≤ C∗

∥

∥

∥
(−△)

q

2 u
∥

∥

∥
for u ∈ H

q
0 (Ω) (2.11)

holds with some constant C∗, where we put [a]+ = max {0, a} , 1
[a]+

= ∞ if

[a]+ = 0.
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The following integral inequality plays an important role in our proof of
the energy decay of the solutions to problem (1.1).

Lemma 2.4 [6]. Let h : [0,∞) −→ [0,∞) be a nonincreasing function and
assume that there exists a constant c > 0 such that

∫ ∞

t

h (τ) dτ ≤ ch (t) , ∀t ∈ [0,∞) .

Then we have
h (t) ≤ h (0) e1−tc−1

, ∀t ≥ c.

Lemma 2.5 [7]. Let δ > 0 and B (t) ∈ C2 (0,∞) be a nonnegative function
satisfying

B′′ (t)− 4 (δ + 1)B′ (t) + 4 (δ + 1)B (t) ≥ 0.

If
B′ (0) > r2B (0) +K0,

with r2 = 2 (δ + 1) − 2
√

(δ + 1) δ, then B′ (t) > K0 for t > 0, where K0 is a
constant.

Lemma 2.6 [7]. If H (t) is a nonincreasing function on [t0,∞) and satisfies
the differential inequality

[H ′ (t)]
2 ≥ a+ b [H (t)]2+

1
δ , for t ≥ t0,

where a > 0, b ∈ R, then there exists a finite time T ∗ such that

lim
t−→T ∗−

H (t) = 0.

Upper bounds for T ∗ are estimated as follows:
(i) If b < 0 and H (t0) < min

{

1,
√

−a
b

}

then

T ∗ ≤ t0 +
1√
−b

ln

√

−a
b

√

−a
b
−H (t0)

.

(ii) If b = 0, then

T ∗ ≤ t0 +
H (t0)

H ′ (t0)
.

(iii) If b > 0, then

T ∗ ≤ H (t0)√
a

or T ∗ ≤ t0 + 2
3δ+1
2δ

δc√
a

[

1− (1 + cH (t0))
− 1

2δ

]

,

where c =
(

a
b

)2+ 1
δ .
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Next, we state the local existence theorem that can be established by com-
bining arguments of [3, 8].

Theorem 2.1. (Local existence) Suppose that (2.1) holds, and further
(u0, v0) ∈ Hm

0 (Ω) × Hm
0 (Ω) , (u1, v1) ∈ L2 (Ω) × L2 (Ω) . Then problem (1.1)

has a unique local solution

u, v ∈ C ([0, T ) ;Hm
0 (Ω)) ,

ut ∈ C
(

[0, T ) ;L2 (Ω)
)

∩L2 (Ω× [0, T )) and vt ∈ C
(

[0, T ) ;L2 (Ω)
)

∩L2 (Ω× [0, T )) .

Moreover, at least one of the following statements holds true:
i) T = ∞,

ii) ‖ut‖2 + ‖vt‖2 +
∥

∥

∥
P

1
2u
∥

∥

∥

2

+
∥

∥

∥
P

1
2v
∥

∥

∥

2

−→ ∞ as t −→ T−.

Remark 2.1. We denote by C various positive constants which may be
different at different occurrences.

3 Global Existence and Energy Decay

In this section, we consider the global existence and energy decay of solutions
for problem (1.1).

Lemma 3.1 [9]. Suppose that (2.1) holds. Then there exists η > 0 such
that for any (u, v) ∈ Hm

0 (Ω)×Hm
0 (Ω) , the inequality

‖u+ v‖2(r+2)
2(r+2) + 2 ‖uv‖r+2

r+2 ≤ η

(

∥

∥

∥
P

1
2u
∥

∥

∥

2

+
∥

∥

∥
P

1
2v
∥

∥

∥

2
)r+2

(3.1)

is satisfied.
To prove our result and for the sake of simplicity, we take k = l = 1 and

introduce

B = η
1

2(r+2) , α∗ = B− r+2
r+1 , E1 =

(

1

2
− 1

2 (r + 2)

)

α2
∗, (3.2)

where η is the optimal constant in (3.1). Next, we will state and prove a lemma
which similar to the one introduced firstly by Vitillaro in [10] to study a class
of a single wave equation.

Lemma 3.2. Suppose that (2.1) holds. Let (u, v) be the solution of system
(1.1). Assume further that E (0) < E1 and

(

∥

∥

∥
P

1
2u0

∥

∥

∥

2

+
∥

∥

∥
P

1
2v0

∥

∥

∥

2
)

1
2

< α∗. (3.3)
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Then
(

∥

∥

∥
P

1
2u
∥

∥

∥

2

+
∥

∥

∥
P

1
2v
∥

∥

∥

2
)

1
2

< α∗, (3.4)

for all t ∈ [0, T ) .

Proof. First have from (2.7), (2.11), (3.1) and the definition of B,

E (t) ≥ 1

2

(

∥

∥

∥
P

1
2u
∥

∥

∥

2

+
∥

∥

∥
P

1
2v
∥

∥

∥

2
)

−
∫

Ω

F (u, v) dx

=
1

2

(

∥

∥

∥
P

1
2u
∥

∥

∥

2

+
∥

∥

∥
P

1
2v
∥

∥

∥

2
)

− 1

2 (r + 2)

(

‖u+ v‖2(r+2)
2(r+2) + 2 ‖uv‖r+2

r+2

)

≥ 1

2

(

∥

∥

∥
P

1
2u
∥

∥

∥

2

+
∥

∥

∥
P

1
2v
∥

∥

∥

2
)

− 1

2 (r + 2)
η

(

∥

∥

∥
P

1
2u
∥

∥

∥

2

+
∥

∥

∥
P

1
2v
∥

∥

∥

2
)r+2

≥ 1

2

(

∥

∥

∥
P

1
2u
∥

∥

∥

2

+
∥

∥

∥
P

1
2v
∥

∥

∥

2
)

− B2(r+2)

2 (r + 2)

(

∥

∥

∥
P

1
2u
∥

∥

∥

2

+
∥

∥

∥
P

1
2v
∥

∥

∥

2
)r+2

.(3.5)

So we get

E (t) ≥ G

(

∥

∥

∥
P

1
2u
∥

∥

∥

2

+
∥

∥

∥
P

1
2v
∥

∥

∥

2
)

for t ≥ 0, (3.6)

where G (α) = 1
2
α2 − B2(r+2)

2(r+2)
α2(r+2). Note that G (α) has the maximum at

α∗ =
1

B
r+2
r+1

and maximum value is

E1 = G (α∗) =

(

1

2
− 1

2 (r + 2)

)

α2
∗. (3.7)

Now we establish (3.4) by contradiction. Suppose (3.4) does not hold, then
it follows from the continuity of (u (t) , v (t)) that there exists t0 ∈ (0, T ) such
that

(

∥

∥

∥
P

1
2u (t0)

∥

∥

∥

2

+
∥

∥

∥
P

1
2v (t0)

∥

∥

∥

2
)

1
2

= α∗. (3.8)

By (3.5), we see that

E (t0) ≥ G

[

(

∥

∥

∥
P

1
2u (t0)

∥

∥

∥

2

+
∥

∥

∥
P

1
2v (t0)

∥

∥

∥

2
)

1
2

]

= G (α∗) = E1. (3.9)

This is impossible since E (t) ≤ E (0) < E1, t ≥ 0. Hence (3.4) is established.

Theorem 3.1. (Global existence and energy decay) Assume that (2.1)
hold. If the initial data (u0, u1) ∈ Hm

0 (Ω)×L2 (Ω) , (v0, v1) ∈ Hm
0 (Ω)×L2 (Ω) ,

satisfy E (0) < E1 and

(

∥

∥

∥
P

1
2u0

∥

∥

∥

2

+
∥

∥

∥
P

1
2v0

∥

∥

∥

2
)

1
2

< α∗, (3.10)
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where the constants α∗ and E1 are defined in (3.2), then the corresponding
solution to system (1.1) globally exists, i.e., T = ∞.

Moreover, if

1− η

(

2 (r + 2)

r + 1
E (0)

)r+1

> 0, (3.11)

then we have the following decay estimates

E (t) ≤ E (0) e1−µC−1
4 t (3.12)

for every t ≥ C4

µ
, where C4 is positive constant.

Proof. First, we prove that T = ∞. Since E (0) < E1 and

(

∥

∥

∥
P

1
2u0

∥

∥

∥

2

+
∥

∥

∥
P

1
2v0

∥

∥

∥

2
)

1
2

< α∗,

it follows from Lemma 3.2 that
∥

∥

∥
P

1
2u
∥

∥

∥

2

+
∥

∥

∥
P

1
2v
∥

∥

∥

2

< α2
∗ = η−

1
r+1

which implies that

I (t) =
∥

∥

∥
P

1
2u
∥

∥

∥

2

+
∥

∥

∥
P

1
2v
∥

∥

∥

2

− 2 (r + 2)

∫

Ω

F (u, v) dx

≥
∥

∥

∥
P

1
2u
∥

∥

∥

2

+
∥

∥

∥
P

1
2v
∥

∥

∥

2

− η

(

∥

∥

∥
P

1
2u
∥

∥

∥

2

+
∥

∥

∥
P

1
2v
∥

∥

∥

2
)r+2

≥ 0

for t ∈ [0, T ) . Furthermore, (2.5) and (2.6), we get

J (t) =
r + 1

2 (r + 2)

(

∥

∥

∥
P

1
2u
∥

∥

∥

2

+
∥

∥

∥
P

1
2v
∥

∥

∥

2
)

+
1

2 (r + 2)
I (t)

≥ r + 1

2 (r + 2)

(

∥

∥

∥
P

1
2u
∥

∥

∥

2

+
∥

∥

∥
P

1
2v
∥

∥

∥

2
)

.

From (2.7) and E (t) ≤ E (0) , we deduce that

∥

∥

∥
P

1
2u
∥

∥

∥

2

+
∥

∥

∥
P

1
2 v
∥

∥

∥

2

≤ 2 (r + 2)

r + 1
J (t) ≤ 2 (r + 2)

r + 1
E (t) ≤ 2 (r + 2)

r + 1
E (0) (3.13)

for t ∈ [0, T ) . So it follows from (3.13) and Lemma 2.2

r + 1

2 (r + 2)

(

∥

∥

∥
P

1
2u
∥

∥

∥

2

+
∥

∥

∥
P

1
2v
∥

∥

∥

2
)

+
1

2

(

‖ut‖2 + ‖vt‖2
)

≤ J (t) +
1

2

(

‖ut‖2 + ‖vt‖2
)

= E (t) ≤ E (0) < E1, ∀t ∈ [0, T )
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which implies

‖ut‖2 + ‖vt‖2 +
∥

∥

∥
P

1
2u
∥

∥

∥

2

+
∥

∥

∥
P

1
2v
∥

∥

∥

2

< C ′E1, (3.14)

where C ′ = max
{

1
2
,
2(r+2)
r+1

}

. Then, by Theorem 2.1, we have the global exis-

tence result.
Next, we want to derive the decay rate of energy function for problem

(1.1). By multiplying first equation of system (1.1) by u and second equation
of system (1.1) by v, integrating them over Ω × [t1, t2] (0 ≤ t1 ≤ t2) , using
integration by parts and summing up, we have

∫

Ω

uutdx|t2t1 −
∫ t2

t1

‖ut‖2 dt+
∫

Ω

vvtdx|t2t1 −
∫ t2

t1

‖vt‖2 dt

+

∫ t2

t1

∥

∥

∥
P

1
2u
∥

∥

∥

2

dt+

∫ t2

t1

∥

∥

∥
P

1
2v
∥

∥

∥

2

dt+

∫ t2

t1

∫

Ω

uutdxdt+

∫ t2

t1

∫

Ω

uutdxdt

=

∫ t2

t1

∫

Ω

[uf1 (u, v) + vf2 (u, v)] dxdt.

It follows from (2.7)

2

∫ t2

t1

E (t) dt− 2 (r + 1)

∫ t2

t1

∫

Ω

F (u, v) dxdt

= −
∫

Ω

(uut + vvt) dx|t2t1 + 2

∫ t2

t1

(

‖ut‖2 + ‖vt‖2
)

dt−
∫ t2

t1

∫

Ω

(uut + uut) dxdt

= A1 + A2 + A3. (3.15)

In what follows we will estimate A1, A2, A3 in (3.15). Firstly, by Hölder,
Young and Sobolev Poincare inequalities, we have
∫

Ω

(|uut|+ |vvt|) dx ≤ 1

2
‖u (t)‖2 + 1

2
‖ut (t)‖2 +

1

2
‖v (t)‖2 + 1

2
‖vt (t)‖2

≤ C

2

∥

∥

∥
P

1
2u (t)

∥

∥

∥

2

+
1

2
‖ut (t)‖2 +

C

2

∥

∥

∥
P

1
2v (t)

∥

∥

∥

2

+
1

2
‖vt (t)‖2 .

Then, by (3.13), we have

A1 ≤
∫

Ω

(|uut|+ |vvt|) dx|t2t1 ≤ 2C1E (t1) . (3.16)

For A2 in (3.15), applying ‖ut‖2 + ‖vt‖2 ≤ −E ′ (t) from (2.8), we have

A2 = 2

∫ t2

t1

(

‖ut‖2 + ‖vt‖2
)

dt ≤ 2C2E (t1) . (3.17)
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We also have the following estimate

A3 =

∫ t2

t1

∫

Ω

(uut + vvt) dxdt

=
1

2

∫ t2

t1

d

dt
‖u‖2 dt+ 1

2

∫ t2

t1

d

dt
‖v‖2 dt

=
1

2

(

‖u (t2)‖2 − ‖u (t1)‖2
)

+
1

2

(

‖v (t2)‖2 − ‖v (t1)‖2
)

≤ 2 (r + 2)

r + 1
E (t1) = C3E (t1) . (3.18)

Inserting estimates (3.16)-(3.18) into (3.15), we arrive at

2

∫ t2

t1

E (t) dt− 2 (r + 1)

∫ t2

t1

∫

Ω

F (u, v) dxdt ≤ C4E (t1) , (3.19)

where C4 = 2C1 + 2C2 + C3.

On the other hand, from (3.1) and (3.13), we have

2 (r + 1)

∫

Ω

F (u, v) dx =
r + 1

r + 2

(

‖u+ v‖2(r+2)
2(r+2) + 2 ‖uv‖r+2

r+2

)

≤ r + 1

r + 2
η

(

∥

∥

∥
P

1
2u
∥

∥

∥

2

+
∥

∥

∥
P

1
2v
∥

∥

∥

2
)r+2

≤ 2η

(

2 (r + 2)

r + 1
E (0)

)r+1

E (t)

which implies

2

∫ t2

t1

E (t) dt− 2 (r + 1)

∫ t2

t1

∫

Ω

F (u, v) dxdt

≥ 2

(

1− η

(

2 (r + 2)

r + 1
E (0)

)r+1
)

∫ t2

t1

E (t) dt. (3.20)

Noting that E (0) < E1, we see

1− η

(

2 (r + 2)

r + 1
E (0)

)r+1

> 0.

Thus, combining (3.19) and (3.20), we have

2

(

1− η

(

2 (r + 2)

r + 1
E (0)

)r+1
)

∫ t2

t1

E (t) dt ≤ C4E (t1) ,
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that is

µ

∫ t2

t1

E (t) dt ≤ C4E (t1) , (3.21)

where µ = 2

(

1− η
(

2(r+2)
r+1

E (0)
)r+1

)

.

We rewrite (3.21) as

µ

∫ ∞

t

E (t) dt ≤ C4E (t) (3.22)

for every t ∈ [0,∞) .
Since µ > 0 from the assumption of conditions, by Lemma 2.4, we have

E (t) ≤ E (0) e1−µC−1
4 t

for every t ≥ C4

µ
. The proof is completed.

4 Blow up of Solution

In this section, we deal with the blow up of solution of problem (1.1).

Definition 4.1. A solution (u, v) of (1.1) is called blow-up if there exists
a finite time T ∗ such that

lim
t−→T ∗−

{
∫

Ω

(

u2 + v2
)

dx+

∫ t

0

∫

Ω

(

u2 + v2
)

dxds

}

= ∞. (4.1)

Let

a (t) =

∫

Ω

(

u2 + v2
)

dx+

∫ t

0

∫

Ω

(

u2 + v2
)

dxds, for t ≥ 0. (4.2)

Lemma 4.1. Assume (2.1) holds and that 0 < δ ≤ r
4
, then we have

a′′ (t) ≥ 4 (δ + 1)

∫

Ω

(

u2
t + v2t

)

dx+(−4− 8δ)E (0)+(4 + 8δ)

∫ t

0

(

‖ut‖2 + ‖vt‖2
)

dt.

(4.3)
Proof. From (4.2), we have

a′ (t) = 2

∫

Ω

(uut + vvt) dx+ ‖u‖2 + ‖v‖2 . (4.4)

By (1.1) and Divergence theorem, we get

a′′ (t) = 2

∫

Ω

(

u2
t + v2t

)

dx+ 2

∫

Ω

(uutt + vvtt) dx+ 2

∫

Ω

(uut + vvt) dx

= 2

∫

Ω

(

u2
t + v2t

)

dx− 2

(

∥

∥

∥
P

1
2u
∥

∥

∥

2

+
∥

∥

∥
P

1
2 v
∥

∥

∥

2
)

+2 (r + 2)

∫

Ω

F (u, v) dx. (4.5)
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Then from (2.9) and (4.5), we have

a′′ (t) ≥ 4 (δ + 1)

∫

Ω

(

u2
t + v2t

)

dx+ (−4− 8δ)E (0) + (4 + 8δ)

∫ t

0

(

‖ut‖2 + ‖vt‖2
)

dt

+4δ

(

∥

∥

∥
P

1
2u
∥

∥

∥

2

+
∥

∥

∥
P

1
2v
∥

∥

∥

2
)

+ (2r − 8δ)

∫

Ω

F (u, v) dx.

Since 0 < δ ≤ r
4
, 2r − 8δ ≥ 0, we obtain (4.3).

Lemma 4.2. Assume (2.1) holds and one of the following statements are
satisfied:

(i) E (0) < 0,
(ii) E (0) = 0, and

∫

Ω
(u0u1 + v0v1) dx > 0,

(iii) E (0) > 0, and

a′ (0) > r2

[

a (0) +
K1

4 (δ + 1)

]

+
(

‖u0‖2 + ‖v0‖2
)

(4.6)

holds.
Then a′ (t) > ‖u0‖2 + ‖v0‖2 for t > t∗, where t0 = t∗ is given by (4.7) in

case (i) and t0 = 0 in cases (ii) and (iii).
Where K1 and t∗ are defined in (4.12) and (4.7), respectively.

Proof. (i) If E (0) < 0, then from (4.3), we have

a′ (t) ≥ a′ (0)− 4 (1 + 2δ)E (0) t, t ≥ 0.

Thus we get a′ (t) > ‖u0‖2 + ‖v0‖2 for t > t∗, where

t∗ = max

{

a′ (0)−
(

‖u0‖2 + ‖v0‖2
)

4 (1 + 2δ)E (0)
, 0

}

. (4.7)

(ii) If E (0) = 0, and
∫

Ω
(u0u1 + v0v1) dx > 0, then a′′ (t) ≥ 0 for t ≥ 0. We

have a′ (t) > ‖u0‖2 + ‖v0‖2 , t ≥ 0.
(iii) If E (0) > 0, we first note that

2

∫ t

0

∫

Ω

uutdxdt = ‖u‖2 − ‖u0‖2 . (4.8)

By Hölder inequality and Young inequality, we have from (4.8)

‖u‖2 ≤ ‖u0‖2 +
∫ t

0

‖u‖2 dt+
∫

Ω

‖ut‖2 dt. (4.9)
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Similarly,

‖v‖2 ≤ ‖v0‖2 +
∫ t

0

‖v‖2 dt+
∫

Ω

‖vt‖2 dt. (4.10)

By Hölder inequality, Young inequality and inequalities (4.9) and (4.10), we
have

a′ (t) ≤ a (t)+‖u0‖2+‖v0‖2+
∫

Ω

(

u2
t + v2t

)

dx+

∫ t

0

(

‖ut‖2 + ‖vt‖2
)

dt. (4.11)

Hence, by (4.3) and (4.11), we obtain

a′′ (t)− 4 (δ + 1) a′ (t) + 4 (δ + 1) a (t) +K1 ≥ 0,

where
K1 = (4 + 8δ)E (0) + 4 (δ + 1)

(

‖u0‖2 + ‖v0‖2
)

. (4.12)

Let

b (t) = a (t) +
K1

4 (δ + 1)
, t > 0.

Then b (t) satisfies Lemma 2.5. Consequently, from (4.6), a′ (t) >
(

‖u0‖2 + ‖v0‖2
)

, t >

0, where r2 is given in Lemma 2.5.

Theorem 4.1. Assume (2.1) holds and one of the following statements
are satisfied ( for 0 < δ ≤ r

4
):

(i) E (0) < 0,
(ii) E (0) = 0, and

∫

Ω
(u0u1 + v0v1) dx > 0,

(iii) 0 < E (0) <
(a′(t0)−(‖u0‖

2+‖v0‖
2))

2

8[a(t0)+(T1−t0)(‖u0‖
2+‖v0‖

2)]
, and (4.6) holds.

Then the solution (u, v) blows up in finite time T ∗ in the sense of (4.1). In
case (i),

T ∗ ≤ t0 −
H (t0)

H ′ (t0)
. (4.13)

Furthermore, if H (t0) < min
{

1,
√

−a
b

}

, we have

T ∗ ≤ t0 +
1√
−b

ln

√

−a
b

√

−a
b
−H (t0)

, (4.14)

where

a = δ2H2+ 2
δ (t0)

[

(

a′ (t0)− ‖u0‖2 − ‖v0‖2
)2 − 8E (0)H− 1

δ (t0)
]

> 0, (4.15)

b = 8δ2E (0) . (4.16)
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In case (ii),

T ∗ ≤ t0 −
H (t0)

H ′ (t0)
. (4.17)

In case (iii),

T ∗ ≤ H (t0)√
a

or T ∗ ≤ t0 + 2
3δ+1
2δ

(a

b

)2+ 1
δ δ√

a

{

1−
[

1 +
(a

b

)2+ 1
δ

H (t0)

]− 1
2δ

}

,

(4.18)
where a and b are given (4.15), (4.16).

Proof. Let

H (t) =
[

a (t) + (T1 − t)
(

‖u0‖2 + ‖v0‖2
)]−δ

, for t ∈ [0, T1] , (4.19)

where T1 > 0 is a certain constant which will be specified later. Then we get

H ′ (t) = −δ
[

a (t) + (T1 − t)
(

‖u0‖2 + ‖v0‖2
)]−δ−1 [

a′ (t)−
(

‖u0‖2 + ‖v0‖2
)]

= −δH1+ 1
δ (t)

[

a′ (t)−
(

‖u0‖2 + ‖v0‖2
)]

, (4.20)

H ′′ (t) = −δH1+ 2
δ (t) a′′ (t)

[

a (t) + (T1 − t)
(

‖u0‖2 + ‖v0‖2
)]

+δH1+ 2
δ (t) (1 + δ)

[

a′ (t)−
(

‖u0‖2 + ‖v0‖2
)]2

= −δH1+ 2
δ (t)V (t) . (4.21)

where

V (t) = a′′ (t)
[

a (t) + (T1 − t)
(

‖u0‖2 + ‖v0‖2
)]

−(1 + δ)
[

a′ (t)−
(

‖u0‖2 + ‖v0‖2
)]2

.

(4.22)
For simplicity of calculation, we define

Pu =
∫

Ω
u2dx, Ru =

∫

Ω
u2
tdx, Qu =

∫ t

0
‖u‖2 dt, Su =

∫ t

0
‖ut‖2 dt,

Pv =
∫

Ω
v2dx, Rv =

∫

Ω
v2t dx, Qv =

∫ t

0
‖v‖2 dt, Sv =

∫ t

0
‖vt‖2 dt.

From (4.4), (4.8) and Hölder inequality, we get

a′ (t) = 2

∫

Ω

(uut + vvt) dx+ ‖u0‖2 + ‖v0‖2 + 2

∫ t

0

∫

Ω

(uut + vvt) dxdt(4.23)

≤ 2
(

√

RuPu +
√

QuSu +
√

RvPv +
√

QvSv

)

+ ‖u0‖2 + ‖v0‖2 .

If case (i) or (ii) holds, by (4.3) we have

a′′ (t) ≥ (−4− 8δ)E (0) + 4 (1 + δ) (Ru + Su +Rv + Sv) . (4.24)
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Thus, from (4.19) and (4.22)- (4.24), we obtain

V (t) ≥ [(−4− 8δ)E (0) + 4 (1 + δ) (Ru + Su +Rv + Sv)]H
− 1

δ (t)

−4 (1 + δ)
(

√

RuPu +
√

QuSu +
√

RvPv +
√

QvSv

)2

.

From (4.2)

a (t) =

∫

Ω

(

u2 + v2
)

dx+

∫ t

0

∫

Ω

(

u2 + v2
)

dxds = Pu + Pv +Qu +Qv.

From the above inequality and (4.19), we get

V (t) ≥ (−4− 8δ)E (0)H− 1
δ (t) + 4 (1 + δ)

[

(Ru + Su +Rv + Sv) (T1 − t)
(

‖u0‖2 + ‖v0‖2
)

+Θ(t)
]

,

where

Θ (t) = (Ru + Su +Rv + Sv) (Pu +Qu + Pv +Qv)

−
(

√

RuPu +
√

QuSu +
√

RvPv +
√

QvSv

)2

.

By the Schwarz inequality, and Θ (t) being nonnegative, we have

V (t) ≥ (−4− 8δ)E (0)H− 1
δ (t) , t ≥ t0. (4.25)

Therefore, by (4.21) and (4.25), we get

H ′′ (t) ≤ 4δ (1 + 2δ)E (0)H1+ 1
δ (t) , t ≥ t0. (4.26)

By Lemma 4.2, we know that H ′ (t) < 0 for t ≥ t0. Multiplying (4.27) by H ′ (t)
and integrating it from t0 to t, we get

H ′2 (t) ≥ a+ bH2+ 1
δ (t)

for t ≥ t0, where a, b are defined in (4.15) and (4.16) respectively.
If case (iii) holds, by the steps of case (i), we get a > 0 if and only if

E (0) <

(

a′ (t0)−
(

‖u0‖2 + ‖v0‖2
))2

8
[

a (t0) + (T1 − t0)
(

‖u0‖2 + ‖v0‖2
)] .

Then by Lemma 2.6, there exists a finite time T ∗ such that lim
t−→T ∗−

H (t) = 0

and upper bound of T ∗ is estimated according to the sign of E (0) . This means
that (4.1) holds.
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