Gen. Math. Notes, Vol. 4, No. 1, May 2011, pp. 50-58
ISSN 2219-7184; Copyright © ICSRS Publication, 2011
www.i-csrs.org
Available free online at http://www.geman.in

On Smarandache TN Curves in Terms of Biharmonic Curves in the Special Three-

 Dimensional ${ }^{\phi-}$ Ricci Symmetric Para-
Sasakian Manifold P

Talat Körpinar and Essin Turhan
Frrat University, Department of Mathematics
23119, Elazı g , Turkey
E-mail: essin.turhan@ gmail.com

(Received: 14-5-11/ Accepted: 27-6-11)

Abstract

In this paper, we study Smarandache TN curves in terms of biharmonic curves in the special three-dimensional ϕ-Ricci symmetric para-Sasakian manifold P . We define a special case of such curves and call it Smarandache TN curves in the special three-dimensional ϕ-Ricci symmetric para-Sasakian manifold P . We construct parametric equations of Smarandache TN curves in terms of biharmonic curve in the special three-dimensional ϕ-Ricci symmetric para-Sasakian manifold P .

Keywords: Biharmonic curve, curvature, para-Sasakian manifold, Smarandache TN curves, torsion.

1 Introduction

The main interest in harmonic maps, Eells and Sampson also envisaged some generalizations and defined biharmonic maps $\varphi:(M, g) \rightarrow(N, h)$ between Riemannian manifolds as critical points of the bienergy functional

$$
E_{2}(\varphi)=\frac{1}{2} \int_{M}|\tau(\varphi)|^{2} v_{g},
$$

where $\tau(\varphi)=\operatorname{trace} \nabla d \varphi$ is the tension field of J that vanishes on harmonic maps. The Euler- Lagrange equation corresponding to E_{2} is given by the vanishing of the bitension field

$$
\begin{equation*}
\tau_{2}(\varphi)=-J^{\varphi}(\tau(\varphi))=-\Delta \tau(\varphi)-\operatorname{trace} R^{N}(d \varphi, \tau(\varphi)) d \varphi, \tag{1.1}
\end{equation*}
$$

where \boldsymbol{J}^{φ} is the Jacobi operator of φ. The equation $\tau_{2}(f)=0$ is called the biharmonic equation. Since J^{φ} is linear, any harmonic map is biharmonic. Therefore, we are interested in proper biharmonic maps, that is non-harmonic biharmonic maps.
Although E_{2} has been on the mathematical scene since the early '60 (when some of its analytical aspects have been discussed) and regularity of its critical points is nowadays a welldeveloped field, a systematic study of the geometry of biharmonic maps has started only recently.
In this paper, we study Smarandache TN curves in terms of biharmonic curves in the special three-dimensional ϕ-Ricci symmetric para-Sasakian manifold P. We define a special case of such curves and call it Smarandache TN curves in the special three-dimensional ϕ-Ricci symmetric para-Sasakian manifold P. We construct parametric equations of Smarandache TN curves in terms of biharmonic curve in the special three-dimensional ϕ-Ricci symmetric paraSasakian manifold P.

2 Special Three-Dimensional ϕ-Ricci Symmetric ParaSasakian Manifold P

An n-dimensional differentiable manifold M is said to admit an almost paracontact Riemannian structure (ϕ, ξ, η, g), where ϕ is a $(1,1)$ tensor field, ξ is a vector field, η is a 1 -form and g is a Riemannian metric on M such that

$$
\begin{gather*}
\phi \xi=0, \eta(\xi)=1, g(X, \xi)=\eta(X), \tag{2.1}\\
\phi^{2}(X)=X-\eta(X) \xi, \tag{2.2}\\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), \tag{2.3}
\end{gather*}
$$

for any vector fields X, Y on M [3].

Definition 2.1. A para-Sasakian manifold M is said to be locally ϕ-symmetric if

$$
\phi^{2}\left(\left(\nabla_{W} R\right)(X, Y) Z\right)=0,
$$

for all vector fields X, Y, Z, W orthogonal to $\xi[3]$.

Definition 2.2 A para-Sasakian manifold M is said to be ϕ-symmetric if

$$
\phi^{2}\left(\left(\nabla_{W} R\right)(X, Y) Z\right)=0
$$

for all vector fields X, Y, Z, W on M.
Definition 2.3 A para-Sasakian manifold M is said to be ϕ-Ricci symmetric if the Ricci operator satisfies

$$
\phi^{2}\left(\left(\nabla_{X} Q\right)(Y)\right)=0
$$

for all vector fields X and Y on M and $S(X, Y)=g(Q X, Y)$.
If X, Y are orthogonal to ξ, then the manifold is said to be locally ϕ-Ricci symmetric.
We consider the three-dimensional manifold

$$
\mathrm{P}=\left\{\left(x^{1}, x^{2}, x^{3}\right) \in \mathbf{R}^{3}:\left(x^{1}, x^{2}, x^{3}\right) \neq(0,0,0)\right\},
$$

where $\left(x^{1}, x^{2}, x^{3}\right)$ are the standard coordinates in R^{3}. We choose the vector fields

$$
\begin{equation*}
\mathbf{e}_{1}=e^{x^{1}} \frac{\partial}{\partial x^{2}}, \mathbf{e}_{2}=e^{x^{1}}\left(\frac{\partial}{\partial x^{2}}-\frac{\partial}{\partial x^{3}}\right), \mathbf{e}_{3}=-\frac{\partial}{\partial x^{1}} \tag{2.4}
\end{equation*}
$$

are linearly independent at each point of P . Let g be the Riemannian metric defined by

$$
\begin{align*}
& g\left(\mathbf{e}_{1}, \mathbf{e}_{1}\right)=g\left(\mathbf{e}_{2}, \mathbf{e}_{2}\right)=g\left(\mathbf{e}_{3}, \mathbf{e}_{3}\right)=1, \tag{2.5}\\
& g\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)=g\left(\mathbf{e}_{2}, \mathbf{e}_{3}\right)=g\left(\mathbf{e}_{1}, \mathbf{e}_{3}\right)=0 .
\end{align*}
$$

Let η be the 1-form defined by

$$
\eta(Z)=g\left(Z, \mathbf{e}_{3}\right) \text { for any } Z \in \chi(\mathrm{P}) .
$$

Let be the (1,1) tensor field defined by

$$
\begin{equation*}
\phi\left(\mathbf{e}_{1}\right)=\mathbf{e}_{2}, \phi\left(\mathbf{e}_{2}\right)=\mathbf{e}_{1}, \phi\left(\mathbf{e}_{3}\right)=0 . \tag{2.6}
\end{equation*}
$$

Then using the linearity of and g we have

$$
\begin{gather*}
\eta\left(\mathbf{e}_{3}\right)=1 \tag{2.7}\\
\phi^{2}(Z)=Z-\eta(Z) \mathbf{e}_{3} \tag{2.8}\\
g(\phi Z, \phi W)=g(Z, W)-\eta(Z) \eta(W) \tag{2.9}
\end{gather*}
$$

for any $Z, W \in \chi(\mathrm{P})$. Thus for $\mathbf{e}_{3}=\xi,(\phi, \xi, \eta, g)$ defines an almost para-contact metric structure on P .
Let ∇ be the Levi-Civita connection with respect to g. Then, we have

$$
\left[\mathbf{e}_{1}, \mathbf{e}_{2}\right]=0,\left[\mathbf{e}_{1}, \mathbf{e}_{3}\right]=\mathbf{e}_{1},\left[\mathbf{e}_{2}, \mathbf{e}_{3}\right]=\mathbf{e}_{2} .
$$

The Riemannian connection ∇ of the metric g is given by

$$
\begin{aligned}
& 2 g\left(\nabla_{X} Y, Z\right)=X g(Y, Z)+Y g(Z, X)-Z g(X, Y) \\
& \quad-g(X,[Y, Z])-g(Y,[X, Z])+g(Z,[X, Y])
\end{aligned}
$$

which is known as Koszul's formula.
Taking $\mathbf{e}_{3}=\xi$ and using the Koszul's formula, we obtain

$$
\begin{align*}
& \nabla_{\mathbf{e}_{1}} \mathbf{e}_{1}=-\mathbf{e}_{3}, \nabla_{\mathbf{e}_{1}} \mathbf{e}_{2}=0, \quad \nabla_{\mathbf{e}_{1}} \mathbf{e}_{3}=\mathbf{e}_{1,} \\
& \nabla_{\mathbf{e}_{2}} \mathbf{e}_{1}=0, \quad \nabla_{\mathbf{e}_{2}} \mathbf{e}_{2}=-\mathbf{e}_{3}, \nabla_{\mathbf{e}_{2}} \mathbf{e}_{3}=\mathbf{e}_{2,} \tag{2.10}\\
& \nabla_{\mathbf{e}_{3}} \mathbf{e}_{1}=0, \quad \nabla_{\mathbf{e}_{3}} \mathbf{e}_{2}=0, \quad \nabla_{\mathbf{e}_{3}} \mathbf{e}_{3}=0 .
\end{align*}
$$

Moreover we put

$$
R_{i j k}=R\left(\mathbf{e}_{i}, \mathbf{e}_{j}\right) \mathbf{e}_{k}, R_{i j k l}=R\left(\mathbf{e}_{i}, \mathbf{e}_{j}, \mathbf{e}_{k}, \mathbf{e}_{l}\right),
$$

where the indices i, j, k and l take the values 1,2 and 3.

$$
R_{122}=-\mathbf{e}_{1,}, R_{133}=-\mathbf{e}_{1}, R_{233}=-\mathbf{e}_{2},
$$

and

$$
\begin{equation*}
R_{1212}=R_{1313}=R_{2323}=1 \tag{2.11}
\end{equation*}
$$

3 Biharmonic Curves in the Special Three-Dimensional ϕ-Ricci Symmetric Para-Sasakian Manifold P

Biharmonic equation for the curve γ reduces to

$$
\begin{equation*}
\nabla_{\mathbf{T}}^{3} \mathbf{T}-R\left(\mathbf{T}, \nabla_{\mathbf{T}} \mathbf{T}\right) \mathbf{T}=0, \tag{3.1}
\end{equation*}
$$

that is, γ is called a biharmonic curve if it is a solution of the equation (3.1).
Let us consider biharmonicity of curves in the special three-dimensional ϕ-Ricci symmetric para-Sasakian manifold P. Let $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ be the Frenet frame field along γ. Then, the Frenet frame satisfies the following Frenet--Serret equations:

$$
\begin{align*}
& \nabla_{\mathrm{T}} \mathbf{T}=\kappa \mathbf{N}, \\
& \nabla_{\mathrm{T}} \mathbf{N}=-\kappa \mathbf{T}+\tau \mathbf{B}, \tag{3.2}\\
& \nabla_{\mathrm{T}} \mathbf{B}=-\tau \mathbf{N},
\end{align*}
$$

where κ is the curvature of γ and τ its torsion and

$$
\begin{aligned}
& g(\mathbf{T}, \mathbf{T})=1, g(\mathbf{N}, \mathbf{N})=1, g(\mathbf{B}, \mathbf{B})=1, \\
& g(\mathbf{T}, \mathbf{N})=g(\mathbf{T}, \mathbf{B})=g(\mathbf{N}, \mathbf{B})=0 .
\end{aligned}
$$

With respect to the orthonormal basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$, we can write

$$
\begin{align*}
& \mathbf{T}=T_{1} \mathbf{e}_{1}+T_{2} \mathbf{e}_{2}+T_{3} \mathbf{e}_{3}, \\
& \mathbf{N}=N_{1} \mathbf{e}_{1}+N_{2} \mathbf{e}_{2}+N_{3} \mathbf{e}_{3}, \tag{3.3}\\
& \mathbf{B}=\mathbf{T} \times \mathbf{N}=B_{1} \mathbf{e}_{1}+B_{2} \mathbf{e}_{2}+B_{3} \mathbf{e}_{3} .
\end{align*}
$$

Theorem 3.1 $\gamma: I \rightarrow \mathrm{P}$ is a biharmonic curve if and only if

$$
\begin{align*}
& \kappa=\text { constant } \neq 0, \\
& \kappa^{2}+\tau^{2}=1, \tag{3.4}\\
& \tau=\text { constant. }
\end{align*}
$$

Proof. Using (3.1) and Frenet formulas (3.2), we have (3.4).
Theorem 3.2 All of biharmonic curves in the special three-dimensional ϕ-Ricci symmetric para-Sasakian manifold P are helices.

4 Smarandache TN Curve in the Special ThreeDimensional ϕ-Ricci Symmetric Para-Sasakian Manifold P

Definition 4.1 Let $\gamma: I \rightarrow \mathrm{P}$ be a unit speed regular curve in the special threedimensional ϕ-Ricci symmetric para-Sasakian manifold P , whose position
vector is composed by Frenet frame vectors on another regular curve, is called a Smarandache curve.

Now, let us define a special form of Definition 4.1.
Definition 4.2 Let $\gamma: I \rightarrow \mathrm{P}$ be a unit speed regular curve in the special threedimensional ϕ-Ricci symmetric para-Sasakian manifold P and $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ be its moving Frenet-Serret frame. Smarandache TN curves are defined by

$$
\begin{equation*}
\Omega=\frac{1}{\sqrt{2 \kappa^{2}+\tau^{2}}}(\mathbf{T}+\mathbf{N}) \tag{4.1}
\end{equation*}
$$

Theorem 4.3 Let $\gamma: I \rightarrow \mathrm{P}$ be a unit speed spacelike biharmonic curve and Ω its Smarandache TN curve on P . Then, the parametric equations of Ω are

$$
\begin{align*}
& x_{\Omega}^{1}(s)=\frac{1}{\sqrt{2 \kappa^{2}+\tau^{2}}}\left(-\cos \varphi-\frac{\sin ^{2} \varphi}{2 \kappa} s^{2}+\frac{\bar{C}_{1}}{\kappa} s+\frac{\bar{C}_{2}}{\kappa}\right), \\
& x_{\Omega}^{2}(s)=\frac{1}{\sqrt{2 \kappa^{2}+\tau^{2}}}\left(\sin \varphi e^{x^{1}}(\sin [\mathrm{k} s+C]+\cos [\mathrm{k} s+C])\right. \\
& \quad+\frac{1}{\kappa}\left(e^{-\frac{\sin ^{2} \varphi_{s} s^{2}+\bar{C}_{1 s} s \bar{C}_{2}}{2}}(\mathrm{k} \sin \varphi \sin [\mathrm{k} s+C]+\cos \varphi \sin \varphi \cos [\mathrm{k} s+C])\right) \\
& +\frac{1}{\kappa}\left(e^{-\frac{\sin ^{2} \varphi^{2}}{2} s^{2}+\bar{C}_{1 s}+\bar{C}_{2}}(-\mathrm{k} \sin \varphi \cos [\mathrm{k} s+C]+\cos \varphi \sin \varphi \sin [\mathrm{k} s+C]),\right. \tag{4.2}\\
& x_{\Omega}^{3}(s)=\sin \varphi e^{x^{1}} \sin [\mathrm{k} s+C] \\
& -\frac{1}{\kappa} e^{-\frac{\sin ^{2} \varphi}{2} s^{2}+\bar{c}_{1} s+\bar{C}_{2}}(-\mathrm{k} \sin \varphi \cos [\mathrm{k} s+C]+\cos \varphi \sin \varphi \sin [\mathrm{k} s+C]),
\end{align*}
$$

where $C, \quad \bar{C}_{1}, \quad \bar{C}_{2}, \quad C_{1}, \quad C_{2}, \quad C_{3}$ are constants of integration and $\mathrm{k}=\frac{\sqrt{\kappa^{2}-\sin ^{2} \varphi}}{\sin \varphi}$.

Proof. Since γ is biharmonic, γ is a helix. So, without loss of generality, we take the axis of γ is parallel to the vector \mathbf{e}_{3}. Then,

$$
\begin{equation*}
g\left(\mathbf{T}, \mathbf{e}_{3}\right)=T_{3}=\cos \varphi, \tag{4.3}
\end{equation*}
$$

where φ is constant angle.
The tangent vector can be written in the following form

$$
\begin{equation*}
\mathbf{T}=T_{1} \mathbf{e}_{1}+T_{2} \mathbf{e}_{2}+T_{3} \mathbf{e}_{3} . \tag{4.4}
\end{equation*}
$$

From (4.3), we have the following equation

$$
\begin{equation*}
\mathbf{T}=\sin \varphi \cos \mu \mathbf{e}_{1}+\sin \varphi \sin \mu \mathbf{e}_{2}+\cos \varphi \mathbf{e}_{3} . \tag{4.5}
\end{equation*}
$$

Since $\left|\nabla_{\mathbf{T}} \mathbf{T}\right|=\kappa$, we obtain

$$
\begin{equation*}
\mu=\frac{\sqrt{\kappa^{2}-\sin ^{2} \varphi}}{\sin \varphi} s+C \tag{4.6}
\end{equation*}
$$

where $C \in \mathrm{R}$.
Thus (4.5) and (4.6), imply

$$
\mathbf{T}=\sin \varphi \cos [\mathrm{k} s+C] \mathbf{e}_{1}+\sin \varphi \sin [\mathrm{k} s+C] \mathbf{e}_{2}+\cos \varphi \mathbf{e}_{3}
$$

where $\mathrm{k}=\frac{\sqrt{\kappa^{2}-\sin ^{2} \varphi}}{\sin \varphi}$.
Using (2.4) in above equation, we obtain

$$
\begin{equation*}
\mathbf{T}=\left(-\cos \varphi, \sin \varphi e^{x^{1}}(\sin [\mathrm{k} s+C]+\cos [\mathrm{k} s+C]), \sin \varphi e^{x^{1}} \sin [\mathrm{k} s+C]\right) . \tag{4.7}
\end{equation*}
$$

Using (4.4), we have

$$
\begin{equation*}
\nabla_{\mathbf{T}} \mathbf{T}=\left(T_{1}^{\prime}+T_{1} T_{3}\right) \mathbf{e}_{1}+\left(T_{2}^{\prime}+T_{2} T_{3}\right) \mathbf{e}_{2}+\left(T_{3}^{\prime}-\left(T_{1}^{2}-T_{2}^{2}\right)\right) \mathbf{e}_{3} \tag{4.8}
\end{equation*}
$$

From (3.1) and (4.8), we get

$$
\begin{align*}
& \nabla_{\mathrm{T}} \mathbf{T}=\sin \varphi(-\mathrm{k} \sin [\mathrm{k} s+C]+\cos \varphi \cos [\mathrm{k} s+C]) \mathbf{e}_{1} \\
& +\sin \varphi(\mathrm{k} \cos [s+C]+\cos \varphi \sin [\mathrm{k} s+C]) \mathbf{e}_{2} \tag{4.9}\\
& -\sin ^{2} \varphi \mathbf{e}_{3}
\end{align*}
$$

where $\mathrm{k}=\frac{\sqrt{\kappa^{2}-\sin ^{2} \varphi}}{\sin \varphi}$.
By the use of Frenet formulas (3.2), we get

$$
\begin{align*}
& \mathbf{N}=\frac{1}{\kappa} \nabla_{\mathrm{T}} \mathbf{T} \\
& =\frac{1}{\kappa}\left[(\mathrm{k} \sin \varphi \sin [\mathrm{k} s+C]+\cos \varphi \sin \varphi \cos [\mathrm{k} s+C]) \mathbf{e}_{1}\right. \tag{4.10}\\
& +(-\mathrm{k} \sin \varphi \cos [\mathrm{k} s+C]+\cos \varphi \sin \varphi \sin [\mathrm{k} s+C]) \mathbf{e}_{2}
\end{align*}
$$

$$
\left.-\sin ^{2} \varphi \mathbf{e x}_{3}\right] .
$$

Substituting (2.4) in (4.10), we have

$$
\begin{align*}
& \mathbf{N}=\frac{1}{\kappa}\left(-\frac{\sin ^{2} \varphi}{2} s^{2}+\bar{C}_{1} s+\bar{C}_{2},\right. \\
& e^{-\frac{\sin ^{2} \varphi_{\varphi} s^{2}+\bar{C}_{1 s} s+\bar{C}_{2}}{2}}(\mathrm{k} \sin \varphi \sin [\mathrm{k} s+C]+\cos \varphi \sin \varphi \cos [\mathrm{k} s+C]) \tag{4.11}\\
& +e^{-\frac{\sin ^{2} \varphi}{2} s^{2}+\bar{C}_{1} s+\bar{C}_{2}}(-\mathrm{k} \sin \varphi \cos [\mathrm{k} s+C]+\cos \varphi \sin \varphi \sin [\mathrm{k} s+C]), \\
& \left.-e^{-\frac{\sin ^{2} \varphi}{2} s^{2}+\bar{C}_{1 s}+\bar{C}_{2}}(-\mathrm{k} \sin \varphi \cos [\mathrm{k} s+C]+\cos \varphi \sin \varphi \sin [\mathrm{k} s+C])\right),
\end{align*}
$$

where \bar{C}_{1}, \bar{C}_{2} are constants of integration.
Lemma 4.4 Let $\gamma: I \rightarrow \mathrm{P}$ be a unit speed spacelike biharmonic curve in the special three-dimensional ϕ-Ricci symmetric para-Sasakian manifold P . Then

$$
\begin{aligned}
& \kappa=\cos \Lambda, \\
& \tau=\sin \Lambda,
\end{aligned}
$$

where Λ is arbitrary angle.

References

[1] K. Arslan, R. Ezentas, C. Murathan and T. Sasahara, Biharmonic submanifolds 3 -dimensional (κ, μ) -manifolds, Internat. J. Math. Math. Sci., 22(2005), 3575-3586.
[2] A. Balmus, On the biharmonic curves of the Euclidean and Berger 3dimensional spheres, Sci. Ann. Univ. Agric. Sci. Vet. Med.. 47(2004), 8796.
[3] D.E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, Springer-Verlag 509, Berlin-New York, (1976).
[4] M.P. Carmo, Differential Geometry of Curves and Surfaces, Pearson Education, (1976).
[5] B.Y. Chen, Some open problems and conjectures on submanifolds of finite type, Soochow J. Math., 17(1991), 169-188.
[6] I. Dimitric, Submanifolds of E^{m} with harmonic mean curvature vector, Bull. Inst. Math. Acad. Sinica, 20(1992), 53-65.
[7] J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc., 10(1978), 1-68.
[8] J. Eells and J.H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86(1964), 109-160.
[9] T. Hasanis and T. Vlachos, Hypersurfaces in E^{4} with harmonic mean curvature vector field, Math. Nachr., 172(1995), 145-169.
[10] G.Y. Jiang, 2-harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A, 7(2) (1986), 130-144.
[11] G.Y. Jiang, 2-harmonic maps and their first and second variational formulas, Chinese Ann. Math. Ser. A, 7(4) (1986), 389-402.
[12] W. Kuhnel, Differential Geometry, Curves-Surfaces-Manifolds, Braunschweig, Wiesbaden, (1999).
[13] E. Loubeau and C. Oniciuc, On the biharmonic and harmonic indices of the Hopf map, Transactions of the American Mathematical Society, 359(11) (2007), 5239--5256.
[14] H. Matsuda and S. Yorozu, Notes on Bertrand curves, Yokohama Math. J., 50(1-2) (2003), 41-58.
[15] D.J. Struik, Differential Geometry, (Second ed.), Addison-Wesley, Reading, Massachusetts, (1961).
[16] E. Turhan, Completeness of Lorentz metric on 3-dimensional Heisenberg group, International Mathematical Forum, 13(3) (2008), 639-644.
[17] E. Turhan and T. Körpınar, Characterize on the Heisenberg group with left invariant Lorentzian metric, Demonstratio Mathematica, 42(2) (2009), 423-428.
[18] E. Turhan and T. Körpınar, On characterization of timelike horizontal biharmonic curves in the Lorentzian Heisenberg group Heis ${ }^{3}$, Zeitschrift für Naturforschung A- A Journal of Physical Sciences, 65a(2010), 421-428.
[19] E. Turhan and T. Körpınar, Position vectors of spacelike biharmonic curves with spacelike bihormal in Lorentzian Heisenberg group Heis ${ }^{3}$, Int. J. Open Problems Compt. Math., 3(3) (2010), 413-422.

