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Abstract
The main aim of this paper is to introduce a new class of sequence spaces

namely 2V
λ̄[A,∆n

(mv),M, p, ‖., .‖]σ where σ = 0, 1,∞, using the concept of 2-

norm and the notion of de la Valee-Pousin means when A = (am,n,j,k), j, k =
0, 1, ... is a doubly infinite matrix of real numbers for all m,n = 0, 1, .... To
construct these spaces we use an Orlicz function, a bounded sequence of pos-
itive real numbers and a generalized difference operator which was introduced
by Dutta[2]. We obtain various inclusion relations involving these sequence
spaces.

Keywords: Double sequence Spaces, Difference operator, de la Valee-
Pousin mean, 2-normed space, Orlicz Function.

1

1 Introduction

The concept of 2-normed spaces was initially introduced by G̈ahler[5] in the
mid of 1960’s. Since then, many researchers have studied this concept and

1The work of second author is financially supported by Maulana Azad National Fellowship
for Minority Students, University Grants Commission, New Delhi.
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obtained various results, see for instance [6,7,8].
Let X be a real vector space of dimension d, where 2 ≤ d < ∞. A 2-norm
on X is a function ‖., .‖ : X × X → R which satisfies the following four
conditions (see[9,13]):

(i) ‖x1, x2‖ = 0 if and only if x1, x2 are linearly dependent;

(ii) ‖x1, x2‖ = ‖x2, x1‖:

(iii) ‖αx1, x2‖ = |α|‖x1, x2‖, for any α ∈ R:

(iv) ‖x+ x′, x2‖ ≤ ‖x, x2‖+ ‖x′, x2‖
The pair (X, ‖., .‖) is then called a 2-normed space.

Example 1.1. A standard example of a 2-normed space is R2 equipped
with the following 2-norm
‖x, y‖ := the area of the triangle having vertices 0, x, y.

Let w, l∞, c and c0 denote the spaces of all, bounded, convergent and null
sequences x = (xk) with complex terms, respectively normed by

‖x‖ = sup
k
|xk|.

Kizmaz [14], defined the difference sequences l∞(∆), c(∆) and c0(∆) as follows:

Z(∆) = {x = (xk) : (∆xk) ∈ Z},
for Z = l∞, c and c0, where ∆x = (∆xk) = (xk − xk+1), for all k ∈ N.
The above spaces are Banach spaces, normed by

‖x‖∆ = |x1|+ sup
k
‖∆xk‖.

The notion of difference sequence spaces was generalized by Et. and Colak[4]
as follows:

Z(∆n) = {x = (xk) : (∆nxk) ∈ Z},
for Z = l∞, c and c0, where n ∈ N, (∆nxk) = (∆n−1xk−∆n−1xk+1) and so that

∆nxk =
n∑
v=0

(−1)v
(
n
v

)
xk+v.

In 2005, Tripathy and Esi [19], introduced the following new type of difference
sequence spaces:

Z(∆m) = {x = (xk) ∈ w : ∆mx ∈ Z}, for Z = l∞, c and c0
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where ∆mx = (∆mxk) = (xk − xk+m), for all k ∈ N.

Later on Tripathy, Esi and Tripathy[20], generalized the above notions
and unified these as follows:
Let m,n be non negative integers, then for Z a given sequence space we have

Z(∆n
m) = {x = (xk) ∈ w : (∆n

mxk) ∈ Z}

where

∆n
mxk =

n∑
i=0

(−1)i
(
n
i

)
xk+mi

Taking m = 1, we get the spaces l∞(∆n), c(∆n) and c0(∆n) studied by Et an
Colak[4]. Taking n = 1, we get the spaces l∞(∆m), c(∆m) and c0(∆m) studied
by Tripathy and Esi[18]. Taking m = n = 1, we get the spaces l∞(∆), c(∆)
and c0(∆) introduced and studied by Kizmaz[14].

Let v = vk be sequence of non-zero scalars. Also let Z = {l∞, c, co}. Re-
cently Dutta[2] defined the following sequence spaces

Z(∆n
(mv)xk) = {x = (xk) ∈ w : (∆n

mvxk) ∈ Z},

where (∆n
(mv)xk) = (∆n−1

(mv)xk −∆n−1
(mv)xk−m) and ∆o

(mv)xk = vkxk for all k ∈ N,
which is equivalent to the following binomial representation:

∆n
(mv)xk =

n∑
i=0

(−1)i
(
n
i

)
vk−mixk−mi

Let λ = (λr) be a non decreasing sequences of positive real numbers both
of which tending to ∞, and λr+1 ≤ λr + 1, λ1 = 0. The generalized de la
Valee-Pousin mean is defined by

tr(x) =
1

λr

∑
k∈Ir

xk

where
Ir = [r − λr + 1, r] (see[3]).

A sequence x = (xk) is said to be (V, λ)−summable to a number L if
tr(x) → L as r → ∞. If λr = r, then (V, λ)−summability reduced to
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(C, 1)−summability. We write

[V, λ] = {x = (xk) : lim
r→∞

1

λr

∑
k∈Ir

|xk − L| = 0 for some L}

for sets of sequences x = (xk) which are strongly (V, λ)− summable to L.

Subsequently strongly (V, λ)− summable as well as generalized kind of
summable sequence spaces have been studied by various authors[1,18].

An Orlicz Function is a function M : [0,∞)→ [0,∞) which is continuous,
nondecreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and M(x) →
∞, as x→∞.

An Orlicz function M satisfies the ∆2 − condition (M ∈ ∆2 for short )
if there exist constant k ≥ 2 and u0 > 0 such that

M(2u) ≤ KM(u)

whenever |u| ≤ u0.

An Orlicz function M can always be represented in the integral form

M(x) =
x∫
0

q(t)dt, where q known as the kernel of M, is right differentiable for

t ≥ 0, q(t) > 0 for t > 0, q is non-decreasing and q(t)→∞ as t→∞.

Note that an Orlicz function satisfies the inequality

M(λx) ≤ λM(x) for all λ with 0 < λ < 1,

since M is convex and M(0) = 0.
Lindesstrauss and Tzafriri [15] used the idea of Orlicz sequence space;

lM :=

{
x ∈ w :

∞∑
k=1

M

(
|xk|
ρ

)
<∞, for some ρ > 0

}
which is Banach space with the norm

‖x‖M = inf

{
ρ > 0 :

∞∑
k=1

M

(
|xk|
ρ

)
≤ 1

}
.

The space lM is closely related to the space lp, which is an Orlicz sequence
space with M(x) = xp for 1 ≤ p <∞.
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2 Preliminaries

Throughout x = (xjk) is a double sequence that is a double infinite array of
elements xjk, for j, k ∈ N. By the convergence of a double sequence we mean
the convergence on the Pringsheim sence that is, a double sequence x = (xjk)
is said to be Pringsheim convergent (or P-convergent) if for ε > 0 there exists
an integer N such that |xjk − L| < ε whenever j, k > N (see[16]).

We shall write this as
lim
j,k→∞

xjk = L, where j, k tends to infinity independent of each other.

A double sequence x = (xjk) is bounded if

‖x‖ = sup
j,k≥0
|xjk| <∞ (see[16]).

Let A = (am,n,j,k), j, k = 0, 1, ..... be a doubly infinite matrix of real numbers
for all m,n = 0, 1, ..... Forming the sums

ymn =
∞∑
j=0

∞∑
k=0

am,n,j,kxjk,

called the A−means of the double sequence x, yeilds a method of summability.
More exactly, we say that a sequence is A − summable to the limit L if the
A-means exist for all m,n = 0, 1, ... in the sense of Pringsheim’s convergence:

lim
p,q→∞

p∑
j=0

q∑
k=0

am,n,j,kxjk = ymn and lim
m,n→∞

ymn = L.

Double sequence have been studied by Vakeel.A.Khan[9] and Vakeel.A.Khan
and Sabiha Tabassum[10,11,12,13] and many others.

A double sequence space E is said to be solid if (αi,jxi,j) ∈ E, whenever
(xi,j) ∈ E, for all double sequences (αi,j) of scalars with |αi,j| ≤ 1, for all
i, j ∈ N.

Let K = {(ni, kj) : i, j ∈ N;n1 < n2 < n3 < .... and k1 < k2 < k3 < ...} ⊆
N ⊗N and E be a double sequence space. A K-step space of E is a sequence
space

λEK = {(αi,jxi,j) : (xi,j) ∈ E}.

A canonical pre-image of a sequence (xni,kj) ∈ E is a sequence (bn,k) ∈ E
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defined as follows:

bnk =

{
ank if (n, k) ∈ K,
0 otherwise .

A canonical pre-image of step space λEK is a set of canonical pre-images
of all elements in λEK .

A double sequence space E is said to be monotone if it contains the canon-
ical pre-images of all its step spaces.

A double sequence space E is said to be symmetric if (xi,j) ∈ E implies
(xπ(i),π(j)) ∈ E, where π is a permutation of N.

Lemma 2.1 A sequence space E is solid implies E is monotone.

The following inequality will be used throughout the paper. Let q = qjk be
a double sequence of positive real numbers with 0 < qjk ≤ sup qjk = H and let
C = max{1, 2H−1}. Then for the factorable sequences (ajk) and (bjk) in the
complex plane, we have

|ajk + bjk|qjk ≤ C(|ajk|qjk + |bjk|qjk)

3 Main Results

Let λ = (λr) and µ = (µs) be two non decreasing sequences of positive real
numbers both of which tends to ∞ as r, s approach ∞, respectively. Also let
λr+1 ≤ λr + 1, λ1 = 0 and µs+1 ≤ µs + 1, µ1 = 0. The generalized double de la
Valee-Pousin mean was defined by M.Mursaleen, C. Çakan, S.A.Mohiuddine
and E. Savas [17] as:

tr,s(x) =
1

λrµs

∑
j∈Ir

∑
k∈Is

xj,k

where Ir = [r − λr + 1, r] and Is = [s− µs + 1, s] .
Throughout this paper we shall denote λrµs by λ̄rs and (j ∈ Ir, k ∈ Is) by
(j, k) ∈ Īr,s.

Let M be an Orlicz function, x = (xjk) be double sequence space and q =
(qjk) be any factorable double sequence of strictly positive real numbers(0 <
h = inf qjk ≤ qjk ≤ sup qjk <∞). Let A = (am,n,j,k) be an infinite four dimen-
sional matrix of complex numbers and (X, ‖., .‖) be 2-normed space. We define
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2V
λ̄[A,∆n

(mv),M, q, ‖., .‖]o =

{
x = (xjk) : P−lim

r,s

1

λ̄rs

∑
(j,k)∈Īr,s

[
M

(‖∆n
(mv)Ajk(x), z‖

ρ

)]qjk
= 0,

for some ρ > 0 and for every z ∈ X
}

2V
λ̄[A,∆n

(mv),M, q, ‖., .‖] =

{
x = (xjk) : P−lim

r,s

1

λ̄rs

∑
(j,k)∈Īr,s

[
M

(‖∆n
(mv)Ajk(x)− L, z‖

ρ

)]qjk
= 0,

for some ρ > 0, L > 0 and for every z ∈ X
}

2V
λ̄[A,∆n

(mv),M, q, ‖., .‖]∞ =

{
x = (xjk) : sup

r,s

1

λ̄rs

∑
(j,k)∈Īr,s

[
M

(‖∆n
(mv)Ajk(x), z‖

ρ

)]qjk
<∞,

for some ρ > 0 and for every z ∈ X
}

Where

∆n
(mv)am,n,j,k =

n∑
i=0

(−1)i
(
n
i

)
vj−mi,k−miam,n,j−mi,k−mi

Theorem 3.1 Let q = (qjk) be bounded. Then 2V
λ̄[A,∆n

(mv),M, q, ‖., .‖]o, 2V
λ̄[A,∆n

(mv),M, q, ‖., .‖]
and 2V

λ̄[A,∆n
(mv),M, q, ‖., .‖]∞ are linear spaces over the set of complex num-

bers C.

Proof. Let xjk, yjk ∈2 V
λ̄[A,∆n

(mv),M, p, ‖., .‖]o and α, β ∈ C. Then there
exist some ρ1, ρ2 > 0 such that

P − lim
r,s

1

λ̄rs

∑
(j,k)∈Īr,s

[
M

(‖∆n
(mv)Ajk(x), z‖

ρ1

)]qjk
= 0,

P − lim
r,s

1

λ̄rs

∑
(j,k)∈Īr,s

[
M

(‖∆n
(mv)Ajk(y), z‖

ρ2

)]qjk
= 0,

Let ρ3 = max(2|α|ρ1, 2|β|ρ2). Then we have

1
λ̄rs

∑
(j,k)∈Īr,s

[
M

(
‖∆n

(mv)
Ajk(αx+βy),z‖
ρ3

)]qjk

≤ 1

λ̄rs

∑
(j,k)∈Īr,s

[
M

(‖∆n
(mv)Ajk(αx), z‖

ρ3

+
‖∆n

(mv)Ajk(βy), z‖
ρ3

)]qjk
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≤ C

{
1

λ̄rs

∑
(j,k)∈Īr,s

[
M

(‖∆n
(mv)Ajk(x), z‖

ρ1

)]qjk

+
1

λ̄rs

∑
(j,k)∈Īr,s

[
M

(‖∆n
(mv)Ajk(y), z‖

ρ2

)]qjk}
.

This implies that

1

λ̄rs

∑
(j,k)∈Īr,s

[
M

(‖∆n
(mv)Ajk(αx+ βy), z‖

ρ3

)]qjk
= 0.

This proves that 2V
λ̄[A,∆n

(mv),M, q, ‖., .‖]o. is a linear space.

Similarly we can prove that 2V
λ̄[A,∆n

(mv),M, q, ‖., .‖] and 2V
λ̄[A,∆n

(mv),M, q, ‖., .‖]∞
are linear spaces over the set of complex numbers C.

Theorem 3.2 Let M be any Orlicz function, then 2V
λ̄[A,∆n

(mv),M, q, ‖., .‖]o ⊂
2V

λ̄[A,∆n
(mv),M, q, ‖., .‖] ⊂ 2V

λ̄[A,∆n
(mv),M, q, ‖., .‖]∞ hold.

Proof. The inclusion 2V
λ̄[A,∆n

(mv),M, q, ‖., .‖]o ⊂ 2V
λ̄[A,∆n

(mv),M, q, ‖., .‖]
is obvious.
Let xjk ∈ 2V

λ̄[A,∆n
(mv),M, q, ‖., .‖] then there exists some ρ > 0 and L > 0

such that

1

λ̄rs

∑
(j,k)∈Īr,s

[
M

(‖∆n
(mv)Ajk(x)− L, z‖

ρ

)]qjk
= 0.

Taking ρ1 = 2ρ, we have

1
λ̄rs

∑
(j,k)∈Īr,s

[
M

(
‖∆n

(mv)
Ajk(x),z‖
ρ

)]qjk

=
1

λ̄rs

∑
(j,k)∈Īr,s

[
M

(‖∆n
(mv)Ajk(x)− L+ L, z‖

ρ

)]qjk

≤ C

{
1

λ̄rs

∑
(j,k)∈Īr,s

[
1

2
M

(‖∆n
(mv)Ajk(x)− L, z‖

ρ

)]qjk

+
1

λ̄rs

∑
(j,k)∈Īr,s

[
1

2
M

(
‖L, z‖
ρ

)]qjk)}
.
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≤ C

{
1

λ̄rs

∑
(j,k)∈Īr,s

[
1

2
M

(‖∆n
(mv)Ajk(x)− L, z‖

ρ

)]qjk

+ max

([
1

2
M

(
‖L, z‖
ρ

)]H)}
.

Hence xjk ∈ 2V
λ̄[A,∆n

(mv),M, q, ‖., .‖]∞.

As a consequence of above theorem we state the following corollary.

Corollary 3.3 2V
λ̄[A,∆n

(mv),M, q, ‖., .‖]o and 2V
λ̄[A,∆n

(mv),M, q, ‖., .‖] are

nowhere dense subsets of 2V
λ̄[A,∆n

(mv),M, q, ‖., .‖]∞.

Theorem 3.4 The sequence spaces 2V
λ̄[A,∆n

(mv),M, q, ‖., .‖]o and 2V
λ̄[A,∆n

(mv),M, q, ‖., .‖]∞
are solid and hence monotone.

Proof. Let α = (αjk) be double sequence of scalars such that |αjk| ≤ 1,
for all j, k ∈ N. Since M is monotone, we get for some ρ > 0

1

λ̄rs

∑
(j,k)∈Īr,s

[
M

(‖∆n
(mv)Ajk(αx), z‖

ρ

)]qjk
≤ 1

λ̄rs

∑
(j,k)∈Īr,s

[
M

(
sup |αjk|

‖∆n
(mv)Ajk(x), z‖

ρ

)]qjk

≤ 1

λ̄rs

∑
(j,k)∈Īr,s

[
M

(‖∆n
(mv)Ajk(x), z‖

ρ

)]qjk
Hence the result.�

Theorem 3.5 Let M1 and M2 be two Orlicz functions. Then we have

(i) 2V
λ̄[A,∆n

(mv),M1, q, ‖., .‖]o∩2V
λ̄[A,∆n

(mv),M2, q, ‖., .‖]o ⊆ 2V
λ̄[A,∆n

(mv),M1+

M2, q, ‖., .‖]o,

(ii) 2V
λ̄[A,∆n

(mv),M1, q, ‖., .‖]∩2V
λ̄[A,∆n

(mv),M2, q, ‖., .‖] ⊆ 2V
λ̄[A,∆n

(mv),M1+

M2, q, ‖., .‖] and

(iii) 2V
λ̄[A,∆n

(mv),M1, q, ‖., .‖]∞∩2V
λ̄[A,∆n

(mv),M2, q, ‖., .‖]∞ ⊆ 2V
λ̄[A,∆n

(mv),M1+

M2, q, ‖., .‖]∞.

Theorem 3.6 Let the Orlicz functions M1 and M2 satisfy the ∆2-condition.
Then
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(i) 2V
λ̄[A,∆n

(mv),M1, q, ‖., .‖]o ⊆ 2V
λ̄[A,∆n

(mv),M1 ◦M2, q, ‖., .‖]o,

(ii) 2V
λ̄[A,∆n

(mv),M1, q, ‖., .‖] ⊆ 2V
λ̄[A,∆n

(mv),M1 ◦M2, q, ‖., .‖] and

(iii) 2V
λ̄[A,∆n

(mv),M1, q, ‖., .‖]∞ ⊆ 2V
λ̄[A,∆n

(mv),M1 ◦M2, q, ‖., .‖]∞.

Proof(i). We consider only case 2V
λ̄[A,∆n

(mv),M1, q, ‖., .‖]o ⊆ 2V
λ̄[A,∆n

(mv),M1◦
M2, q, ‖., .‖]o.Let xjk ∈ 2V

λ̄[A,∆n
(mv),M1, q, ‖., .‖]o and ε > 0. Now using the

continuity of M choose 0 < δ < 1 such that 0 < t < δ ⇒ M(t) < ε. Write

yjk = M1

(
‖∆n

(mv)
Ajk(x),z‖
ρ

)
.

Now consider

1

λ̄rs

∑
(j,k)∈Īr,s

[M2(yjk)]
qjk =

1

λ̄rs

∑
1

[M2(yjk)]
qjk +

1

λ̄rs

∑
2

[M2(yjk)]
qjk

Where the first summation is over yjk ≤ δ and the second summation is over
yjk > δ. Since M2 is continuous, we have

1

λ̄rs

∑
1

[M2(yjk)]
qjk <

1

λ̄rs

∑
(j,k)∈Īr,s

max(1, εH).

For yjk > δ, we use the fact that

yjk <
yjk
δ
≤ 1 +

(
yjk
δ

)
.

Since M2 is non decreasing and convex, it follows that

M(yjk) < M(1 + δ−1yjk) = M

(
2

2
+

2

2
δ−1yjk

)
<

1

2
M(2) +

1

2
M(2δ−1yjk)

Since M satisfies ∆2-condition, there is a constant K > 2 such that

M(2δ−1yjk) ≤
1

2
Kδ−1yjkM(2)

Hence

1

λ̄rs

∑
2

[M2(yjk)]
qjk < max(1, (Kδ−1M(2)))

1

λ̄rs

∑
(j,k)∈Īr,s

(yjk)
qjk .
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Thus we have

1

λ̄rs

∑
(j,k)∈Īr,s

[M2(yjk)]
qjk < max(1, εH)+max(1, (Kδ−1M(2)))

1

λ̄rs

∑
(j,k)∈Īr,s

(yjk)
qjk .

Therefore x ∈ 2V
λ̄[A,∆n

(mv),M1 ◦M2, p, ‖., .‖]o

Taking M1(x) = x, for all x = xjk ∈ [0,∞), we have the following result

Proof of other two cases follow similarly.

Theorem 3.7 Let the Orlicz function M2 satisfy the ∆2-condition. Then

(i) 2V
λ̄[A,∆n

(mv), q, ‖., .‖]o ⊆ 2V
λ̄[A,∆n

(mv),M2, q, ‖., .‖]o,

(ii) 2V
λ̄[A,∆n

(mv), q, ‖., .‖] ⊆ 2V
λ̄[A,∆n

(mv),M2, q, ‖., .‖] and

(iii) 2V
λ̄[A,∆n

(mv), q, ‖., .‖]∞ ⊆ 2V
λ̄[A,∆n

(mv),M2, q, ‖., .‖]∞.

Theorem 3.8 Let 0 < pjk ≤ qjk for all j, k and (qjk/pjk) be bounded.
Then

(i) 2V
λ̄[A,∆n

(mv),M, q, ‖., .‖]o ⊂ 2V
λ̄[A,∆n

(mv),M, p, ‖., .‖]o,

(ii) 2V
λ̄[A,∆n

(mv),M, q, ‖., .‖] ⊂ 2V
λ̄[A,∆n

(mv),M, p, ‖., .‖] and

(iii) 2V
λ̄[A,∆n

(mv),M, q, ‖., .‖]∞ ⊂ 2V
λ̄[A,∆n

(mv),M, p, ‖., .‖]∞.

Proof. Let x ∈ 2V
λ̄[A,∆n

(mv),M, q, ‖., .‖]o

Write tj,k =

[
M

(
‖∆n

(mv)
Ajk(x),z‖
ρ

)]pjk
for all j, k and λj,k =

pj,k
qj,k
.

Since 0 < pj,k ≤ qj,k, therefore 0 < λj,k ≤ 1.
Take 0 < λ ≤ λj,k.
Define

uj.k =

{
tj,k tj,k ≥ 1

0 tj,k < 1.

vj,k =

{
0 tj,k ≥ 1

tj,k tj,k < 1.

So tj,k = uj,k + vj,k and

t
λj,k
j,k = u

λj,k
j,k + v

λj,k
j,k

Now it follows that



56 Vakeel A. Khan et al.

u
λj,k
j,k ≤ uj,k ≤ tj,k and v

λj,k
j,k ≤ vλj,k

Therfore

1

λ̄rs

∑
(j,k)∈Īr,s

t
λj,k
j,k ≤

1

λ̄rs

∑
(j,k)∈Īr,s

tj,k +

[
1

λ̄rs

∑
(j,k)∈Īr,s

vj,k

]λ
Hence x ∈ 2V

λ̄[A,∆n
(mv),M, p, ‖., .‖]o

By using above theorem it is easy to prove the following result.

Corollary 3.9 (a). If 0 < inf qk,l ≤ qj,k ≤ 1 for all j, k ∈ N then,

(i) 2V
λ̄[A,∆n

(mv),M, ‖., .‖]o ⊂ 2V
λ̄[A,∆n

(mv),M, q, ‖., .‖]o,

(ii) 2V
λ̄[A,∆n

(mv),M, ‖., .‖] ⊂ 2V
λ̄[A,∆n

(mv),M, q, ‖., .‖] and

(iii) 2V
λ̄[A,∆n

(mv),M, ‖., .‖]∞ ⊂ 2V
λ̄[A,∆n

(mv),M, q, ‖., .‖]∞.

(b). If 0 ≤ qj,k ≤ sup qj,k = H <∞ for all j, k ∈ N then,

(i) 2V
λ̄[A,∆n

(mv),M, q, ‖., .‖]o ⊂ 2V
λ̄[A,∆n

(mv),M, ‖., .‖]o,

(ii) 2V
λ̄[A,∆n

(mv),M, q, ‖., .‖] ⊂ 2V
λ̄[A,∆n

(mv),M, ‖., .‖] and

(iii) 2V
λ̄[A,∆n

(mv),M, q, ‖., .‖]∞ ⊂ 2V
λ̄[A,∆n

(mv),M, ‖., .‖]∞.
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