

Gen. Math. Notes, Vol. 7, No. 2, December 2011, pp.45-58 ISSN 2219-7184; Copyright ©ICSRS Publication, 2011 www.i-csrs.org Available free online at http://www.geman.in

The Strongly Summable Generalized Difference Double Sequence Spaces in 2-Normed Spaces Defined by an Orlicz Functions

Vakeel A. Khan¹ and Sabiha Tabassum²

¹Department of Mathematics, A.M.U. Aligarh-202002 (India) E-mail: vakhan@math.com ²Department of Mathematics, A.M.U. Aligarh-202002 (India) E-mail: sabihatabassum@math.com

(Received: 15-9-11/ Accepted: 22-12-11)

Abstract

The main aim of this paper is to introduce a new class of sequence spaces namely ${}_{2}V^{\bar{\lambda}}[A, \Delta^{n}_{(mv)}, M, p, \|., .\|]_{\sigma}$ where $\sigma = 0, 1, \infty$, using the concept of 2norm and the notion of de la Valee-Pousin means when $A = (a_{m,n,j,k}), j, k =$ 0, 1, ... is a doubly infinite matrix of real numbers for all m, n = 0, 1, ... To construct these spaces we use an Orlicz function, a bounded sequence of positive real numbers and a generalized difference operator which was introduced by Dutta[2]. We obtain various inclusion relations involving these sequence spaces.

Keywords: Double sequence Spaces, Difference operator, de la Valee-Pousin mean, 2-normed space, Orlicz Function.

1 Introduction

The concept of 2-normed spaces was initially introduced by Gahler[5] in the mid of 1960's. Since then, many researchers have studied this concept and

¹The work of second author is financially supported by Maulana Azad National Fellowship for Minority Students, University Grants Commission, New Delhi.

obtained various results, see for instance [6,7,8].

Let X be a real vector space of dimension d, where $2 \leq d < \infty$. A 2-norm on X is a function $\|.,.\| : X \times X \to R$ which satisfies the following four conditions (see[9,13]):

- (i) $||x_1, x_2|| = 0$ if and only if x_1, x_2 are linearly dependent;
- (ii) $||x_1, x_2|| = ||x_2, x_1||$:
- (iii) $||\alpha x_1, x_2|| = |\alpha| ||x_1, x_2||$, for any $\alpha \in R$:
- (iv) $||x + x', x_2|| \le ||x, x_2|| + ||x', x_2||$ The pair (X, ||., .||) is then called a 2-normed space.

Example 1.1. A standard example of a 2-normed space is \mathbb{R}^2 equipped with the following 2-norm

||x, y|| := the area of the triangle having vertices 0, x, y.

Let w, l_{∞}, c and c_0 denote the spaces of all, bounded, convergent and null sequences $x = (x_k)$ with complex terms, respectively normed by

$$\|x\| = \sup_{k} |x_k|.$$

Kizmaz [14], defined the difference sequences $l_{\infty}(\Delta), c(\Delta)$ and $c_0(\Delta)$ as follows:

$$Z(\Delta) = \{ x = (x_k) : (\Delta x_k) \in Z \},\$$

for $Z = l_{\infty}$, c and c_0 , where $\Delta x = (\Delta x_k) = (x_k - x_{k+1})$, for all $k \in \mathbb{N}$. The above spaces are Banach spaces, normed by

$$||x||_{\Delta} = |x_1| + \sup_k ||\Delta x_k||.$$

The notion of difference sequence spaces was generalized by Et. and Colak[4] as follows:

$$Z(\Delta^n) = \{ x = (x_k) : (\Delta^n x_k) \in Z \},\$$

for $Z = l_{\infty}, c$ and c_0 , where $n \in \mathbb{N}, (\Delta^n x_k) = (\Delta^{n-1} x_k - \Delta^{n-1} x_{k+1})$ and so that

$$\Delta^n x_k = \sum_{v=0}^n (-1)^v \binom{n}{v} x_{k+v}$$

In 2005, Tripathy and Esi [19], introduced the following new type of difference sequence spaces:

$$Z(\Delta_m) = \{ x = (x_k) \in w : \Delta_m x \in Z \}, \text{ for } Z = l_{\infty}, c \text{ and } c_0$$

where $\Delta_m x = (\Delta_m x_k) = (x_k - x_{k+m})$, for all $k \in \mathbb{N}$.

Later on Tripathy, Esi and Tripathy[20], generalized the above notions and unified these as follows:

Let m, n be non negative integers, then for Z a given sequence space we have

$$Z(\Delta_m^n) = \{ x = (x_k) \in w : (\Delta_m^n x_k) \in Z \}$$

where

$$\Delta_m^n x_k = \sum_{i=0}^n (-1)^i \binom{n}{i} x_{k+mi}$$

Taking m = 1, we get the spaces $l_{\infty}(\Delta^n), c(\Delta^n)$ and $c_0(\Delta^n)$ studied by Et an Colak[4]. Taking n = 1, we get the spaces $l_{\infty}(\Delta_m), c(\Delta_m)$ and $c_0(\Delta_m)$ studied by Tripathy and Esi[18]. Taking m = n = 1, we get the spaces $l_{\infty}(\Delta), c(\Delta)$ and $c_0(\Delta)$ introduced and studied by Kizmaz[14].

Let $v = v_k$ be sequence of non-zero scalars. Also let $Z = \{l_{\infty}, c, c_o\}$. Recently Dutta[2] defined the following sequence spaces

$$Z(\Delta_{(mv)}^{n} x_{k}) = \{ x = (x_{k}) \in w : (\Delta_{mv}^{n} x_{k}) \in Z \},\$$

where $(\Delta_{(mv)}^n x_k) = (\Delta_{(mv)}^{n-1} x_k - \Delta_{(mv)}^{n-1} x_{k-m})$ and $\Delta_{(mv)}^o x_k = v_k x_k$ for all $k \in \mathbb{N}$, which is equivalent to the following binomial representation:

$$\Delta_{(mv)}^n x_k = \sum_{i=0}^n (-1)^i \binom{n}{i} v_{k-mi} x_{k-mi}$$

Let $\lambda = (\lambda_r)$ be a non decreasing sequences of positive real numbers both of which tending to ∞ , and $\lambda_{r+1} \leq \lambda_r + 1, \lambda_1 = 0$. The generalized de la Valee-Pousin mean is defined by

$$t_r(x) = \frac{1}{\lambda_r} \sum_{k \in I_r} x_k$$

where

 $I_r = [r - \lambda_r + 1, r] \text{ (see[3])}.$

A sequence $x = (x_k)$ is said to be (V, λ) -summable to a number L if $t_r(x) \to L$ as $r \to \infty$. If $\lambda_r = r$, then (V, λ) -summability reduced to

(C, 1)-summability. We write

$$[V,\lambda] = \{x = (x_k) : \lim_{r \to \infty} \frac{1}{\lambda_r} \sum_{k \in I_r} |x_k - L| = 0 \text{ for some } L\}$$

for sets of sequences $x = (x_k)$ which are strongly (V, λ) – summable to L.

Subsequently strongly (V, λ) – summable as well as generalized kind of summable sequence spaces have been studied by various authors[1,18].

An Orlicz Function is a function $M : [0, \infty) \to [0, \infty)$ which is continuous, nondecreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and $M(x) \to \infty$, as $x \to \infty$.

An Orlicz function M satisfies the Δ_2 - condition ($M \in \Delta_2$ for short) if there exist constant $k \geq 2$ and $u_0 > 0$ such that

$$M(2u) \le KM(u)$$

whenever $|u| \leq u_0$.

An Orlicz function M can always be represented in the integral form $M(x) = \int_{0}^{x} q(t)dt$, where q known as the kernel of M, is right differentiable for $t \ge 0, q(t) > 0$ for t > 0, q is non-decreasing and $q(t) \to \infty$ as $t \to \infty$.

Note that an Orlicz function satisfies the inequality

$$M(\lambda x) \leq \lambda M(x)$$
 for all λ with $0 < \lambda < 1$,

since M is convex and M(0) = 0.

Lindesstrauss and Tzafriri [15] used the idea of Orlicz sequence space;

$$l_M := \left\{ x \in w : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \right\}$$

which is Banach space with the norm

$$||x||_M = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1 \right\}.$$

The space l_M is closely related to the space l_p , which is an Orlicz sequence space with $M(x) = x^p$ for $1 \le p < \infty$.

2 Preliminaries

Throughout $x = (x_{jk})$ is a double sequence that is a double infinite array of elements x_{jk} , for $j, k \in \mathbb{N}$. By the convergence of a double sequence we mean the convergence on the Pringsheim sence that is, a double sequence $x = (x_{jk})$ is said to be Pringsheim convergent (or P-convergent) if for $\epsilon > 0$ there exists an integer N such that $|x_{jk} - L| < \epsilon$ whenever j, k > N (see[16]).

We shall write this as

 $\lim_{j,k\to\infty} x_{jk} = L$, where j, k tends to infinity independent of each other.

A double sequence $x = (x_{ik})$ is bounded if

$$||x|| = \sup_{j,k \ge 0} |x_{jk}| < \infty \ (see[16]).$$

Let $A = (a_{m,n,j,k}), j, k = 0, 1, \dots$ be a doubly infinite matrix of real numbers for all $m, n = 0, 1, \dots$ Forming the sums

$$y_{mn} = \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_{m,n,j,k} x_{jk},$$

called the A-means of the double sequence x, yields a method of summability. More exactly, we say that a sequence is A-summable to the limit L if the A-means exist for all m, n = 0, 1, ... in the sense of Pringsheim's convergence:

$$\lim_{p,q \to \infty} \sum_{j=0}^{p} \sum_{k=0}^{q} a_{m,n,j,k} x_{jk} = y_{mn} \text{ and } \lim_{m,n \to \infty} y_{mn} = L.$$

Double sequence have been studied by Vakeel.A.Khan[9] and Vakeel.A.Khan and Sabiha Tabassum[10,11,12,13] and many others.

A double sequence space E is said to be solid if $(\alpha_{i,j}x_{i,j}) \in E$, whenever $(x_{i,j}) \in E$, for all double sequences $(\alpha_{i,j})$ of scalars with $|\alpha_{i,j}| \leq 1$, for all $i, j \in \mathbb{N}$.

Let $K = \{(n_i, k_j) : i, j \in \mathbb{N}; n_1 < n_2 < n_3 < \dots$ and $k_1 < k_2 < k_3 < \dots\} \subseteq N \otimes N$ and E be a double sequence space. A K-step space of E is a sequence space

$$\lambda_{K}^{E} = \{ (\alpha_{i,j} x_{i,j}) : (x_{i,j}) \in E \}.$$

A canonical pre-image of a sequence $(x_{n_i,k_j}) \in E$ is a sequence $(b_{n,k}) \in E$

defined as follows:

$$b_{nk} = \begin{cases} a_{nk} & \text{if } (n,k) \in K, \\ 0 & \text{otherwise }. \end{cases}$$

A canonical pre-image of step space λ_K^E is a set of canonical pre-images of all elements in λ_K^E .

A double sequence space E is said to be monotone if it contains the canonical pre-images of all its step spaces.

A double sequence space E is said to be symmetric if $(x_{i,j}) \in E$ implies $(x_{\pi(i),\pi(j)}) \in E$, where π is a permutation of \mathbb{N} .

Lemma 2.1 A sequence space E is solid implies E is monotone.

The following inequality will be used throughout the paper. Let $q = q_{jk}$ be a double sequence of positive real numbers with $0 < q_{jk} \le \sup q_{jk} = H$ and let $C = \max\{1, 2^{H-1}\}$. Then for the factorable sequences (a_{jk}) and (b_{jk}) in the complex plane, we have

$$|a_{jk} + b_{jk}|^{q_{jk}} \le C(|a_{jk}|^{q_{jk}} + |b_{jk}|^{q_{jk}})$$

3 Main Results

Let $\lambda = (\lambda_r)$ and $\mu = (\mu_s)$ be two non decreasing sequences of positive real numbers both of which tends to ∞ as r, s approach ∞ , respectively. Also let $\lambda_{r+1} \leq \lambda_r + 1, \lambda_1 = 0$ and $\mu_{s+1} \leq \mu_s + 1, \mu_1 = 0$. The generalized double de la Valee-Pousin mean was defined by M.Mursaleen, C. Çakan, S.A.Mohiuddine and E. Savas [17] as:

$$t_{r,s}(x) = \frac{1}{\lambda_r \mu_s} \sum_{j \in I_r} \sum_{k \in I_s} x_{j,k}$$

where $I_r = [r - \lambda_r + 1, r]$ and $I_s = [s - \mu_s + 1, s]$. Throughout this paper we shall denote $\lambda_r \mu_s$ by $\overline{\lambda}_{rs}$ and $(j \in I_r, k \in I_s)$ by $(j,k) \in \overline{I}_{r,s}$.

Let M be an Orlicz function, $x = (x_{jk})$ be double sequence space and $q = (q_{jk})$ be any factorable double sequence of strictly positive real numbers $(0 < h = \inf q_{jk} \le q_{jk} \le \sup q_{jk} < \infty)$. Let $A = (a_{m,n,j,k})$ be an infinite four dimensional matrix of complex numbers and $(X, \|., .\|)$ be 2-normed space. We define

$${}_{2}V^{\bar{\lambda}}[A, \Delta_{(mv)}^{n}, M, q, \|.,.\|]_{\rho} = \left\{ x = (x_{jk}) : P - \lim_{r,s} \frac{1}{\bar{\lambda}_{rs}} \sum_{(j,k)\in\bar{I}_{r,s}} \left[M\left(\frac{\|\Delta_{(mv)}^{n}A_{jk}(x), z\|}{\rho}\right) \right]^{q_{jk}} = 0,$$

for some $\rho > 0$ and for every $z \in X \right\}$

$${}_{2}V^{\bar{\lambda}}[A, \Delta_{(mv)}^{n}, M, q, \|.,.\|] = \left\{ x = (x_{jk}) : P - \lim_{r,s} \frac{1}{\bar{\lambda}_{rs}} \sum_{(j,k) \in \bar{I}_{r,s}} \left[M\left(\frac{\|\Delta_{(mv)}^{n}A_{jk}(x) - L, z\|}{\rho}\right) \right]^{q_{jk}} = 0,$$

$$\text{for some } \rho > 0, L > 0 \text{ and for every } z \in X \Big\}$$

$${}_{2}V^{\bar{\lambda}}[A, \Delta_{(mv)}^{n}, M, q, \|., .\|]_{\infty} = \left\{ x = (x_{jk}) : \sup_{r,s} \frac{1}{\bar{\lambda}_{rs}} \sum_{(j,k)\in\bar{I}_{r,s}} \left[M\left(\frac{\|\Delta_{(mv)}^{n}A_{jk}(x), z\|}{\rho}\right) \right]^{q_{jk}} < \infty,$$

$$\text{for some } \rho > 0 \text{ and for every } z \in X \Big\}$$

Where

$$\Delta_{(mv)}^{n} a_{m,n,j,k} = \sum_{i=0}^{n} (-1)^{i} \binom{n}{i} v_{j-mi,k-mi} a_{m,n,j-mi,k-mi}$$

Theorem 3.1 Let $q = (q_{jk})$ be bounded. Then ${}_{2}V^{\bar{\lambda}}[A, \Delta^{n}_{(mv)}, M, q, \|.,.\|]_{o}, {}_{2}V^{\bar{\lambda}}[A, \Delta^{n}_{(mv)}, M, q, \|.,.]_{o}$ and ${}_{2}V^{\bar{\lambda}}[A, \Delta^{n}_{(mv)}, M, q, \|.,.\|]_{\infty}$ are linear spaces over the set of complex numbers \mathbb{C} .

Proof. Let $x_{jk}, y_{jk} \in V^{\overline{\lambda}}[A, \Delta^n_{(mv)}, M, p, \|.,.\|]_o$ and $\alpha, \beta \in \mathbb{C}$. Then there exist some $\rho_1, \rho_2 > 0$ such that

$$P - \lim_{r,s} \frac{1}{\bar{\lambda}_{rs}} \sum_{(j,k)\in\bar{I}_{r,s}} \left[M\left(\frac{\|\Delta_{(mv)}^n A_{jk}(x), z\|}{\rho_1}\right) \right]^{q_{jk}} = 0,$$
$$P - \lim_{r,s} \frac{1}{\bar{\lambda}_{rs}} \sum_{(j,k)\in\bar{I}_{r,s}} \left[M\left(\frac{\|\Delta_{(mv)}^n A_{jk}(y), z\|}{\rho_2}\right) \right]^{q_{jk}} = 0,$$

Let $\rho_3 = \max(2|\alpha|\rho_1, 2|\beta|\rho_2)$. Then we have

$$\frac{1}{\overline{\lambda}_{rs}} \sum_{(j,k)\in\overline{I}_{r,s}} \left[M\left(\frac{\|\Delta_{(mv)}^{n}A_{jk}(\alpha x+\beta y),z\|}{\rho_{3}}\right) \right]^{q_{jk}}$$

$$\leq \frac{1}{\overline{\lambda}rs} \sum_{(j,k)\in\overline{I}_{r,s}} \left[M\left(\frac{\|\Delta_{(mv)}^{n}A_{jk}(\alpha x),z\|}{\rho_{3}} + \frac{\|\Delta_{(mv)}^{n}A_{jk}(\beta y),z\|}{\rho_{3}}\right) \right]^{q_{jk}}$$

51

$$\leq C \bigg\{ \frac{1}{\bar{\lambda}_{rs}} \sum_{(j,k)\in\bar{I}_{r,s}} \bigg[M\bigg(\frac{\|\Delta_{(mv)}^n A_{jk}(x), z\|}{\rho_1}\bigg) \bigg]^{q_{jk}} + \frac{1}{\bar{\lambda}_{rs}} \sum_{(j,k)\in\bar{I}_{r,s}} \bigg[M\bigg(\frac{\|\Delta_{(mv)}^n A_{jk}(y), z\|}{\rho_2}\bigg) \bigg]^{q_{jk}} \bigg\}.$$

This implies that

$$\frac{1}{\bar{\lambda}_{rs}} \sum_{(j,k)\in\bar{I}_{r,s}} \left[M\left(\frac{\|\Delta_{(mv)}^n A_{jk}(\alpha x + \beta y), z\|}{\rho_3}\right) \right]^{q_{jk}} = 0.$$

This proves that ${}_{2}V^{\bar{\lambda}}[A, \Delta^{n}_{(mv)}, M, q, \|.,.\|]_{o}$ is a linear space. Similarly we can prove that ${}_{2}V^{\bar{\lambda}}[A, \Delta^{n}_{(mv)}, M, q, \|.,.\|]$ and ${}_{2}V^{\bar{\lambda}}[A, \Delta^{n}_{(mv)}, M, q, \|.,.\|]_{\infty}$ are linear spaces over the set of complex numbers \mathbb{C} .

Theorem 3.2 Let M be any Orlicz function, then ${}_{2}V^{\bar{\lambda}}[A, \Delta^{n}_{(mv)}, M, q, \|.,.\|]_{o} \subset {}_{2}V^{\bar{\lambda}}[A, \Delta^{n}_{(mv)}, M, q, \|.,.\|] \subset {}_{2}V^{\bar{\lambda}}[A, \Delta^{n}_{(mv)}, M, q, \|.,.\|]_{\infty}$ hold.

Proof. The inclusion ${}_{2}V^{\bar{\lambda}}[A, \Delta^{n}_{(mv)}, M, q, \|.,.\|]_{o} \subset {}_{2}V^{\bar{\lambda}}[A, \Delta^{n}_{(mv)}, M, q, \|.,.\|]$ is obvious. Let $x_{jk} \in {}_{2}V^{\bar{\lambda}}[A, \Delta^{n}_{(mv)}, M, q, \|.,.\|]$ then there exists some $\rho > 0$ and L > 0

such that

$$\frac{1}{\bar{\lambda}_{rs}} \sum_{(j,k)\in\bar{I}_{r,s}} \left[M\left(\frac{\|\Delta_{(mv)}^n A_{jk}(x) - L, z\|}{\rho}\right) \right]^{q_{jk}} = 0.$$

$$\begin{aligned} \text{Taking } \rho_1 &= 2\rho, \text{ we have} \\ \frac{1}{\lambda_{rs}} \sum_{(j,k)\in\bar{I}_{r,s}} \left[M\left(\frac{\|\Delta_{(mv)}^n A_{jk}(x), z\|}{\rho}\right) \right]^{q_{jk}} \\ &= \frac{1}{\bar{\lambda}_{rs}} \sum_{(j,k)\in\bar{I}_{r,s}} \left[M\left(\frac{\|\Delta_{(mv)}^n A_{jk}(x) - L + L, z\|}{\rho}\right) \right]^{q_{jk}} \\ &\leq C \bigg\{ \frac{1}{\bar{\lambda}_{rs}} \sum_{(j,k)\in\bar{I}_{r,s}} \left[\frac{1}{2} M\left(\frac{\|\Delta_{(mv)}^n A_{jk}(x) - L, z\|}{\rho}\right) \right]^{q_{jk}} \\ &+ \frac{1}{\bar{\lambda}_{rs}} \sum_{(j,k)\in\bar{I}_{r,s}} \left[\frac{1}{2} M\left(\frac{\|L, z\|}{\rho}\right) \right]^{q_{jk}} \bigg\}. \end{aligned}$$

$$\leq C \left\{ \frac{1}{\bar{\lambda}_{rs}} \sum_{(j,k)\in\bar{I}_{r,s}} \left[\frac{1}{2} M \left(\frac{\|\Delta_{(mv)}^n A_{jk}(x) - L, z\|}{\rho} \right) \right]^{q_{jk}} + \max\left(\left[\frac{1}{2} M \left(\frac{\|L, z\|}{\rho} \right) \right]^H \right) \right\}.$$

Hence $x_{jk} \in {}_2V^{\bar{\lambda}}[A, \Delta^n_{(mv)}, M, q, \|.,.\|]_{\infty}.$

As a consequence of above theorem we state the following corollary.

Corollary 3.3 $_{2}V^{\bar{\lambda}}[A, \Delta^{n}_{(mv)}, M, q, \|.,.\|]_{o} and {}_{2}V^{\bar{\lambda}}[A, \Delta^{n}_{(mv)}, M, q, \|.,.\|]$ are nowhere dense subsets of $_{2}V^{\bar{\lambda}}[A, \Delta^{n}_{(mv)}, M, q, \|.,.\|]_{\infty}$.

Theorem 3.4 The sequence spaces ${}_{2}V^{\bar{\lambda}}[A, \Delta_{(mv)}^{n}, M, q, \|.,.\|]_{o}$ and ${}_{2}V^{\bar{\lambda}}[A, \Delta_{(mv)}^{n}, M, q, \|.,.\|]_{\infty}$ are solid and hence monotone.

Proof. Let $\alpha = (\alpha_{jk})$ be double sequence of scalars such that $|\alpha_{jk}| \leq 1$, for all $j, k \in \mathbb{N}$. Since M is monotone, we get for some $\rho > 0$

$$\frac{1}{\bar{\lambda}_{rs}} \sum_{(j,k)\in\bar{I}_{r,s}} \left[M\left(\frac{\|\Delta_{(mv)}^n A_{jk}(\alpha x), z\|}{\rho}\right) \right]^{q_{jk}} \le \frac{1}{\bar{\lambda}_{rs}} \sum_{(j,k)\in\bar{I}_{r,s}} \left[M\left(\sup|\alpha_{jk}|\frac{\|\Delta_{(mv)}^n A_{jk}(x), z\|}{\rho}\right) \right]^{q_{jk}} \le \frac{1}{\bar{\lambda}_{rs}} \sum_{(j,k)\in\bar{I}_{r,s}} \left[M\left(\frac{\|\Delta_{(mv)}^n A_{jk}(x), z\|}{\rho}\right) \right]^{q_{jk}}$$

Hence the result.♦

Theorem 3.5 Let M_1 and M_2 be two Orlicz functions. Then we have

- (i) ${}_{2}V^{\bar{\lambda}}[A, \Delta^{n}_{(mv)}, M_{1}, q, \|., .\|]_{o} \cap {}_{2}V^{\bar{\lambda}}[A, \Delta^{n}_{(mv)}, M_{2}, q, \|., .\|]_{o} \subseteq {}_{2}V^{\bar{\lambda}}[A, \Delta^{n}_{(mv)}, M_{1} + M_{2}, q, \|., .\|]_{o},$
- (ii) ${}_{2}V^{\bar{\lambda}}[A, \Delta^{n}_{(mv)}, M_{1}, q, \|., .\|] \cap_{2}V^{\bar{\lambda}}[A, \Delta^{n}_{(mv)}, M_{2}, q, \|., .\|] \subseteq {}_{2}V^{\bar{\lambda}}[A, \Delta^{n}_{(mv)}, M_{1} + M_{2}, q, \|., .\|]$ and
- (iii) ${}_{2}V^{\bar{\lambda}}[A, \Delta^{n}_{(mv)}, M_{1}, q, \|., .\|]_{\infty} \cap_{2}V^{\bar{\lambda}}[A, \Delta^{n}_{(mv)}, M_{2}, q, \|., .\|]_{\infty} \subseteq {}_{2}V^{\bar{\lambda}}[A, \Delta^{n}_{(mv)}, M_{1} + M_{2}, q, \|., .\|]_{\infty}.$

Theorem 3.6 Let the Orlicz functions M_1 and M_2 satisfy the Δ_2 -condition. Then

(i)
$${}_{2}V^{\bar{\lambda}}[A, \Delta^{n}_{(mv)}, M_{1}, q, \|., .\|]_{o} \subseteq {}_{2}V^{\bar{\lambda}}[A, \Delta^{n}_{(mv)}, M_{1} \circ M_{2}, q, \|., .\|]_{o},$$

(ii) ${}_{2}V^{\bar{\lambda}}[A, \Delta^{n}_{(mv)}, M_{1}, q, \|., .\|] \subseteq {}_{2}V^{\bar{\lambda}}[A, \Delta^{n}_{(mv)}, M_{1} \circ M_{2}, q, \|., .\|]$ and
(iii) ${}_{2}V^{\bar{\lambda}}[A, \Delta^{n}_{(mv)}, M_{1}, q, \|., .\|]_{\infty} \subseteq {}_{2}V^{\bar{\lambda}}[A, \Delta^{n}_{(mv)}, M_{1} \circ M_{2}, q, \|., .\|]_{\infty}.$

Proof(i). We consider only case ${}_{2}V^{\bar{\lambda}}[A, \Delta_{(mv)}^{n}, M_{1}, q, \|.,.\|]_{o} \subseteq {}_{2}V^{\bar{\lambda}}[A, \Delta_{(mv)}^{n}, M_{1} \circ M_{2}, q, \|.,.\|]_{o}$. Let $x_{jk} \in {}_{2}V^{\bar{\lambda}}[A, \Delta_{(mv)}^{n}, M_{1}, q, \|.,.\|]_{o}$ and $\epsilon > 0$. Now using the continuity of M choose $0 < \delta < 1$ such that $0 < t < \delta \Rightarrow M(t) < \epsilon$. Write $y_{jk} = M_{1}\left(\frac{\|\Delta_{(mv)}^{n}A_{jk}(x), z\|}{\rho}\right)$. Now consider

$$\frac{1}{\bar{\lambda}_{rs}} \sum_{(j,k)\in\bar{I}_{r,s}} [M_2(y_{jk})]^{q_{jk}} = \frac{1}{\bar{\lambda}_{rs}} \sum_1 [M_2(y_{jk})]^{q_{jk}} + \frac{1}{\bar{\lambda}_{rs}} \sum_2 [M_2(y_{jk})]^{q_{jk}}$$

Where the first summation is over $y_{jk} \leq \delta$ and the second summation is over $y_{jk} > \delta$. Since M_2 is continuous, we have

$$\frac{1}{\overline{\lambda}_{rs}} \sum_{1} [M_2(y_{jk})]^{q_{jk}} < \frac{1}{\overline{\lambda}_{rs}} \sum_{(j,k)\in\overline{I}_{r,s}} \max(1,\epsilon^H).$$

For $y_{jk} > \delta$, we use the fact that

$$y_{jk} < \frac{y_{jk}}{\delta} \le 1 + \left(\frac{y_{jk}}{\delta}\right).$$

Since M_2 is non decreasing and convex, it follows that

$$M(y_{jk}) < M(1 + \delta^{-1}y_{jk}) = M\left(\frac{2}{2} + \frac{2}{2}\delta^{-1}y_{jk}\right)$$
$$< \frac{1}{2}M(2) + \frac{1}{2}M(2\delta^{-1}y_{jk})$$

Since M satisfies Δ_2 -condition, there is a constant K > 2 such that

$$M(2\delta^{-1}y_{jk}) \le \frac{1}{2}K\delta^{-1}y_{jk}M(2)$$

Hence

$$\frac{1}{\bar{\lambda}_{rs}} \sum_{2} [M_2(y_{jk})]^{q_{jk}} < \max(1, (K\delta^{-1}M(2))) \frac{1}{\bar{\lambda}_{rs}} \sum_{(j,k)\in\bar{I}_{r,s}} (y_{jk})^{q_{jk}}.$$

Thus we have

$$\frac{1}{\bar{\lambda}_{rs}} \sum_{(j,k)\in\bar{I}_{r,s}} [M_2(y_{jk})]^{q_{jk}} < \max(1,\epsilon^H) + \max(1,(K\delta^{-1}M(2))) \frac{1}{\bar{\lambda}_{rs}} \sum_{(j,k)\in\bar{I}_{r,s}} (y_{jk})^{q_{jk}}.$$

Therefore $x \in {}_2V^{\bar{\lambda}}[A,\Delta^n_{(mv)},M_1 \circ M_2,p,\|.,.\|]_o$

Taking $M_1(x) = x$, for all $x = x_{jk} \in [0, \infty)$, we have the following result

Proof of other two cases follow similarly.

Theorem 3.7 Let the Orlicz function M_2 satisfy the Δ_2 -condition. Then (i) $_2V^{\bar{\lambda}}[A, \Delta^n_{(mv)}, q, \|.,.\|]_o \subseteq {}_2V^{\bar{\lambda}}[A, \Delta^n_{(mv)}, M_2, q, \|.,.\|]_o,$ (ii) $_2V^{\bar{\lambda}}[A, \Delta^n_{(mv)}, q, \|.,.\|] \subseteq {}_2V^{\bar{\lambda}}[A, \Delta^n_{(mv)}, M_2, q, \|.,.\|]$ and (iii) $_2V^{\bar{\lambda}}[A, \Delta^n_{(mv)}, q, \|.,.\|]_{\infty} \subseteq {}_2V^{\bar{\lambda}}[A, \Delta^n_{(mv)}, M_2, q, \|.,.\|]_{\infty}.$

Theorem 3.8 Let $0 < p_{jk} \leq q_{jk}$ for all j, k and (q_{jk}/p_{jk}) be bounded. Then

(i)
$${}_{2}V^{\bar{\lambda}}[A, \Delta^{n}_{(mv)}, M, q, \|.,.\|]_{o} \subset {}_{2}V^{\bar{\lambda}}[A, \Delta^{n}_{(mv)}, M, p, \|.,.\|]_{o},$$

(ii) ${}_{2}V^{\bar{\lambda}}[A, \Delta^{n}_{(mv)}, M, q, \|.,.\|] \subset {}_{2}V^{\bar{\lambda}}[A, \Delta^{n}_{(mv)}, M, p, \|.,.\|]$ and
(iii) ${}_{2}V^{\bar{\lambda}}[A, \Delta^{n}_{(mv)}, M, q, \|.,.\|]_{\infty} \subset {}_{2}V^{\bar{\lambda}}[A, \Delta^{n}_{(mv)}, M, p, \|.,.\|]_{\infty}.$

Proof. Let $x \in {}_{2}V^{\bar{\lambda}}[A, \Delta_{(mv)}^{n}, M, q, \|., .\|]_{o}$ Write $t_{j,k} = \left[M\left(\frac{\|\Delta_{(mv)}^{n}A_{jk}(x), z\|}{\rho}\right)\right]^{p_{jk}}$ for all j, k and $\lambda_{j,k} = \frac{p_{j,k}}{q_{j,k}}$. Since $0 < p_{j,k} \le q_{j,k}$, therefore $0 < \lambda_{j,k} \le 1$. Take $0 < \lambda \le \lambda_{j,k}$. Define

$$u_{j,k} = \begin{cases} t_{j,k} & t_{j,k} \ge 1 \\ 0 & t_{j,k} < 1. \end{cases}$$
$$v_{j,k} = \begin{cases} 0 & t_{j,k} \ge 1 \\ t_{j,k} & t_{j,k} < 1. \end{cases}$$

So $t_{j,k} = u_{j,k} + v_{j,k}$ and

 $t_{j,k}^{\lambda_{j,k}} = u_{j,k}^{\lambda_{j,k}} + v_{j,k}^{\lambda_{j,k}}$ Now it follows that

 $u_{j,k}^{\lambda_{j,k}} \leq u_{j,k} \leq t_{j,k}$ and $v_{j,k}^{\lambda_{j,k}} \leq v_{j,k}^{\lambda}$ Therfore

$$\frac{1}{\overline{\lambda}_{rs}} \sum_{(j,k)\in\overline{I}_{r,s}} t_{j,k}^{\lambda_{j,k}} \le \frac{1}{\overline{\lambda}_{rs}} \sum_{(j,k)\in\overline{I}_{r,s}} t_{j,k} + \left[\frac{1}{\overline{\lambda}rs} \sum_{(j,k)\in\overline{I}_{r,s}} v_{j,k}\right]^{\lambda_{j,k}}$$

Hence $x \in {}_{2}V^{\bar{\lambda}}[A, \Delta^{n}_{(mv)}, M, p, \|., .\|]_{o}$ By using above theorem it is easy to prove the following result.

Corollary 3.9 (a). If $0 < \inf q_{k,l} \le q_{j,k} \le 1$ for all $j, k \in \mathbb{N}$ then, (i) ${}_{2}V^{\bar{\lambda}}[A, \Delta_{(mv)}^{n}, M, \|., .\|]_{o} \subset {}_{2}V^{\bar{\lambda}}[A, \Delta_{(mv)}^{n}, M, q, \|., .\|]_{o},$ (ii) ${}_{2}V^{\bar{\lambda}}[A, \Delta_{(mv)}^{n}, M, \|., .\|] \subset {}_{2}V^{\bar{\lambda}}[A, \Delta_{(mv)}^{n}, M, q, \|., .\|]$ and (iii) ${}_{2}V^{\bar{\lambda}}[A, \Delta_{(mv)}^{n}, M, \|., .\|]_{\infty} \subset {}_{2}V^{\bar{\lambda}}[A, \Delta_{(mv)}^{n}, M, q, \|., .\|]_{\infty}.$ (b). If $0 \le q_{j,k} \le \sup q_{j,k} = H < \infty$ for all $j, k \in \mathbb{N}$ then, (i) ${}_{2}V^{\bar{\lambda}}[A, \Delta_{(mv)}^{n}, M, q, \|., .\|]_{o} \subset {}_{2}V^{\bar{\lambda}}[A, \Delta_{(mv)}^{n}, M, \|., .\|]_{o},$ (ii) ${}_{2}V^{\bar{\lambda}}[A, \Delta_{(mv)}^{n}, M, q, \|., .\|] \subset {}_{2}V^{\bar{\lambda}}[A, \Delta_{(mv)}^{n}, M, \|., .\|]$ and (iii) ${}_{2}V^{\bar{\lambda}}[A, \Delta_{(mv)}^{n}, M, q, \|., .\|] \subset {}_{2}V^{\bar{\lambda}}[A, \Delta_{(mv)}^{n}, M, \|., .\|]$ and (iii) ${}_{2}V^{\bar{\lambda}}[A, \Delta_{(mv)}^{n}, M, q, \|., .\|] \subset {}_{2}V^{\bar{\lambda}}[A, \Delta_{(mv)}^{n}, M, \|., .\|]$ and

Acknowledgements

The authors would like to record their gratitude to the reviewer for her careful reading and making some useful corrections which improved the presentation of the paper.

References

- T. Bilgin, Some sequence spaces defined by a modulus, *Int.Math.J.*, 3(3) (2003), 305-310.
- [2] H. Dutta, Characterization of certain matrix classes involving generalzed difference summability spaces, *Applied Sciences(APPS)*, 11(2009), 60-67.
- [3] H. Dutta and T. Bilgin, Strongly $(V^{\lambda}, A, \Delta_{(mv)}^{n}, p)$ -summable sequence spaces defined by an Orlicz function, Applied Mathematics Letters, 24(2011), 1057-1062.

- [4] M. Et and Colak, On some generalized difference sequence spaces, Soochochow J. Math., 21(4) (1995), 377-386.
- [5] S. Gähler, 2-merische Räme und ihre topological struktur, Math. Nachr., 28(1963), 115-148.
- [6] S. Gähler, Linear 2-normietre Räme, Math. Nachr., 28(1965), 1-43.
- [7] S. Gähler, Uber der uniformisierbarkeit 2-merische Räme, Math. Nachr., 28(1965), 235-244.
- [8] H. Gunawan and Mashadi, On finite dimensional 2-normed spaces, Soochow J. Math., 27(3) (2001), 631-639.
- [9] V.A. Khan, Quasi almost convergence in a normed space for double sequences, *Thai J. Math*, 8(1) (2010), 227-231.
- [10] V.A. Khan and S. Tabassum, Statistically pre-cauchy double sequences, Southeast Asian Bull. Math., 36(2)(2012), 249-254.
- [11] V.A. Khan and S. Tabassum, Statistically convergent double sequence spaces in 2-normed spaces defined by Orlicz function, *Applied Mathemat*ics, 2(2011), 398-402.
- [12] V.A. Khan and S. Tabassum, On some new quasi almost Δ^m -lacunary strongly P-convergent double sequences defined by Orlicz functions, *Journal of Mathematics and Applications*, 34(2011), 45-52.
- [13] V.A. Khan and S. Tabassum, On ideal convergent difference double sequence spaces in 2-normed spaces defined by Orlicz function, JMI International Journal of Mathematics and Applications, 1(2)(2010),26-34.
- [14] H. Kizmaz, On certain sequence spaces, Canadian Math. Bull., 24(2) (1981), 169-176.
- [15] J. Lindenstrauss and L. Tzafiri, On Orlicz sequence spaces, Israel J. Math., 10(1971), 379-390.
- [16] F. Moricz and B.E. Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, *Math. Proc. Camb. Phil. Soc.*, 104(1988), 283-293.
- [17] M. Mursaleen, C. Çakan, S.A. Mohiuddine and E. Savas, Generalized statistical convergence and statistical core of double sequences, *Acta Mathematica Sinica*, 26(11) (2010), 2131-2144.

- [18] E. Öztürk and T. Bilgin, Strongly summable sequence spaces defined by a modulus, *Indian J. Pure Appl. Math.*, 25(6) (1994), 621-625.
- [19] B.C. Tripathy and A. Esi, A new type of difference sequence spaces, *International Journal of Science and Technology*, 1(1) (2006), 11-14.
- [20] B.C. Tripathy, A. Esi and B.K. Tripathy, On a new type of generalized difference Cesàro sequence spaces, *Soochow J. Math.*, 31(3) (2005), 333-340.