Gen. Math. Notes, Vol. 7, No. 2, December 2011, pp.45-58
ISSN 2219-7184; Copyright © ICSRS Publication, 2011
www.i-csrs.org
Available free online at http://www.geman.in

The Strongly Summable Generalized Difference Double Sequence Spaces in 2-Normed Spaces Defined by an Orlicz Functions

Vakeel A. Khan ${ }^{1}$ and Sabiha Tabassum ${ }^{2}$
${ }^{1}$ Department of Mathematics, A.M.U. Aligarh-202002 (India)
E-mail: vakhan@math.com
${ }^{2}$ Department of Mathematics, A.M.U. Aligarh-202002 (India)
E-mail: sabihatabassum@math.com

(Received: 15-9-11/ Accepted: 22-12-11)

Abstract

The main aim of this paper is to introduce a new class of sequence spaces namely ${ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M, p,\|., .\|\right]_{\sigma}$ where $\sigma=0,1, \infty$, using the concept of 2 norm and the notion of de la Valee-Pousin means when $A=\left(a_{m, n, j, k}, j, k=\right.$ $0,1, \ldots$ is a doubly infinite matrix of real numbers for all $m, n=0,1, \ldots$ To construct these spaces we use an Orlicz function, a bounded sequence of positive real numbers and a generalized difference operator which was introduced by Dutta[2]. We obtain various inclusion relations involving these sequence spaces.

Keywords: Double sequence Spaces, Difference operator, de la ValeePousin mean, 2-normed space, Orlicz Function.

1

1 Introduction

The concept of 2-normed spaces was initially introduced by G̈ahler[5] in the mid of 1960's. Since then, many researchers have studied this concept and

[^0]obtained various results, see for instance $[6,7,8]$.
Let X be a real vector space of dimension d, where $2 \leq d<\infty$. A 2-norm on X is a function $\|.,\|:. X \times X \rightarrow R$ which satisfies the following four conditions (see[9,13]):
(i) $\left\|x_{1}, x_{2}\right\|=0$ if and only if x_{1}, x_{2} are linearly dependent;
(ii) $\left\|x_{1}, x_{2}\right\|=\left\|x_{2}, x_{1}\right\|$:
(iii) $\left\|\alpha x_{1}, x_{2}\right\|=|\alpha|\left\|x_{1}, x_{2}\right\|$, for any $\alpha \in R$:
(iv) $\left\|x+x^{\prime}, x_{2}\right\| \leq\left\|x, x_{2}\right\|+\left\|x^{\prime}, x_{2}\right\|$

The pair $(X,\|\cdot,\|$.$) is then called a 2$-normed space.

Example 1.1. A standard example of a 2-normed space is R^{2} equipped with the following 2 -norm $\|x, y\|:=$ the area of the triangle having vertices $0, x, y$.

Let w, l_{∞}, c and c_{0} denote the spaces of all, bounded, convergent and null sequences $x=\left(x_{k}\right)$ with complex terms, respectively normed by

$$
\|x\|=\sup _{k}\left|x_{k}\right| .
$$

Kizmaz [14], defined the difference sequences $l_{\infty}(\Delta), c(\Delta)$ and $c_{0}(\Delta)$ as follows:

$$
Z(\Delta)=\left\{x=\left(x_{k}\right):\left(\Delta x_{k}\right) \in Z\right\}
$$

for $Z=l_{\infty}, c$ and c_{0}, where $\Delta x=\left(\Delta x_{k}\right)=\left(x_{k}-x_{k+1}\right)$, for all $k \in \mathbb{N}$.
The above spaces are Banach spaces, normed by

$$
\|x\|_{\Delta}=\left|x_{1}\right|+\sup _{k}\left\|\Delta x_{k}\right\| .
$$

The notion of difference sequence spaces was generalized by Et. and Colak[4] as follows:

$$
Z\left(\Delta^{n}\right)=\left\{x=\left(x_{k}\right):\left(\Delta^{n} x_{k}\right) \in Z\right\}
$$

for $Z=l_{\infty}, c$ and c_{0}, where $n \in \mathbb{N},\left(\Delta^{n} x_{k}\right)=\left(\Delta^{n-1} x_{k}-\Delta^{n-1} x_{k+1}\right)$ and so that

$$
\Delta^{n} x_{k}=\sum_{v=0}^{n}(-1)^{v}\binom{n}{v} x_{k+v}
$$

In 2005, Tripathy and Esi [19], introduced the following new type of difference sequence spaces:

$$
Z\left(\Delta_{m}\right)=\left\{x=\left(x_{k}\right) \in w: \Delta_{m} x \in Z\right\}, \text { for } Z=l_{\infty}, c \text { and } c_{0}
$$

where $\Delta_{m} x=\left(\Delta_{m} x_{k}\right)=\left(x_{k}-x_{k+m}\right)$, for all $k \in \mathbb{N}$.
Later on Tripathy, Esi and Tripathy[20], generalized the above notions and unified these as follows:
Let m, n be non negative integers, then for Z a given sequence space we have

$$
Z\left(\Delta_{m}^{n}\right)=\left\{x=\left(x_{k}\right) \in w:\left(\Delta_{m}^{n} x_{k}\right) \in Z\right\}
$$

where

$$
\Delta_{m}^{n} x_{k}=\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} x_{k+m i}
$$

Taking $m=1$, we get the spaces $l_{\infty}\left(\Delta^{n}\right), c\left(\Delta^{n}\right)$ and $c_{0}\left(\Delta^{n}\right)$ studied by Et an Colak[4]. Taking $n=1$, we get the spaces $l_{\infty}\left(\Delta_{m}\right), c\left(\Delta_{m}\right)$ and $c_{0}\left(\Delta_{m}\right)$ studied by Tripathy and Esi[18]. Taking $m=n=1$, we get the spaces $l_{\infty}(\Delta), c(\Delta)$ and $c_{0}(\Delta)$ introduced and studied by Kizmaz[14].

Let $v=v_{k}$ be sequence of non-zero scalars. Also let $Z=\left\{l_{\infty}, c, c_{o}\right\}$. Recently Dutta[2] defined the following sequence spaces

$$
Z\left(\Delta_{(m v)}^{n} x_{k}\right)=\left\{x=\left(x_{k}\right) \in w:\left(\Delta_{m v}^{n} x_{k}\right) \in Z\right\}
$$

where $\left(\Delta_{(m v)}^{n} x_{k}\right)=\left(\Delta_{(m v)}^{n-1} x_{k}-\Delta_{(m v)}^{n-1} x_{k-m}\right)$ and $\Delta_{(m v)}^{o} x_{k}=v_{k} x_{k}$ for all $k \in \mathbb{N}$, which is equivalent to the following binomial representation:

$$
\Delta_{(m v)}^{n} x_{k}=\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} v_{k-m i} x_{k-m i}
$$

Let $\lambda=\left(\lambda_{r}\right)$ be a non decreasing sequences of positive real numbers both of which tending to ∞, and $\lambda_{r+1} \leq \lambda_{r}+1, \lambda_{1}=0$. The generalized de la Valee-Pousin mean is defined by

$$
t_{r}(x)=\frac{1}{\lambda_{r}} \sum_{k \in I_{r}} x_{k}
$$

where
$I_{r}=\left[r-\lambda_{r}+1, r\right]$ (see[3]).
A sequence $x=\left(x_{k}\right)$ is said to be (V, λ)-summable to a number L if $t_{r}(x) \rightarrow L$ as $r \rightarrow \infty$. If $\lambda_{r}=r$, then (V, λ)-summability reduced to
$(C, 1)$-summability. We write

$$
[V, \lambda]=\left\{x=\left(x_{k}\right): \lim _{r \rightarrow \infty} \frac{1}{\lambda_{r}} \sum_{k \in I_{r}}\left|x_{k}-L\right|=0 \text { for some } L\right\}
$$

for sets of sequences $x=\left(x_{k}\right)$ which are strongly $(V, \lambda)-$ summable to L .
Subsequently strongly (V, λ) - summable as well as generalized kind of summable sequence spaces have been studied by various authors $[1,18]$.

An Orlicz Function is a function $M:[0, \infty) \rightarrow[0, \infty)$ which is continuous, nondecreasing and convex with $M(0)=0, M(x)>0$ for $x>0$ and $M(x) \rightarrow$ ∞, as $x \rightarrow \infty$.

An Orlicz function M satisfies the $\Delta_{2}-$ condition $\left(M \in \Delta_{2}\right.$ for short) if there exist constant $k \geq 2$ and $u_{0}>0$ such that

$$
M(2 u) \leq K M(u)
$$

whenever $|u| \leq u_{0}$.

An Orlicz function M can always be represented in the integral form $M(x)=\int_{0}^{x} q(t) d t$, where q known as the kernel of M, is right differentiable for $t \geq 0, q(t)>0$ for $t>0, q$ is non-decreasing and $q(t) \rightarrow \infty$ as $t \rightarrow \infty$.

Note that an Orlicz function satisfies the inequality

$$
M(\lambda x) \leq \lambda M(x) \text { for all } \lambda \text { with } 0<\lambda<1
$$

since M is convex and $M(0)=0$.
Lindesstrauss and Tzafriri [15] used the idea of Orlicz sequence space;

$$
l_{M}:=\left\{x \in w: \sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{\rho}\right)<\infty, \text { for some } \rho>0\right\}
$$

which is Banach space with the norm

$$
\|x\|_{M}=\inf \left\{\rho>0: \sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{\rho}\right) \leq 1\right\}
$$

The space l_{M} is closely related to the space l_{p}, which is an Orlicz sequence space with $M(x)=x^{p}$ for $1 \leq p<\infty$.

2 Preliminaries

Throughout $x=\left(x_{j k}\right)$ is a double sequence that is a double infinite array of elements $x_{j k}$, for $j, k \in \mathbb{N}$. By the convergence of a double sequence we mean the convergence on the Pringsheim sence that is, a double sequence $x=\left(x_{j k}\right)$ is said to be Pringsheim convergent (or P-convergent) if for $\epsilon>0$ there exists an integer N such that $\left|x_{j k}-L\right|<\epsilon$ whenever $j, k>N$ (see[16]).

We shall write this as
$\lim _{j, k \rightarrow \infty} x_{j k}=L$, where j, k tends to infinity independent of each other.
A double sequence $x=\left(x_{j k}\right)$ is bounded if

$$
\|x\|=\sup _{j, k \geq 0}\left|x_{j k}\right|<\infty(\operatorname{see}[16])
$$

Let $A=\left(a_{m, n, j, k}\right), j, k=0,1, \ldots$. be a doubly infinite matrix of real numbers for all $m, n=0,1, \ldots$. Forming the sums

$$
y_{m n}=\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_{m, n, j, k} x_{j k},
$$

called the A-means of the double sequence x, yeilds a method of summability. More exactly, we say that a sequence is A - summable to the limit L if the A-means exist for all $m, n=0,1, \ldots$ in the sense of Pringsheim's convergence:

$$
\lim _{p, q \rightarrow \infty} \sum_{j=0}^{p} \sum_{k=0}^{q} a_{m, n, j, k} x_{j k}=y_{m n} \text { and } \lim _{m, n \rightarrow \infty} y_{m n}=L
$$

Double sequence have been studied by Vakeel.A.Khan[9] and Vakeel.A.Khan and Sabiha Tabassum $[10,11,12,13]$ and many others.

A double sequence space E is said to be solid if $\left(\alpha_{i, j} x_{i, j}\right) \in E$, whenever $\left(x_{i, j}\right) \in E$, for all double sequences $\left(\alpha_{i, j}\right)$ of scalars with $\left|\alpha_{i, j}\right| \leq 1$, for all $i, j \in \mathbb{N}$.

Let $K=\left\{\left(n_{i}, k_{j}\right): i, j \in \mathbb{N} ; n_{1}<n_{2}<n_{3}<\ldots\right.$ and $\left.k_{1}<k_{2}<k_{3}<\ldots\right\} \subseteq$ $N \otimes N$ and E be a double sequence space. A K-step space of E is a sequence space

$$
\lambda_{K}^{E}=\left\{\left(\alpha_{i, j} x_{i, j}\right):\left(x_{i, j}\right) \in E\right\} .
$$

A canonical pre-image of a sequence $\left(x_{n_{i}, k_{j}}\right) \in E$ is a sequence $\left(b_{n, k}\right) \in E$
defined as follows:

$$
b_{n k}= \begin{cases}a_{n k} & \text { if }(n, k) \in K \\ 0 & \text { otherwise }\end{cases}
$$

A canonical pre-image of step space λ_{K}^{E} is a set of canonical pre-images of all elements in λ_{K}^{E}.

A double sequence space E is said to be monotone if it contains the canonical pre-images of all its step spaces.

A double sequence space E is said to be symmetric if $\left(x_{i, j}\right) \in E$ implies $\left(x_{\pi(i), \pi(j)}\right) \in E$, where π is a permutation of \mathbb{N}.

Lemma 2.1 A sequence space E is solid implies E is monotone.
The following inequality will be used throughout the paper. Let $q=q_{j k}$ be a double sequence of positive real numbers with $0<q_{j k} \leq \sup q_{j k}=H$ and let $C=\max \left\{1,2^{H-1}\right\}$. Then for the factorable sequences $\left(a_{j k}\right)$ and $\left(b_{j k}\right)$ in the complex plane, we have

$$
\left|a_{j k}+b_{j k}\right|^{q_{j k}} \leq C\left(\left|a_{j k}\right|^{q_{j k}}+\left|b_{j k}\right|^{q_{j k}}\right)
$$

3 Main Results

Let $\lambda=\left(\lambda_{r}\right)$ and $\mu=\left(\mu_{s}\right)$ be two non decreasing sequences of positive real numbers both of which tends to ∞ as r, s approach ∞, respectively. Also let $\lambda_{r+1} \leq \lambda_{r}+1, \lambda_{1}=0$ and $\mu_{s+1} \leq \mu_{s}+1, \mu_{1}=0$. The generalized double de la Valee-Pousin mean was defined by M.Mursaleen, C. Çakan, S.A.Mohiuddine and E. Savas [17] as:

$$
t_{r, s}(x)=\frac{1}{\lambda_{r} \mu_{s}} \sum_{j \in I_{r}} \sum_{k \in I_{s}} x_{j, k}
$$

where $I_{r}=\left[r-\lambda_{r}+1, r\right]$ and $I_{s}=\left[s-\mu_{s}+1, s\right]$.
Throughout this paper we shall denote $\lambda_{r} \mu_{s}$ by $\bar{\lambda}_{r s}$ and $\left(j \in I_{r}, k \in I_{s}\right)$ by $(j, k) \in \bar{I}_{r, s}$.

Let M be an Orlicz function, $x=\left(x_{j k}\right)$ be double sequence space and $q=$ $\left(q_{j k}\right)$ be any factorable double sequence of strictly positive real numbers $(0<$ $\left.h=\inf q_{j k} \leq q_{j k} \leq \sup q_{j k}<\infty\right)$. Let $A=\left(a_{m, n, j, k}\right)$ be an infinite four dimensional matrix of complex numbers and $(X,\|,\|$,$) be 2-normed space. We define$

$$
{ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M, q,\|\cdot, .\|\right]_{o}=\left\{x=\left(x_{j k}\right): P-\lim _{r, s} \frac{1}{\bar{\lambda}_{r s}} \sum_{(j, k) \in \bar{I}_{r, s}}\left[M\left(\frac{\left\|\Delta_{(m v)}^{n} A_{j k}(x), z\right\|}{\rho}\right)\right]^{q_{j k}}=0\right.
$$

for some $\rho>0$ and for every $z \in X\}$

$$
{ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M, q,\|\cdot, \cdot\|\right]=\left\{x=\left(x_{j k}\right): P-\lim _{r, s} \frac{1}{\bar{\lambda}_{r s}} \sum_{(j, k) \in \bar{I}_{r, s}}\left[M\left(\frac{\left\|\Delta_{(m v)}^{n} A_{j k}(x)-L, z\right\|}{\rho}\right)\right]^{q_{j k}}=0\right.
$$

for some $\rho>0, L>0$ and for every $z \in X\}$
${ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M, q,\|\cdot, \cdot\|\right]_{\infty}=\left\{x=\left(x_{j k}\right): \sup _{r, s} \frac{1}{\bar{\lambda}_{r s}} \sum_{(j, k) \in \bar{I}_{r, s}}\left[M\left(\frac{\left\|\Delta_{(m v)}^{n} A_{j k}(x), z\right\|}{\rho}\right)\right]^{q_{j k}}<\infty\right.$,
for some $\rho>0$ and for every $z \in X\}$
Where

$$
\Delta_{(m v)}^{n} a_{m, n, j, k}=\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} v_{j-m i, k-m i} a_{m, n, j-m i, k-m i}
$$

Theorem 3.1 Let $q=\left(q_{j k}\right)$ be bounded. Then ${ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M, q,\|., .\|\right]_{o,{ }_{2}} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M, q, \| .\right.$, . and ${ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M, q,\|.,\|\right]_{\infty}$ are linear spaces over the set of complex numbers \mathbb{C}.

Proof. Let $x_{j k}, y_{j k} \in_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M, p,\|\cdot, \cdot\|\right]_{o}$ and $\alpha, \beta \in \mathbb{C}$. Then there exist some $\rho_{1}, \rho_{2}>0$ such that

$$
\begin{aligned}
& P-\lim _{r, s} \frac{1}{\bar{\lambda}_{r s}} \sum_{(j, k) \in \bar{I}_{r, s}}\left[M\left(\frac{\left\|\Delta_{(m v)}^{n} A_{j k}(x), z\right\|}{\rho_{1}}\right)\right]^{q_{j k}}=0, \\
& P-\lim _{r, s} \frac{1}{\bar{\lambda}_{r s}} \sum_{(j, k) \in \bar{I}_{r, s}}\left[M\left(\frac{\left\|\Delta_{(m v)}^{n} A_{j k}(y), z\right\|}{\rho_{2}}\right)\right]^{q_{j k}}=0,
\end{aligned}
$$

Let $\rho_{3}=\max \left(2|\alpha| \rho_{1}, 2|\beta| \rho_{2}\right)$. Then we have

$$
\begin{aligned}
& \frac{1}{\lambda_{r s}} \sum_{(j, k) \in \bar{I}_{r, s}}\left[M\left(\frac{\left\|\Delta_{(m v)}^{n} A_{j k}(\alpha x+\beta y), z\right\|}{\rho_{3}}\right)\right]^{q_{j k}} \\
& \quad \leq \frac{1}{\bar{\lambda} r s} \sum_{(j, k) \in \bar{I}_{r, s}}\left[M\left(\frac{\left\|\Delta_{(m v)}^{n} A_{j k}(\alpha x), z\right\|}{\rho_{3}}+\frac{\left\|\Delta_{(m v)}^{n} A_{j k}(\beta y), z\right\|}{\rho_{3}}\right)\right]^{q_{j k}}
\end{aligned}
$$

$$
\begin{aligned}
& \leq C\left\{\frac{1}{\bar{\lambda}_{r s}} \sum_{(j, k) \in \bar{I}_{r, s}}\left[M\left(\frac{\left\|\Delta_{(m v)}^{n} A_{j k}(x), z\right\|}{\rho_{1}}\right)\right]^{q_{j k}}\right. \\
&\left.+\frac{1}{\bar{\lambda}_{r s}} \sum_{(j, k) \in \bar{I}_{r, s}}\left[M\left(\frac{\left\|\Delta_{(m v)}^{n} A_{j k}(y), z\right\|}{\rho_{2}}\right)\right]^{q_{j k}}\right\} .
\end{aligned}
$$

This implies that

$$
\frac{1}{\bar{\lambda}_{r s}} \sum_{(j, k) \in \bar{I}_{r, s}}\left[M\left(\frac{\left\|\Delta_{(m v)}^{n} A_{j k}(\alpha x+\beta y), z\right\|}{\rho_{3}}\right)\right]^{q_{j k}}=0 .
$$

This proves that ${ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M, q,\|.,\|\right]_{o}$. is a linear space. Similarly we can prove that ${ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M, q,\|.,\|.\right]$ and ${ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M, q,\|., .\|\right]_{\infty}$ are linear spaces over the set of complex numbers \mathbb{C}.

Theorem 3.2 Let M be any Orlicz function, then ${ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M, q,\|.,\|\right]_{o} \subset$ ${ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M, q,\|.,\|.\right] \subset{ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M, q,\|.,\|\right]_{\infty}$ hold.

Proof. The inclusion ${ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M, q,\|., .\|\right]_{o} \subset{ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M, q,\|.\|,\right]$ is obvious.
Let $x_{j k} \in{ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M, q,\|.\|,\right]$ then there exists some $\rho>0$ and $L>0$ such that

$$
\frac{1}{\overline{\lambda_{r s}}} \sum_{(j, k) \in \bar{I}_{r, s}}\left[M\left(\frac{\left\|\Delta_{(m v)}^{n} A_{j k}(x)-L, z\right\|}{\rho}\right)\right]^{q_{j k}}=0
$$

Taking $\rho_{1}=2 \rho$, we have

$$
\begin{aligned}
& \frac{1}{\lambda_{r s}} \sum_{(j, k) \in \bar{I}_{r, s}}\left[M\left(\frac{\left\|\Delta_{(m v)}^{n} A_{j k}(x), z\right\|}{\rho}\right)\right]^{q_{j k}} \\
&=\frac{1}{\bar{\lambda}_{r s}} \sum_{(j, k) \in \bar{I}_{r, s}} {\left[M\left(\frac{\left\|\Delta_{(m v)}^{n} A_{j k}(x)-L+L, z\right\|}{\rho}\right)\right]^{q_{j k}} } \\
& \leq C\left\{\frac{1}{\bar{\lambda}_{r s}} \sum_{(j, k) \in \bar{I}_{r, s}}\left[\frac{1}{2} M\left(\frac{\left\|\Delta_{(m v)}^{n} A_{j k}(x)-L, z\right\|}{\rho}\right)\right]^{q_{j k}}\right. \\
&\left.\left.+\frac{1}{\bar{\lambda}_{r s}} \sum_{(j, k) \in \bar{I}_{r, s}}\left[\frac{1}{2} M\left(\frac{\|L, z\|}{\rho}\right)\right]^{q_{j k}}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \leq C\left\{\frac{1}{\bar{\lambda}_{r s}} \sum_{(j, k) \in \bar{I}_{r, s}}\left[\frac{1}{2} M\left(\frac{\left\|\Delta_{(m v)}^{n} A_{j k}(x)-L, z\right\|}{\rho}\right)\right]^{q_{j k}}\right. \\
& \left.\quad+\max \left(\left[\frac{1}{2} M\left(\frac{\|L, z\|}{\rho}\right)\right]^{H}\right)\right\}
\end{aligned}
$$

Hence $x_{j k} \in{ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M, q,\|.,\|\right]_{\infty}$.
As a consequence of above theorem we state the following corollary.
Corollary $3.3{ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M, q,\|.,\|\right]_{o}$ and ${ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M, q,\|.,\|.\right]$ are nowhere dense subsets of ${ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M, q,\|.,\|\right]_{\infty}$.

Theorem 3.4 The sequence spaces ${ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M, q,\|., .\|\right]_{o}$ and $_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M, q,\|.,\|\right]_{\infty}$ are solid and hence monotone.

Proof. Let $\alpha=\left(\alpha_{j k}\right)$ be double sequence of scalars such that $\left|\alpha_{j k}\right| \leq 1$, for all $j, k \in \mathbb{N}$. Since M is monotone, we get for some $\rho>0$

$$
\begin{aligned}
\frac{1}{\bar{\lambda}_{r s}} \sum_{(j, k) \in \bar{I}_{r, s}}\left[M\left(\frac{\left\|\Delta_{(m v)}^{n} A_{j k}(\alpha x), z\right\|}{\rho}\right)\right]^{q_{j k}} & \leq \frac{1}{\bar{\lambda}_{r s}} \sum_{(j, k) \in \bar{I}_{r, s}}\left[M\left(\sup \left|\alpha_{j k}\right| \frac{\left\|\Delta_{(m v)}^{n} A_{j k}(x), z\right\|}{\rho}\right)\right]^{q_{j k}} \\
& \leq \frac{1}{\bar{\lambda}_{r s}} \sum_{(j, k) \in \bar{I}_{r, s}}\left[M\left(\frac{\left\|\Delta_{(m v)}^{n} A_{j k}(x), z\right\|}{\rho}\right)\right]^{q_{j k}}
\end{aligned}
$$

Hence the result. \diamond
Theorem 3.5 Let M_{1} and M_{2} be two Orlicz functions. Then we have
(i) ${ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M_{1}, q,\|., .\|\right]_{o} \cap_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M_{2}, q,\|\cdot, .\|\right]_{o} \subseteq{ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M_{1}+\right.$ $\left.M_{2}, q,\|., \cdot\|\right]_{o}$,
(ii) ${ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M_{1}, q,\|.,\|.\right] \cap_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M_{2}, q,\|.,\|.\right] \subseteq{ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M_{1}+\right.$ $\left.M_{2}, q,\|.,\|.\right]$ and
(iii) ${ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M_{1}, q,\|\cdot, .\|\right]_{\infty} \cap_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M_{2}, q,\|\cdot, .\|\right]_{\infty} \subseteq{ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M_{1}+\right.$ $\left.M_{2}, q,\|.,\|.\right]_{\infty}$.

Theorem 3.6 Let the Orlicz functions M_{1} and M_{2} satisfy the Δ_{2}-condition. Then
(i) ${ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M_{1}, q,\|., .\|\right]_{o} \subseteq{ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M_{1} \circ M_{2}, q,\|., .\|\right]_{o}$,
(ii) ${ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M_{1}, q,\|.,\|.\right] \subseteq{ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M_{1} \circ M_{2}, q,\|.,\|.\right]$ and
(iii) ${ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M_{1}, q,\|., .\|\right]_{\infty} \subseteq{ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M_{1} \circ M_{2}, q,\|., .\|\right]_{\infty}$.
$\operatorname{Proof}(\mathbf{i})$. We consider only case ${ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M_{1}, q,\|., \cdot\|\right]_{o} \subseteq{ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M_{1} \circ\right.$ $\left.M_{2}, q,\|.,\|.\right]_{o}$. Let $x_{j k} \in{ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M_{1}, q,\|., .\|\right]_{o}$ and $\epsilon>0$. Now using the continuity of M choose $0<\delta<1$ such that $0<t<\delta \Rightarrow M(t)<\epsilon$. Write $y_{j k}=M_{1}\left(\frac{\left\|\Delta_{(m v)}^{n} A_{j k}(x), z\right\|}{\rho}\right)$.
Now consider

$$
\frac{1}{\bar{\lambda}_{r s}} \sum_{(j, k) \in \bar{I}_{r, s}}\left[M_{2}\left(y_{j k}\right)\right]^{q_{j k}}=\frac{1}{\bar{\lambda} r s} \sum_{1}\left[M_{2}\left(y_{j k}\right)\right]^{q_{j k}}+\frac{1}{\bar{\lambda}_{r s}} \sum_{2}\left[M_{2}\left(y_{j k}\right)\right]^{q_{j k}}
$$

Where the first summation is over $y_{j k} \leq \delta$ and the second summation is over $y_{j k}>\delta$. Since M_{2} is continuous, we have

$$
\frac{1}{\bar{\lambda}_{r s}} \sum_{1}\left[M_{2}\left(y_{j k}\right)\right]^{q_{j k}}<\frac{1}{\bar{\lambda}_{r s}} \sum_{(j, k) \in \bar{I}_{r, s}} \max \left(1, \epsilon^{H}\right)
$$

For $y_{j k}>\delta$, we use the fact that

$$
y_{j k}<\frac{y_{j k}}{\delta} \leq 1+\left(\frac{y_{j k}}{\delta}\right)
$$

Since M_{2} is non decreasing and convex, it follows that

$$
\begin{aligned}
M\left(y_{j k}\right)< & M\left(1+\delta^{-1} y_{j k}\right)=M\left(\frac{2}{2}+\frac{2}{2} \delta^{-1} y_{j k}\right) \\
& <\frac{1}{2} M(2)+\frac{1}{2} M\left(2 \delta^{-1} y_{j k}\right)
\end{aligned}
$$

Since M satisfies Δ_{2}-condition, there is a constant $K>2$ such that

$$
M\left(2 \delta^{-1} y_{j k}\right) \leq \frac{1}{2} K \delta^{-1} y_{j k} M(2)
$$

Hence

$$
\frac{1}{\overline{\lambda_{r s}}} \sum_{2}\left[M_{2}\left(y_{j k}\right)\right]^{q_{j k}}<\max \left(1,\left(K \delta^{-1} M(2)\right)\right) \frac{1}{\bar{\lambda}_{r s}} \sum_{(j, k) \in \bar{I}_{r, s}}\left(y_{j k}\right)^{q_{j k}} .
$$

Thus we have
$\left.\frac{1}{\bar{\lambda}_{r s}} \sum_{(j, k) \in \bar{I}_{r, s}}\left[M_{2}\left(y_{j k}\right)\right]^{q_{j k}}<\max \left(1, \epsilon^{H}\right)+\max \left(1,\left(K \delta^{-1} M(2)\right)\right)\right)_{\bar{\lambda}_{r s}}^{1} \sum_{(j, k) \in \bar{I}_{r, s}}\left(y_{j k}\right)^{q_{j k}}$.
Therefore $x \in{ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M_{1} \circ M_{2}, p,\|., .\|\right]_{o}$
Taking $M_{1}(x)=x$, for all $x=x_{j k} \in[0, \infty)$, we have the following result
Proof of other two cases follow similarly.
Theorem 3.7 Let the Orlicz function M_{2} satisfy the Δ_{2}-condition. Then
(i) ${ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, q,\|., \cdot\|\right]_{o} \subseteq_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M_{2}, q,\|., .\|\right]_{o}$,
(ii) ${ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, q,\|.,\|.\right] \subseteq{ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M_{2}, q,\|,\|,\right]$ and
(iii) ${ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, q,\|., \cdot\|\right]_{\infty} \subseteq{ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M_{2}, q,\|., .\|\right]_{\infty}$.

Theorem 3.8 Let $0<p_{j k} \leq q_{j k}$ for all j, k and $\left(q_{j k} / p_{j k}\right)$ be bounded. Then
(i) ${ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M, q,\|.,\|\right]_{o} \subset_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M, p,\|., \cdot\|\right]_{o}$,
(ii) ${ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M, q,\|.\|,\right] \subset{ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M, p,\|.\|,\right]$ and
(iii) ${ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M, q,\|., .\|\right]_{\infty} \subset{ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M, p,\|., .\|\right]_{\infty}$.

Proof. Let $x \in{ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M, q,\|.,\|\right]_{o}$
Write $t_{j, k}=\left[M\left(\frac{\left\|\Delta_{(m v)}^{n} A_{j k}(x), z\right\|}{\rho}\right)\right]^{p_{j k}}$ for all j, k and $\lambda_{j, k}=\frac{p_{j, k}}{q_{j, k}}$.
Since $0<p_{j, k} \leq q_{j, k}$, therefore $0<\lambda_{j, k} \leq 1$.
Take $0<\lambda \leq \lambda_{j, k}$.
Define

$$
\begin{aligned}
& u_{j, k}= \begin{cases}t_{j, k} & t_{j, k} \geq 1 \\
0 & t_{j, k}<1\end{cases} \\
& v_{j, k}= \begin{cases}0 & t_{j, k} \geq 1 \\
t_{j, k} & t_{j, k}<1 .\end{cases}
\end{aligned}
$$

So $t_{j, k}=u_{j, k}+v_{j, k}$ and

$$
t_{j, k}^{\lambda_{j, k}}=u_{j, k}^{\lambda_{j, k}}+v_{j, k}^{\lambda_{j, k}}
$$

Now it follows that
$u_{j, k}^{\lambda_{j, k}} \leq u_{j, k} \leq t_{j, k}$ and $v_{j, k}^{\lambda_{j, k}} \leq v_{j, k}^{\lambda}$
Therfore

$$
\frac{1}{\bar{\lambda}_{r s}} \sum_{(j, k) \in \bar{I}_{r, s}} t_{j, k}^{\lambda_{j, k}} \leq \frac{1}{\bar{\lambda}_{r s}} \sum_{(j, k) \in \bar{I}_{r, s}} t_{j, k}+\left[\frac{1}{\bar{\lambda} r s} \sum_{(j, k) \in \bar{I}_{r, s}} v_{j, k}\right]^{\lambda}
$$

Hence $x \in{ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M, p,\|., .\|\right]_{o}$ By using above theorem it is easy to prove the following result.

Corollary 3.9 (a). If $0<\inf q_{k, l} \leq q_{j, k} \leq 1$ for all $j, k \in \mathbb{N}$ then,
(i) ${ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M,\|., .\|\right]_{o} \subset{ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M, q,\|., .\|\right]_{o}$,
(ii) ${ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M,\|.,\|.\right] \subset{ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M, q,\|.\|,\right]$ and
(iii) ${ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M,\|.,\|\right]_{\infty} \subset{ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M, q,\|.,\|\right]_{\infty}$.
(b). If $0 \leq q_{j, k} \leq \sup q_{j, k}=H<\infty$ for all $j, k \in \mathbb{N}$ then,
(i) ${ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M, q,\|.,\|\right]_{o} \subset_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M,\|.,\|\right]_{o}$,
(ii) ${ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M, q,\|.\|,\right] \subset{ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M,\|.\|,\right]$ and
(iii) ${ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M, q,\|\cdot, .\|\right]_{\infty} \subset{ }_{2} V^{\bar{\lambda}}\left[A, \Delta_{(m v)}^{n}, M,\|.,\|\right]_{\infty}$.

Acknowledgements

The authors would like to record their gratitude to the reviewer for her careful reading and making some useful corrections which improved the presentation of the paper.

References

[1] T. Bilgin, Some sequence spaces defined by a modulus, Int.Math.J., 3(3) (2003), 305-310.
[2] H. Dutta, Characterization of certain matrix classes involving generalzed difference summability spaces, Applied Sciences(APPS), 11(2009), 60-67.
[3] H. Dutta and T. Bilgin, Strongly $\left(V^{\lambda}, A, \Delta_{(m v)}^{n}, p\right)$-summable sequence spaces defined by an Orlicz funcion, Applied Mathematics Letters, $24(2011), 1057-1062$.
[4] M. Et and Colak, On some generalized difference sequence spaces, Soochochow J. Math., 21(4) (1995), 377-386.
[5] S. Gähler, 2-merische Räme und ihre topological struktur, Math. Nachr., 28(1963), 115-148.
[6] S. Gähler, Linear 2-normietre Räme, Math. Nachr., 28(1965), 1-43.
[7] S. Gähler, Uber der uniformisierbarkeit 2-merische Räme, Math. Nachr., 28(1965), 235-244.
[8] H. Gunawan and Mashadi, On finite dimensional 2-normed spaces, Soochow J. Math., 27(3) (2001), 631-639.
[9] V.A. Khan, Quasi almost convergence in a normed space for double sequences, Thai J. Math, 8(1) (2010), 227-231.
[10] V.A. Khan and S. Tabassum, Statistically pre-cauchy double sequences, Southeast Asian Bull. Math., 36(2)(2012), 249-254.
[11] V.A. Khan and S. Tabassum, Statistically convergent double sequence spaces in 2-normed spaces defined by Orlicz function, Applied Mathematics, 2(2011), 398-402.
[12] V.A. Khan and S. Tabassum, On some new quasi almost Δ^{m}-lacunary strongly P-convergent double sequences defined by Orlicz functions, Journal of Mathematics and Applications, 34(2011), 45-52.
[13] V.A. Khan and S. Tabassum, On ideal convergent difference double sequence spaces in 2-normed spaces defined by Orlicz function, JMI International Journal of Mathematics and Applications, 1(2)(2010),26-34.
[14] H. Kizmaz, On certain sequence spaces, Canadian Math. Bull., 24(2) (1981), 169-176.
[15] J. Lindenstrauss and L. Tzafiri, On Orlicz sequence spaces, Israel J. Math., 10(1971), 379-390.
[16] F. Moricz and B.E. Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, Math. Proc. Camb. Phil. Soc., 104(1988), 283-293.
[17] M. Mursaleen, C. Çakan, S.A. Mohiuddine and E. Savas, Generalized statistical convergence and statistical core of double sequences, Acta Mathematica Sinica, 26(11) (2010), 2131-2144.
[18] E. Öztürk and T. Bilgin, Strongly summable sequence spaces defined by a modulus, Indian J. Pure Appl. Math., 25(6) (1994), 621-625.
[19] B.C. Tripathy and A. Esi, A new type of difference sequence spaces, International Journal of Science and Technology, 1(1) (2006), 11-14.
[20] B.C. Tripathy, A. Esi and B.K. Tripathy, On a new type of generalized difference Cesàro sequence spaces, Soochow J. Math., 31(3) (2005), 333340.

[^0]: ${ }^{1}$ The work of second author is financially supported by Maulana Azad National Fellowship for Minority Students, University Grants Commission, New Delhi.

