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Abstract
In this paper, we consider a class of first order nonlinear neutral delay

difference equations with variable coefficients of the form

∆ [x(n)− P (n)x(n− τ(n))] +
m∑
j=1

Qj(n)fj (x(n− σj(n))) = 0, n ≥ n0.(∗)

We establish sufficient conditions for oscillation of all solutions of (*) and
a linearized comparison theorem is derived which establishes a connection be-
tween our nonlinear equations and a class of linear neutral equations with
constant coefficients.
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1 Introduction

In this paper, we are concerned with a functional difference equation of the
form

∆ [x(n)− P (n)x(n− τ(n))] +
m∑
j=1

Qj(n)fj (x(n− σj(n))) = 0, n ≥ n0, (1)

where ∆ is the forward difference operator defined by ∆x(n) = x(n+1)−x(n).
The following conditions are assumed to be hold:
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(H1) {P (n)}, {Qj(n)}, j = 1, 2, 3, ...,m are sequences of positive real num-
bers, and 0 ≤ P (n) ≤ 1.
(H2) {τ(n)}, {σj(n)}, j = 1, 2, 3, ...,m, are sequences of positive integers such
that n− τ(n) > 0 and n− σj(n) > 0,
(H3) 0 < τ∗ ≤ τ(n) ≤ τ ∗, 0 < σ∗ ≤ σj(n) ≤ σ∗ for j = 1, 2, 3, ...,m,
and
(H4) {fj}, j = 1, 2, 3, ...,m are real valued functions such that ufj(u) > 0 for
u 6= 0 and fj(−u) = −fj(u).

For comparison purposes, we will consider a linear equation of the form

∆ [x(n)− px(n− τ)] +
m∑
j=1

qjx(n− σj) = 0, n ≥ n0, (2)

where p ∈ [0, 1), q1, q2,...,qm are positive real numbers, and τ , σ1, σ2,...,σm are
positive integers.

By a solution of difference equation (1), we mean a real sequence {x(n)}
which satisfies the equation (1) for all n ≥ n0. A solution {x(n)} is said to
be oscillatory if the terms x(n) of the sequence are neither eventually positive
nor eventually negative. Otherwise, it is called nonoscillatory.

In recent years, there has been increasing interest in obtaining sufficient
conditions for the oscillation or nonoscillation of solutions for difference classes
of difference equations, we refer to the books [1,2,5] and the papers [3,4, 6-10].
Also, the oscillatory behavior of neutral functional difference equations has
been the subject of intensive study.

Lalli [7] established oscillation criteria for the first order neutral difference
equations

∆ [x(n) + Px(n+ δk)] + q(n)f(x(τ(n))) = F (n), n = 0, 1, 2, ...,

where δ = ±1, P is a nonnegative real number, k is a positive integer {τ(n)}
is a sequence of nonnegative integer, and {q(n)} and {F (n)} are sequences
of real numbers. Later Peng et al. [10] established oscillation criteria for the
equation

∆ [x(n)− Px(n− τ)] +
m∑
i=1

qifi (x(n− σi)) = 0; n ≥ n0,

where P ∈ [0, 1), fi ∈ C(R,R), qi ∈ (0,∞), and τ , σi ∈ {0, 1, 2, ...}, i =
0, 1, 2, ...,m.

In the next section we establish sufficient condition for oscillation of all
solution of (1). In the third section, the desired linearized comparison theorem
is established.
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2 Necessary Conditions

Let
y(n) = x(n)− P (n)x(n− τ(n)), (3)

where {x(n)} is an eventually positive solution of (1).

Lemma 2.1 Suppose {x(n)} is an eventually positive solution of (1). Then
y(n) > 0, ∆y(n) < 0 for all large n.

Proof. In view of (1), we see that

∆y(n) = −
m∑
j=1

Qj(n)fj (x(n− σj(n))) < 0

for all large n. Thus {y(n)} is eventually positive or negative. Assume to the
contrary that y(n) < 0 and ∆y(n) < 0 for all large n. Then y(n) ≤ −α < 0
for n greater than or equal to some integer N1, so that

x(n) ≤ −α + P (n)x(n− τ(n)), n ≥ N1.

We have two cases to consider. First, assume that {x(n)} is unbounded.
Then there is a real sequence {mk} of integers which tends to infinity and

x(mk) = max
N1≤n≤mk

x(n). (4)

However, in view of the assumption that 0 ≤ P (n) ≤ 1, we see that

x(mk) ≤ −α + P (mk)x(mk − τ(mk))

≤ −α + x(mk − τ(mk))

≤ −α + x(mk),

which is a contradiction.
Next, assume that {x(n)} is bounded. Then there is a sequence {vk} of

integers which tends to infinity and

lim sup
k→∞

x(vk) = L <∞.

Let {ξk} be the sequence of integers defined by

x (ξk) = max {x(n)/vk − τ(vk) ≤ n ≤ vk} .
Then ξk →∞ and lim supk→∞ x(ξk) = L. Furthermore, we have

x(vk) ≤ −α + P (vk)x(ξk) ≤ −α + x(ξk)

for all large n. Taking superior limits on both sides of the inequality, we see
that L ≤ −α + L, which is also a contradiction. The proof is complete.

By means of Lemma 2.1, we now derive one of our main results related to
the existence of oscillatory solution of (1).
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Theorem 2.2 Assume that fj(u)/u ≥ 1 for u > 0 and j = 1, 2, ...,m, and
suppose there is a sufficiently large integer N such that

inf
n≥N,λ>1

1

λ

m∑
j=1

Qj(n)eλσj(n) +
1

λ

m∑
j=1

Qj(n)P (n− σj(n))eλτ(n−σj(n))

 > 1. (5)

Then every solution of (1) is oscillatory.

Proof. Without loss of generality, we may suppose that {x(n)} is an
eventually positive solution of (1). Then by means of Lemma 2.1, we see that,
x(n) > 0, y(n) > 0 and ∆y(n) < 0 for n greater than or equal to some N .
Furthermore, we have

x(n− σj(n)) ≤ fj(x(n− σj(n))),

and

0 < y(n−τ(n−σj(n))) < y(n−σj(n)−τ(n−σj(n))) ≤ x(n−σj(n)−τ(n−σj(n)))

for 1 ≤ j ≤ m. Define

λ(n) = −∆y(n)

y(n)
, n ≥ N.

Then λ(n) > 0 for n ≥ N , and

y(s)

y(n)
≥ exp

(
n−1∑
k=s

λ(k)

)
, s, n ≥ N.

In view of (1), we see further that

λ(n) = −∆y(n)

y(n)

=
m∑
j=1

Qj(n)fj(x(n− σj(n)))

y(n)

≥
m∑
j=1

Qj(n)x(n− σj(n))

y(n)

≥
∑m
j=1Qj(n) {y(n− σj(n)) + P (n− σj(n))x(n− σj(n)− τ(n− σj(n)))}

y(n)

≥
m∑
j=1

Qj(n) exp


n−1∑

s=n−σj(n)
λ(s)

+
m∑
j=1

Qj(n)P (n− σj(n))
y(n− τ(n− σj(n)))

y(n)
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≥
m∑
j=1

Qj(n) exp


n−1∑

s=n−σj(n)
λ(s)


+

m∑
j=1

Qj(n)P (n− σj(n)) exp


n−1∑

s=n−τ(n−σj(n))
λ(s)

 . (6)

Next, we assert that lim infn→∞ λ(n) > 0. Assume to the contrary that
lim infn→∞ λ(n) = 0. Choose a sequence {sk} of integers which tends to infinity
and

λ(sk) = min
N≤n≤sk

λ(n).

Then we see from (6) that

λ(sk) ≥
m∑
j=1

Qj(sk) exp


sk−1∑

s=sk−σj(sk)
λ(s)



+
m∑
j=1

Qj(sk)P (sk − σj(sk)) exp


sk−1∑

s=sk−τ(sk−σj(sk))
λ(s)



≥
m∑
j=1

Qj(sk) exp {λ(sk)σj(sk)}

+
m∑
j=1

Qj(sk)P (sk − σj(sk)) exp {λ(sk)τ(sk − σj(sk))} ,

so that

1 ≥ inf
k≥1

 1

λ(sk)

m∑
j=1

Qj(sk) exp(λ(sk)σj(sk))

+
1

λ(sk)

m∑
j=1

Qj(sk)P (sk − σj(sk)) exp(λ(sk)τ(sk − σj(sk)))

 ,
contrary to our assumption (5).
Since 0 < λ(n) < 1, we have lim infn→∞ λ(n) <∞. To complete our proof, let
us denote lim inf→∞ λ(n) by λ∗. Also let η > 1 be an arbitrary number such
that

inf
n≥N,λ>1

1

λ

m∑
j=1

Qj(n)eλσj(n) +
1

λ

m∑
j=1

Qj(n)P (n− σj(n))eλτ(n−σj(n))

 > η. (7)
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For sufficiently large n, since ηλ(n−τ(n−σj(n))) > λ∗ and ηλ(n−σj(n)) > λ∗
for 1 ≤ j ≤ m, we see from (6) that

λ∗ ≥ inf
s≥N


m∑
j=1

Qj(s) exp

(
λ∗
η
σj(s)

)

+
m∑
j=1

Qj(s)P (s− σj(s)) exp

(
λ∗
η
τ(s− σj(s))

) .
After rewriting this inequality, we see that

η ≥ inf
s≥N

 η

λ∗

m∑
j=1

Qj(s) exp

(
λ∗
η
σj(s)

)

+
η

λ∗

m∑
j=1

Qj(s)P (s− σj(s)) exp

(
λ∗
η
τ(s− σj(s))

) ,
contrary to our assumption (7). The proof is complete.
There are two variants of the above theorem. The first one assumes the

additional condition that τ(n) ≡ τ , σj(n) ≡ σj and fj(u) ≤ δju for u > 0.

Theorem 2.3 Assume that τ(u) ≡ τ , σj(n) ≡ σj for 1 ≤ j ≤ m, that

1 ≤ fj(u)

u
≤ δj for u > 0 and 1 ≤ j ≤ m, (8)

and that there is an integer N such that

inf
n≥N,λ>1

1

λ

m∑
j=1

Qj(n)eλσj +
R(n)

δ
eλτ

 > 1, (9)

where δ = max1≤j≤m δj and

R(n) = min
1≤j≤m

Qj(n)P (n− σj)
Qj(n− τ)

.

Then every solution of (1) is oscillatory.

Proof. We only need to note that (6) now changes to

λ(n) ≥
m∑
j=1

Qj(n) exp


n−1∑

s=n−σj
λ(s)

+
m∑
j=1

Qj(n)P (n− σj)x(n− σj − τ)

y(n)
,
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and the second sum S(n) in the above inequality is equal to

m∑
j=1

{
Qj(n)P (n− σj)
Qj(n− τ)

.
Qj(n− τ)x(n− σj − τ)

y(n)

}
,

so that

S(n) ≥ R(n)
m∑
j=1

Qj(n− τ)fj(x(n− σj − τ))

y(n)δj

≥ R(n)

δy(n)

m∑
j=1

Qj(n− τ)fj(x(n− σj − τ))

≥ R(n)

δy(n)
{−∆y(n− τ)}

=
R(n)

δ

{
λ(n− τ)y(n− τ)

y(n)

}

≥ R(n)

δ
λ(n− τ) exp

{
n−1∑
s=n−τ

λ(s)

}
.

The rest of the proof is similar to that of Theorem 2.2 and is thus omitted.

Theorem 2.4 Assume that fj(u)/u ≥ 1, for u > 0 and j = 1, 2, ...,m,

lim
n→∞

P (n) = p ∈ [0, 1) (10)

and that one of the sequences {Qj(n)}, j = 1, 2, ...,m, say {Qj∗(n)} satisfies

∞∑
s=n0

Qj∗(s) =∞. (11)

Then every nonoscillatory solution of (1) converges to zero.

Proof. Without loss of generality, we may suppose that {x(n)} is an
eventually positive solutions of (1). Then in view of Lemma 2.1, the sequence
{y(n)} defined by (3) satisfies y(n) > 0 and ∆y(n) < 0 for all large n. Thus
we have

0 < y(n) ≤ y(n− σj∗(n)) ≤ x(n− σj∗(n)) ≤ fj∗(x(n− σj∗(n)))

for n greater than or any equal to some positive integer N . Without loss of
any generality, we may assume that P (n) < p′ for n ≥ N , where p′ ∈ (p, 1).
Employing these facts, we then deduce from (1) that

∆y(n) +Qj∗(n)y(n) ≤ 0, n ≥ N.
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We can easily show that

y(n) exp

(
n−1∑
s=N

Qj∗(s)

)
≤ y(N), n ≥ N,

which implies

y(n) ≤ exp

(
−

n−1∑
s=N

Qj∗(s)

)
y(N),

or

x(n) ≤ P (n)x(n− τ(n)) + y(N) exp

(
−

n−1∑
s=N

Qj∗(s)

)

< p′x(n− τ(n)) + y(N) exp

(
−

n−1∑
s=N

Qj∗(s)

)
.

If {x(n)} is not bounded, then there is a sequence {mk} of integers which tends
to infinity and (4) holds. Thus,

x(mk) < p′x(mk − τ(mk)) + y(N) exp

(
−

n−1∑
s=N

Qj∗(s)

)

≤ p′x(mk) + y(N) exp

(
−

n−1∑
s=N

Qj∗(s)

)
,

which implies

x(mk) <
y(N)

1− p′
exp

(
−

n−1∑
s=N

Qj∗(s)

)

for all large n. This is impossible as can be seen by taking limits on both sides.
We have thus shown that {x(n)} is bounded.

Next we show that {x(n)} has a limit. Indeed, let {rk} be a divergent
sequence such that

lim sup
n→∞

x(n) = lim
k→∞

x(rk).

Then in view of (3), we see that

lim sup
n→∞

x(n) = lim
n→∞

y(n) + p lim
k→∞

x(rk − τr1)) ≤ lim
n→∞

y(n) + p lim sup
n→∞

x(n),

which implies

lim sup
n→∞

x(n) ≤ limn→∞ y(n)

1− p
.

Similarly, we have
limn→∞ y(n)

1− p
≤ lim inf

n→∞
x(n).
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From this, we have lim supn→∞ x(n) = lim infn→∞ x(n) and hence limn→∞ x(n)
exists.

Finally, if limn→∞ x(n) = α > 0, then 0 < α/2 ≤ x(n) for n greater than
or equal to some integer n1. Since f(n) ≥ n for n ≥ n0, we see that

fj∗(x(n− σj(n))) ≥ x(n− σj(n)) ≥ α/2

for n greater than or equal to some integer n2 ≥ n1. Thus by means of (1), we
have

∆y(n) = −
m∑
j=1

Qj(n)fj(x(n− σj(n))) ≤ −Qj∗(n)α/2, n ≥ n2.

By summing the above inequality from n2 to ∞, we conclude from (11) that
limn→∞ y(n) = −∞. This contradicts the conclusion of Lemma 2.1.

3 Linearized Comparison Theorem

In this section, we will exhibit a connection between equation (1) and an
appropriate linear equation of the form (2). Recall that the assumptions that
p ∈ [0, 1), and q1, q2, ..., qm, σ1, σ2, ..., σm > 0 have been made. Next, we
establish two properties of (2) which are needed for our linearized comparison
theorem.

Theorem 3.1 If the condition

F (λ) =
(

1

λ
− 1

)
(1− pλτ ) +

∑
j

qjλ
σj > 0 (12)

holds for all λ > 1. Then every solution of equation (2) is oscillatory. The
converse also holds.

Proof. The first statement follows from Theorem 2.3 by taking fj(x) = x
and δj = 1 for 1 ≤ j ≤ m. To see that the converse holds, suppose there is a
positive number λ∗ such that F (λ∗) ≤ 0. Note that F (+∞) = +∞, thus there
is a number ξ ∈ [λ∗,∞) such that F (ξ) = 0. It is then easily verified that the
sequence x(n) = {ξ−n} is an eventually positive solution of (12).

Next, we establish a theorem on continuous dependence on parameters for
linear equations of the form (2).

Theorem 3.2 Suppose p > 0 and that every solution of (2) is oscillatory.
Then there is a positive number µ < min {p, q1, q2, ..., qn} such that for every
ε ∈ [0, µ], the equation

∆[x(n)− (p− ε)x(n− τ)] +
m∑
j=1

(qj − ε)x(n− σj) = 0 (13)
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is oscillatory.

Proof. By means of Theorem 3.1, we see that the function F = F (λ)
defined by (12) satisfies F (λ) > 0 for λ > 1. Furthermore, it is easily verified
that

lim
λ→1

F (λ) > 0, F (+∞) = +∞

and F ′′(λ) > 0 for λ > 1. Thus F (λ) ≥ c > 0 for λ > 1.
Define

F (λ, θ) =
(

1

λ
− 1

)
(1− (p− θ)λτ ) +

m∑
j=1

(qj − θ)λσj , λ > 1,−∞ < θ <∞.

Note that F (λ, 0) = F (λ) ≥ c > 0 for λ > 1, that Fθ(λ, θ) < 0 and that
F (+∞, θ) = +∞ for 0 < θ < min {p, q1, q2, ..., qm}. Therefore, since F (λ, θ)
is continuous in λ and θ, it is not difficult to find a positive number µ <
min {p, q1, q2, ..., qn} such that F (λ, µ) > 0 for λ > 1. Next, since F (λ, θ) is
decreasing in θ for each fixed λ, we see that F (λ, θ) > 0 for each λ > 1 and
θ ∈ [0, µ]. The proof is complete.

The same idea can be employed to show the following variant of Theorem
3.2: Suppose p = 0 and that every solution of (2) is oscillatory. Then there is
a positive number µ < min {q1, q2, ..., qm} such that for every ε ∈ [0, µ], every
solution of

∆x(n) +
m∑
j=1

(qj − ε)x(n− σj) = 0

is oscillatory.
We now state and prove our final linearized comparison theorem, we need

the assumptions that

lim
n→∞

P (n) = p ∈ [0, 1), (14)

lim
n→∞

Qj(n) = qj, 1 ≤ j ≤ m, (15)

and

lim
u→0

fj(u)

u
= 1, 1 ≤ j ≤ m. (16)

Theorem 3.3 Assume that (14)-(16) hold. Assume further that τ(n) ≡ τ
and σj(n) ≥ σj for 1 ≤ j ≤ m for n ≥ n1. If every solution of (2) is oscillatory
then every solution of (1) is oscillatory.

Proof. We assume that 0 < p < 1. Since (2) does not have any even-
tually positive solutions, by Theorem 3.2, there is a positive number µ <
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min {p, q1, q2, ..., qm} such that for every ε ∈ [0, µ], the equation (13) cannot
have any eventually positive solutions either. Thus, by Theorem 3.1,(

1

λ
− 1

)
[1− (p− ε)λτ ] +

m∑
j=1

(qj − ε)λσj > 0, λ > 1, ε ∈ [0, µ].

That is,

λ

λ− 1

m∑
j=1

(qj − ε)λσj + (p− ε)λτ > 1, λ > 1, ε ∈ [0, µ].

Note further that (14) and limn→∞R(n) = p imply respectively that
Qj(n) ≥ qj − ε and R(n) ≥ p− ε for all large n. Thus,

λ

λ− 1

m∑
j=1

Qj(n)λσj +R(n)λτ

≥ λ

λ− 1

m∑
j=1

(qj − ελσj + (p− ε)λτ > 1,

or
λ

λ− 1

m∑
j=1

Qj(n)λσj +R(n)λτ > 1

for all λ > 1 and all large n. By Theorem 2.3, (1) cannot have any eventually
positive solutions. The case where p = 0 is similarly proved.
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