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Abstract

In this paper, we improve the result of B.S. Choudhury and N. Metiya,
Nonlinear Analysis 72 (2010). We remove the restriction of continuity on ϕ.
Supporting examples are also provided. Two open problems are given at the
end.
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1 Introduction

The concept of weak contraction in Hilbert space was introduced by Alber and
Guerre-Delabriere [4] and a fixed point theorem was proved. Rhoades [2] has
shown that the result of Alber and Guerre-Delabriere [4] is valid in complete
metric spaces also. We state the result of Rhoades below.
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Theorem 1.1. [2] Let (X, d) be a complete metric space. Let T : X → X
be a mapping satisfying the inequality

d(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y)) (1.1.1)

where x, y ∈ X and ϕ : [0,∞) → [0,∞) is a continuous and nondecreasing
function such that ϕ(t) = 0 if and only if t = 0. Then T has a unique fixed
point in X.

Mappings T satisfying (1.1.1) are called weak contractions. B. S. Choud-
hury and N. Metiya [1] extended the above result to cone metric spaces intro-
duced by Huang and Zhang [3].

Definition 1.2. [3] Let E be a real Banach space and P a subset of E. P
is called a cone if
(i) P is nonempty, closed and P 6= {0},
(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P ⇒ ax+ by ∈ P,
(iii) x ∈ P and −x ∈ P ⇒ x = 0.

A partial ordering ≤ with respect to a cone P is defined by x ≤ y if and
only if y−x ∈ P for x, y ∈ E. We shall write x < y to indicate that x ≤ y but
x 6= y, while x� y stands for y− x ∈ Int P where Int P denotes the interior
of P .

The cone P is said to be normal, if there exists a real number K > 0 such
that for all x, y ∈ E,

0 ≤ x ≤ y ⇒ ‖ x ‖≤ K ‖ y ‖

The least positive number K satisfying the above statement is called normal
constant of P .

The cone P is called regular if every increasing sequence which is bounded
from above is convergent. That is, if {xn} is a sequence such that

x1 ≤ x2 ≤ · · · ≤ xn ≤ · · · ≤ y

for some y ∈ E, then there is x ∈ E such that ‖ xn − x ‖→ 0 as n → ∞.
Equivalently, the cone P is regular if and only if every decreasing sequence
which is bounded from below is convergent.

Definition 1.3. [3] Let X be a non empty set. Let the mapping
d : X ×X → E satisfy
(i) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y
(ii) d(x, y) = d(y, x) for all x, y ∈ X
(iii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X
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Then d is called a cone metric on X and (X, d) is called a cone metric space.

Definition 1.4. [3] Let (X, d) be a cone metric space, {xn} a sequence in
X and x ∈ X
(i) If for every c ∈ E with 0� c, there exists n0 ∈ N such that for all n > n0,

d(xn, x) � c, then {xn} is said to be convergent and {xn} converges to x,
and x is the limit of {xn}. This limit is denoted by lim

n
xn = x or xn → x

as n→∞.
(ii) If for every c ∈ E with 0 � c, there exists n0 ∈ N such that for all

n,m > n0, d(xn, xm)� c, then {xn} is called a Cauchy sequence in X.
(iii) If every Cauchy sequence in X is convergent in X, then X is called a

complete cone metric space.

B.S. Choudhury and N. Metiya [1] extended the results of Rhoades [2] to
cone metric spaces as follows.

Theorem 1.5. [1] Let (X, d) be a complete cone metric space with regular
cone P such that d(x, y) ∈ Int P, for x, y ∈ X with x 6= y. Let T : X → X be
a mapping satisfying the inequality

d(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y))

for x, y ∈ X, where ϕ : Int P ∪{0} → Int P ∪{0} is a continuous and mono-
tone increasing function with
(i) ϕ(t) = 0 if and only if t = 0,
(ii) ϕ(t)� t for t ∈ Int P,
(iii) either ϕ(t) ≤ d(x, y) or d(x, y) ≤ ϕ(t) for t ∈ Int P ∪ {0} and x, y ∈ X.
Then T has a unique fixed point in X.

In this paper, we improve Theorem 1.5 by relaxing the continuity condition
on ϕ. We also provide supporting examples. Two open problems are also given
at the end of this paper.

2 Main Results

Theorem 2.1. Let (X, d) be a complete cone metric space with regular cone
P such that d(x, y) ∈ Int P, for x, y ∈ X with x 6= y. Let T : X → X be a
mapping satisfying the inequality

d(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y))

for x, y ∈ X, where ϕ : Int P ∪ {0} → Int P ∪ {0} is a monotone increasing
function with
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(i) ϕ(t) = 0 if and only if t = 0,
(ii) ϕ(t)� t for t ∈ Int P,
(iii) either ϕ(t) ≤ d(x, y) or d(x, y) ≤ ϕ(t) for t ∈ Int P ∪ {0} and x, y ∈ X.
Then T has a unique fixed point in X.

Proof. Let x0 ∈ X. We construct the sequence {xn} by xn = Txn−1, n ≥ 1
If xn+1 = xn for some n, then trivially T has a fixed point.
Assume that xn+1 6= xn for n ∈ N
By the given condition, we have

d(Txn, Txn+1) ≤ d(xn, xn+1)− ϕ(d(xn, xn+1)), n = 0, 1, 2, · · ·
Hence ϕ(d(xn, xn+1)) ≤ d(xn, xn+1)− d(xn+1, xn+2), n = 0, 1, 2, · · ·
Consequently,

n∑
i=0

ϕ(d(xi, xi+1)) ≤ d(x0, x1)− d(xn+1, xn+2)

≤ d(x0, x1)

So that
∞∑
i=0

ϕ(d(xi, xi+1)) <∞ in P.

Hence

ϕ(d(xi, xi+1))→ 0 as i→∞ in P (2.1.1)

Also 0 ≤ ϕ(d(xn, xn+1)) ≤ d(xn, xn+1)− d(xn+1, xn+2)
⇒ 0 ≤ d(xn, xn+1)− d(xn+1, xn+2)
⇒ d(xn, xn+1) ≥ d(xn+1, xn+2)

Thus the sequence{d(xn, xn+1)} is a decreasing sequence and hence converges,
since P is regular.

Now, by (2.1.1), {ϕ(d(xn, xn+1))} decreases to 0 as n→∞.
Suppose {d(xn, xn+1)} decreases to l. Then

ϕ(l) ≤ ϕ(d(xn, xn+1)) decreases to 0 as n→∞
⇒ ϕ(l) = 0 ⇒ l = 0. Therefore {d(xn, xn+1)} → 0 as n→∞.
Let c ∈ E with 0� c be arbitrary. Since {d(xn, xn+1)} → 0 as n→∞, there
exists m ∈ N such that

d(xm, xm+1)� ϕ(ϕ(c/2)) (2.1.2)

Let B(xm, c) = {x ∈ X : d(x, xm)� c}
Clearly xm ∈ B(xm, c) and xm+1 ∈ B(xm, c).
Suppose for k ≥ 1, xm+k ∈ B(xm, c) we have two cases by property (iii) of ϕ

Case (i): d(xm, xm+k) ≤ ϕ(c/2)
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Then

d(xm+k+1, xm) ≤ d(Txm+k, Txm) + d(Txm, xm)

≤ d(xm+k, xm)− ϕ(d(xm+k, xm)) + d(Txm, xm)

≤ ϕ(c/2) + ϕ(c/2)

� c/2 + c/2 = c

Hence xm+k+1 ∈ B(xm, c).

Case (ii): ϕ(c/2) ≤ d(xm, xm+k)� c (2.1.3)
Now

d(xm, xm+k+1) ≤ d(xm, xm+1) + d(xm+1, xm+k+1)

≤ d(xm, xm+1) + d(Txm, Txm+k)

≤ d(xm, xm+1) + d(xm, xm+k)− ϕ(d(xm, xm+k))

≤ ϕ(ϕ(c/2)) + d(xm, xm+k)− ϕ(ϕ(c/2)) (by (2.1.3))

≤ d(xm, xm+k)� c

Therefore xm+k+1 ∈ B(xm, c).
Thus, by induction, xn ∈ B(xm, c) for n ≥ m
Consequently, {xn} is a Cauchy sequence . By the completeness of X, there
exists x ∈ X such that xn → x as n→∞.
Now

d(xn+1, Tx) = d(Txn, Tx)

≤ d(xn, x)− ϕ(d(xn, x))

≤ d(xn, x)

On letting n→∞ we have d(x, Tx) ≤ 0
Therefore d(x, Tx) = 0 i.e. Tx = x
Hence x is the fixed point of T.

Uniqueness: If y is another fixed point of T, then

d(x, y) = d(Tx, Ty)

≤ d(x, y)− ϕ(d(x, y))

⇒ ϕ(d(x, y)) ≤ 0 so that x = y

Therefore T has a unique fixed point.

The following two examples are in support of our result.
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Example 2.2. Let X = [0, 1];E = R2 with usual norm, is a real Banach
space. Let P = {(x, y) ∈ E : x, y ≥ 0}. Then P is a regular cone and the
partial ordering ≤ with respect to the cone P , is the usual component wise
partial ordering in E.

Define d : X ×X → E by d(x, y) = (| x− y |, | x− y |) for x, y ∈ X.
Then (X, d) is a complete cone metric space with d(x, y) ∈ Int P for x, y ∈ X
and x 6= y.

Let us define ϕ : Int P ∪ {0} → Int P ∪ {0} as follows:
ϕ(0) = 0

For t = (α, β) ∈ Int P. Let γ = min {α, β} > 0
ϕ(t) = (1/2(n+ 1), 1/2(n+ 1)) if 1/(n+ 1) < γ ≤ 1/n, n ≥ 1

and ϕ(t) = (n/2, n/2) if n < γ ≤ n+ 1, n ≥ 1
Clearly ϕ(t) � t for t ∈ Int P . ϕ is not continuous, since ϕ is a step

function. ϕ satisfies all the required properties of Theorem 2.1.
Define T : X → X by Tx = x/2

Now d(Tx, Ty) = d(x/2, y/2) = (| x− y | /2, | x− y | /2)
(i) 1/(n+ 1) <| x− y |≤ 1/n
⇒ d(x, y)− ϕ(d(x, y)) = (| x− y |, | x− y |)− (1/2(n+ 1), 1/2(n+ 1))

≥ (| x− y | /2, | x− y | /2)
Thus

d(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y)) for x, y ∈ X (2.1.4)

(ii) if n <| x− y |≤ n+ 1, we can show similarly that (2.1.4) holds.
Also 0 is the unique fixed point of T.

The following example is a generalized version of example 2.2.

Example 2.3. Let X = [0, 1];E = R2 with usual norm is a real Banach
space. Let P = {(x, y) ∈ E : x, y ≥ 0}. Then P is a regular cone and the
partial ordering ≤ with respect to the cone P , is the usual component wise
partial ordering in E. Let m > 0.

Define d : X ×X → E by d(x, y) = (| x − y |, m | x − y |) for x, y ∈ X.
Then (X, d) is a complete cone metric space with d(x, y) ∈ Int P for x, y ∈ X
and x 6= y.
Let us define ϕ : Int P ∪ {0} → Int P ∪ {0} as follows:

ϕ(0) = 0
For t = (α, β) ∈ Int P, let γ = min {α, β/m} > 0.
ϕ(t) = (1/2(n+ 1), m/2(n+ 1)) if 1/(n+ 1) < γ ≤ 1/n, n ≥ 1

and ϕ(t) = (n/2, mn/2) if n < γ ≤ n+ 1, n ≥ 1
Clearly ϕ(t) � t for t ∈ Int P . ϕ is not continuous, since ϕ is a step

function. ϕ satisfies all the required properties of Theorem 2.1.
Define T : X → X by Tx = x/2

Now d(Tx, Ty) = d(x/2, y/2) = (| x− y | /2, m | x− y | /2))
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(i) 1/(n+ 1) <| x− y |≤ 1/n
⇒ d(x, y)− ϕ(d(x, y)) = (| x− y |, m | x− y |)− (1/2(n+ 1), m/2(n+ 1))

= (| x− y | −1/2(n+ 1), m(| x− y | −1/2(n+ 1)))
≥ (| x− y | /2, m | x− y | /2) = d(Tx, Ty)

Thus
d(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y)) for x, y ∈ X (2.1.5)

(ii) if n <| x− y |≤ n+ 1, we can show similarly that (2.1.5) holds.
Also 0 is the unique fixed point of T.

Open Problems
(i) Is Theorem 2.1 valid without (iii)?
(ii) Is Theorem 2.1 valid if the restriction d(x, y) ∈ Int P for x, y ∈ X, x 6= y

is removed?

Acknowledgements

The fourth author (M. Balaiah) is grateful to the authorities of Srinivasa
Institute of Engineering & Technology for granting necessary permissions to
carry on this research.

References

[1] B.S. Choudhury and N. Metiya, Fixed points of weak contractions in cone
metric spaces, Nonlinear Analysis, 72(2010), 1589-1593.

[2] B.E. Rhoades, Some Theorems on weakly contractive maps, Non Linear
Analysis, 47(2001), 2683-2693.

[3] L-G Huang and X. Zhang, Cone metric spaces and fixed point theorems
of contractive mappings, J. Math. Anal. Appl. 332(2007), 1467-1475.

[4] Ya.I. Alber and S. Guerre-Delabriere, Principles of weakly contractive
maps in Hilbert spaces, I. Gohberg, Yu Lyubich(Eds): in New Results in
Operator Theory in: Advances and Appl., Birkhuser, Basel 98(1997), 7-22.


