

Gen. Math. Notes, Vol. 7, No. 2, December 2011, pp.38-44 ISSN 2219-7184; Copyright ©ICSRS Publication, 2011 www.i-csrs.org Available free online at http://www.geman.in

A Fixed Point Theorem in Cone Metric Spaces Under Weak Contractions

K.P.R. Sastry¹, Ch. Srinivasa Rao², A. Chandra Sekhar³ and M. Balaiah⁴

¹8-28-8/1, Tamil street, Chinna Waltair, Visakhapatnam - 530017, India E-mail: kprsastry@hotmail.com

²Department of Mathematics, Mrs. A.V.N. College, Visakhapatnam - 530001, India E-mail: drcsr41@yahoo.com

³Department of Mathematics, GIT, Gitam University, Visakhapatnam - 530045, India E-mail: acs@gitam.edu

⁴Department of Mathematics, Srinivasa Institute of Engineering & Technology, N.H. 216, Cheyyeru, Amalapuram, East Godavari (Dist), 533222, India E-mail: balaiah_m19@hotmail.com

(Received: 9-7-11/ Accepted: 1-11-2011)

Abstract

In this paper, we improve the result of B.S. Choudhury and N. Metiya, Nonlinear Analysis 72 (2010). We remove the restriction of continuity on φ . Supporting examples are also provided. Two open problems are given at the end.

Keywords: Cone metric space, Weak contraction, Regular cone, Fixed point.

1 Introduction

The concept of weak contraction in Hilbert space was introduced by Alber and Guerre-Delabriere [4] and a fixed point theorem was proved. Rhoades [2] has shown that the result of Alber and Guerre-Delabriere [4] is valid in complete metric spaces also. We state the result of Rhoades below.

A Fixed Point Theorem in Cone Metric...

Theorem 1.1. [2] Let (X, d) be a complete metric space. Let $T : X \to X$ be a mapping satisfying the inequality

$$d(Tx, Ty) \le d(x, y) - \varphi(d(x, y)) \tag{1.1.1}$$

where $x, y \in X$ and $\varphi : [0, \infty) \to [0, \infty)$ is a continuous and nondecreasing function such that $\varphi(t) = 0$ if and only if t = 0. Then T has a unique fixed point in X.

Mappings T satisfying (1.1.1) are called weak contractions. B. S. Choudhury and N. Metiya [1] extended the above result to cone metric spaces introduced by Huang and Zhang [3].

Definition 1.2. [3] Let E be a real Banach space and P a subset of E. P is called a cone if (i) P is nonempty, closed and $P \neq \{0\}$, (ii) $a, b \in R, a, b \ge 0, x, y \in P \Rightarrow ax + by \in P$, (iii) $x \in P$ and $-x \in P \Rightarrow x = 0$.

A partial ordering \leq with respect to a cone P is defined by $x \leq y$ if and only if $y - x \in P$ for $x, y \in E$. We shall write x < y to indicate that $x \leq y$ but $x \neq y$, while $x \ll y$ stands for $y - x \in Int P$ where Int P denotes the interior of P.

The cone P is said to be normal, if there exists a real number K > 0 such that for all $x, y \in E$,

$$0 \le x \le y \implies ||x|| \le K ||y||$$

The least positive number K satisfying the above statement is called normal constant of P.

The cone P is called regular if every increasing sequence which is bounded from above is convergent. That is, if $\{x_n\}$ is a sequence such that

$$x_1 \le x_2 \le \dots \le x_n \le \dots \le y$$

for some $y \in E$, then there is $x \in E$ such that $|| x_n - x || \to 0$ as $n \to \infty$. Equivalently, the cone P is regular if and only if every decreasing sequence which is bounded from below is convergent.

Definition 1.3. [3] Let X be a non empty set. Let the mapping $d: X \times X \to E$ satisfy (i) $0 \le d(x, y)$ for all $x, y \in X$ and d(x, y) = 0 if and only if x = y(ii) d(x, y) = d(y, x) for all $x, y \in X$ (iii) $d(x, y) \le d(x, z) + d(z, y)$ for all $x, y, z \in X$ Then d is called a cone metric on X and (X, d) is called a cone metric space.

Definition 1.4. [3] Let (X, d) be a cone metric space, $\{x_n\}$ a sequence in X and $x \in X$

- (i) If for every $c \in E$ with $0 \ll c$, there exists $n_0 \in N$ such that for all $n > n_0$, $d(x_n, x) \ll c$, then $\{x_n\}$ is said to be convergent and $\{x_n\}$ converges to x, and x is the limit of $\{x_n\}$. This limit is denoted by $\lim_n x_n = x$ or $x_n \to x$ as $n \to \infty$.
- (ii) If for every $c \in E$ with $0 \ll c$, there exists $n_0 \in N$ such that for all $n, m > n_0, d(x_n, x_m) \ll c$, then $\{x_n\}$ is called a Cauchy sequence in X.
- (iii) If every Cauchy sequence in X is convergent in X, then X is called a complete cone metric space.

B.S. Choudhury and N. Metiya [1] extended the results of Rhoades [2] to cone metric spaces as follows.

Theorem 1.5. [1] Let (X, d) be a complete cone metric space with regular cone P such that $d(x, y) \in Int P$, for $x, y \in X$ with $x \neq y$. Let $T : X \to X$ be a mapping satisfying the inequality

$$d(Tx, Ty) \le d(x, y) - \varphi(d(x, y))$$

for $x, y \in X$, where $\varphi : Int \ P \cup \{0\} \to Int \ P \cup \{0\}$ is a continuous and monotone increasing function with

(i) $\varphi(t) = 0$ if and only if t = 0,

(ii) $\varphi(t) \ll t$ for $t \in Int P$,

(iii) either $\varphi(t) \leq d(x, y)$ or $d(x, y) \leq \varphi(t)$ for $t \in Int \ P \cup \{0\}$ and $x, y \in X$. Then T has a unique fixed point in X.

In this paper, we improve Theorem 1.5 by relaxing the continuity condition on φ . We also provide supporting examples. Two open problems are also given at the end of this paper.

2 Main Results

Theorem 2.1. Let (X, d) be a complete cone metric space with regular cone P such that $d(x, y) \in Int P$, for $x, y \in X$ with $x \neq y$. Let $T : X \to X$ be a mapping satisfying the inequality

$$d(Tx, Ty) \le d(x, y) - \varphi(d(x, y))$$

for $x, y \in X$, where φ : Int $P \cup \{0\} \rightarrow$ Int $P \cup \{0\}$ is a monotone increasing function with

A Fixed Point Theorem in Cone Metric...

(i) $\varphi(t) = 0$ if and only if t = 0, (ii) $\varphi(t) \ll t$ for $t \in Int P$, (iii) either $\varphi(t) \leq d(x, y)$ or $d(x, y) \leq \varphi(t)$ for $t \in Int P \cup \{0\}$ and $x, y \in X$. Then T has a unique fixed point in X.

Proof. Let $x_0 \in X$. We construct the sequence $\{x_n\}$ by $x_n = Tx_{n-1}, n \ge 1$ If $x_{n+1} = x_n$ for some n, then trivially T has a fixed point. Assume that $x_{n+1} \neq x_n$ for $n \in N$ By the given condition, we have $d(Tx_n, Tx_{n+1}) \le d(x_n, x_{n+1}) - \varphi(d(x_n, x_{n+1})), n = 0, 1, 2, \cdots$

 $d(Tx_n, Tx_{n+1}) \leq d(x_n, x_{n+1}) - \varphi(d(x_n, x_{n+1})), \ n = 0, 1, 2, \cdots$ Hence $\varphi(d(x_n, x_{n+1})) \leq d(x_n, x_{n+1}) - d(x_{n+1}, x_{n+2}), \ n = 0, 1, 2, \cdots$ Consequently,

$$\sum_{i=0}^{n} \varphi(d(x_i, x_{i+1})) \leq d(x_0, x_1) - d(x_{n+1}, x_{n+2})$$
$$\leq d(x_0, x_1)$$

So that $\sum_{i=0}^{\infty} \varphi(d(x_i, x_{i+1})) < \infty$ in *P*. Hence

$$\varphi(d(x_i, x_{i+1})) \to 0 \text{ as } i \to \infty \text{ in } P$$
 (2.1.1)

Also $0 \le \varphi(d(x_n, x_{n+1})) \le d(x_n, x_{n+1}) - d(x_{n+1}, x_{n+2})$ $\Rightarrow 0 \le d(x_n, x_{n+1}) - d(x_{n+1}, x_{n+2})$ $\Rightarrow d(x_n, x_{n+1}) \ge d(x_{n+1}, x_{n+2})$

Thus the sequence $\{d(x_n, x_{n+1})\}$ is a decreasing sequence and hence converges, since P is regular.

Now, by (2.1.1), $\{\varphi(d(x_n, x_{n+1}))\}$ decreases to 0 as $n \to \infty$. Suppose $\{d(x_n, x_{n+1})\}$ decreases to l. Then

 $\begin{array}{l} \varphi(l) \leq \varphi(d(x_n, x_{n+1})) \text{ decreases to } 0 \text{ as } n \to \infty \\ \Rightarrow \varphi(l) = 0 \quad \Rightarrow l = 0. \text{ Therefore } \{d(x_n, x_{n+1})\} \to 0 \text{ as } n \to \infty. \\ \text{Let } c \in E \text{ with } 0 \ll c \text{ be arbitrary. Since } \{d(x_n, x_{n+1})\} \to 0 \text{ as } n \to \infty, \text{ there exists } m \in N \text{ such that} \end{array}$

$$d(x_m, x_{m+1}) \ll \varphi(\varphi(c/2)) \tag{2.1.2}$$

Let $B(x_m, c) = \{x \in X : d(x, x_m) \ll c\}$ Clearly $x_m \in B(x_m, c)$ and $x_{m+1} \in B(x_m, c)$. Suppose for $k \ge 1, x_{m+k} \in B(x_m, c)$ we have two cases by property (iii) of φ

Case (i): $d(x_m, x_{m+k}) \leq \varphi(c/2)$

(2.1.3)

Then

$$d(x_{m+k+1}, x_m) \leq d(Tx_{m+k}, Tx_m) + d(Tx_m, x_m)$$

$$\leq d(x_{m+k}, x_m) - \varphi(d(x_{m+k}, x_m)) + d(Tx_m, x_m)$$

$$\leq \varphi(c/2) + \varphi(c/2)$$

$$\ll c/2 + c/2 = c$$

Hence $x_{m+k+1} \in B(x_m, c)$.

Case (ii): $\varphi(c/2) \leq d(x_m, x_{m+k}) \ll c$ Now

$$d(x_{m}, x_{m+k+1}) \leq d(x_{m}, x_{m+1}) + d(x_{m+1}, x_{m+k+1})$$

$$\leq d(x_{m}, x_{m+1}) + d(Tx_{m}, Tx_{m+k})$$

$$\leq d(x_{m}, x_{m+1}) + d(x_{m}, x_{m+k}) - \varphi(d(x_{m}, x_{m+k}))$$

$$\leq \varphi(\varphi(c/2)) + d(x_{m}, x_{m+k}) - \varphi(\varphi(c/2)) \quad (by (2.1.3))$$

$$\leq d(x_{m}, x_{m+k}) \ll c$$

Therefore $x_{m+k+1} \in B(x_m, c)$. Thus, by induction, $x_n \in B(x_m, c)$ for $n \ge m$ Consequently, $\{x_n\}$ is a Cauchy sequence. By the completeness of X, there exists $x \in X$ such that $x_n \to x$ as $n \to \infty$. Now

$$d(x_{n+1}, Tx) = d(Tx_n, Tx)$$

$$\leq d(x_n, x) - \varphi(d(x_n, x))$$

$$\leq d(x_n, x)$$

On letting $n \to \infty$ we have $d(x, Tx) \le 0$ Therefore d(x, Tx) = 0 i.e. Tx = xHence x is the fixed point of T.

Uniqueness: If y is another fixed point of T, then

$$\begin{array}{lcl} d(x,y) &=& d(Tx,Ty) \\ &\leq& d(x,y) - \varphi(d(x,y)) \\ \Rightarrow \varphi(d(x,y)) \leq 0 \quad \text{so that } x = y \end{array}$$

Therefore T has a unique fixed point.

The following two examples are in support of our result.

A Fixed Point Theorem in Cone Metric...

Example 2.2. Let $X = [0, 1]; E = R^2$ with usual norm, is a real Banach space. Let $P = \{(x, y) \in E : x, y \ge 0\}$. Then P is a regular cone and the partial ordering \leq with respect to the cone P, is the usual component wise partial ordering in E.

Define $d: X \times X \to E$ by d(x, y) = (|x - y|, |x - y|) for $x, y \in X$. Then (X, d) is a complete cone metric space with $d(x, y) \in Int P$ for $x, y \in X$ and $x \neq y$.

Let us define φ : Int $P \cup \{0\} \to Int \ P \cup \{0\}$ as follows: $\varphi(0) = 0$ For $t = (\alpha, \beta) \in Int P$. Let $\gamma = min \{\alpha, \beta\} > 0$ $\varphi(t) = (1/2(n+1), 1/2(n+1))$ if $1/(n+1) < \gamma \le 1/n, n \ge 1$ and $\varphi(t) = (n/2, n/2)$ if $n < \gamma \le n+1, n \ge 1$

Clearly $\varphi(t) \ll t$ for $t \in Int P$. φ is not continuous, since φ is a step function. φ satisfies all the required properties of Theorem 2.1.

Define $T: X \to X$ by Tx = x/2Now d(Tx, Ty) = d(x/2, y/2) = (|x - y|/2, |x - y|/2)(i) $1/(n+1) < |x-y| \le 1/n$ $\Rightarrow d(x,y) - \varphi(d(x,y)) = (|x - y|, |x - y|) - (1/2(n+1), 1/2(n+1))$ > (|x - y|/2, |x - y|/2)

Thus

$$d(Tx, Ty) \le d(x, y) - \varphi(d(x, y)) \text{ for } x, y \in X$$
(2.1.4)

(ii) if $n < |x - y| \le n + 1$, we can show similarly that (2.1.4) holds. Also 0 is the unique fixed point of T.

The following example is a generalized version of example 2.2.

Example 2.3. Let $X = [0, 1]; E = R^2$ with usual norm is a real Banach space. Let $P = \{(x, y) \in E : x, y \ge 0\}$. Then P is a regular cone and the partial ordering \leq with respect to the cone P, is the usual component wise partial ordering in E. Let m > 0.

Define $d: X \times X \to E$ by d(x, y) = (|x - y|, m |x - y|) for $x, y \in X$. Then (X, d) is a complete cone metric space with $d(x, y) \in Int P$ for $x, y \in X$ and $x \neq y$.

Let us define φ : Int $P \cup \{0\} \to Int \ P \cup \{0\}$ as follows:

 $\varphi(0) = 0$

For $t = (\alpha, \beta) \in Int P$, let $\gamma = min \{\alpha, \beta/m\} > 0$.

 $\varphi(t) = (1/2(n+1), m/2(n+1))$ if $1/(n+1) < \gamma \le 1/n, n \ge 1$ and $\varphi(t) = (n/2, mn/2)$ if $n < \gamma \le n+1, n \ge 1$

Clearly $\varphi(t) \ll t$ for $t \in Int P$. φ is not continuous, since φ is a step function. φ satisfies all the required properties of Theorem 2.1.

Define $T: X \to X$ by Tx = x/2Now d(Tx, Ty) = d(x/2, y/2) = (|x - y|/2, m |x - y|/2))

(i)
$$1/(n+1) < |x-y| \le 1/n$$

 $\Rightarrow d(x, y) - \varphi(d(x, y)) = (|x-y|, m | x-y |) - (1/2(n+1), m/2(n+1))$
 $= (|x-y| - 1/2(n+1), m(|x-y| - 1/2(n+1)))$
 $\ge (|x-y|/2, m | x-y|/2) = d(Tx, Ty)$

Thus

$$d(Tx, Ty) \le d(x, y) - \varphi(d(x, y)) \quad \text{for} \quad x, y \in X$$
(2.1.5)

(ii) if $n < |x - y| \le n + 1$, we can show similarly that (2.1.5) holds. Also 0 is the unique fixed point of T.

Open Problems

- (i) Is Theorem 2.1 valid without (*iii*)?
- (ii) Is Theorem 2.1 valid if the restriction $d(x, y) \in Int P$ for $x, y \in X, x \neq y$ is removed?

Acknowledgements

The fourth author (M. Balaiah) is grateful to the authorities of Srinivasa Institute of Engineering & Technology for granting necessary permissions to carry on this research.

References

- B.S. Choudhury and N. Metiya, Fixed points of weak contractions in cone metric spaces, *Nonlinear Analysis*, 72(2010), 1589-1593.
- [2] B.E. Rhoades, Some Theorems on weakly contractive maps, Non Linear Analysis, 47(2001), 2683-2693.
- [3] L-G Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332(2007), 1467-1475.
- [4] Ya.I. Alber and S. Guerre-Delabriere, Principles of weakly contractive maps in Hilbert spaces, I. Gohberg, Yu Lyubich(Eds): in New Results in Operator Theory in: Advances and Appl., Birkhuser, Basel 98(1997), 7-22.