Gen. Math. Notes, Vol. 29, No. 1, July 2015, pp.30-39
ISSN 2219-7184; Copyright (c)ICSRS Publication, 2015
www.i-csrs.org
Available free online at http://www.geman.in

Fixed Point Theorems for Expansion Mappings in Cone Rectangular Metric Spaces

Sunanda R. Patil ${ }^{1}$ and J.N. Salunke ${ }^{2}$
${ }^{1}$ Department of Mathematics, K.C.E. Society's College of Engineering and Information Technology, Jalgaon-425001, India
E-mail: sunanda.patil27@gmail.com
${ }^{2}$ Department of Mathematics, Swami Ramanand Teerth Marathwada University, Nanded-431606, India
E-mail: drjnsalunke@gmail.com

(Received: 7-6-15 / Accepted: 11-7-15)

Abstract

In this paper we prove some fixed point theorems for mappings satisfying expansive conditions in cone rectangular metric spaces.

Keywords: Cone rectangular metric space, fixed point, weakly compatible mapping, expansion mapping.

1 Introduction

L.G. Huang and X. Zhang in [6]introduced cone metric spaces. Later, Rezapour and Hamlbrani [10] proved results in [6] removing the condition of normality of the underlying cone.

Following A.Branciari[4],cone rectangular metric spaces were introduced by A.Azam,M.Arshad and I.Beg [1]in which they replaced the triangular inequality in a metric by the rectangular inequality.Further Kannan's fixed point theorem,Reich type contraction and more results were proved in [5],[7],[8] and [11]for these spaces.

Many authors,[3],[12],[13],[14] have obtained coincidence point and fixed
point results for mappings satisfying expansive type conditions in cone metric spaces. We extend those results to the cone rectangular metric space.

2 Preliminaries

Definition 2.1 [6] Let E be a real Banach space and P a subset of E.P is called a cone if and only if:
(i) P is closed, nonempty, and $P \neq\{\theta\}$.
(ii) $a, b \in \mathbb{R}, a, b \geq 0, x, y \in P \Rightarrow a x+b y \in P$.
(iii) $x \in$ Pand $-x \in P \Rightarrow x=\theta$.

Given a cone $P \subset E$ we define a partial ordering \leq with respect to P by:

$$
x \leq y \Leftrightarrow y-x \in P
$$

We shall write $x<y$ to indicate that $x \leq y$ but $x \neq y$, while $x \ll y$ will stand for $y-x \in \operatorname{int} P$,int P denotes the interior of P.

The cone P is called normal if there is a number $k>0$ such that for all $x, y \in E$,

$$
\theta \leq x \leq y \Rightarrow\|x\| \leq k\|y\|
$$

where $\|$.$\| is the norm in E$.Here number k is called the normal constant of P.
In the following we always suppose that E is a Banach space, P is a solid cone in E with $\operatorname{int} P \neq \phi$ and \leq is partial ordering with respect to P.

Definition 2.2 [1] Let X be a nonempty set.If the mapping $\rho: X \times X \rightarrow E$ satisfies:
(a) $\theta<\rho(x, y)$ for all $x, y \in X, x \neq y$ and $\rho(x, y)=\theta$ if and only if $x=y$.
(b) $\rho(x, y)=\rho(y, x)$ for all $x, y \in X$.
(c) $\rho(x, y) \leq \rho(x, z)+\rho(z, y)$, for all $x, y, z \in X$

Then (X, ρ) is a cone metric space.

The following remark will be useful in proving the results which follow:
Remark 2.3 [9] Let P be a cone in a real Banach space E and let $a, b, c \in$ P, then,
(a)If $a \leq b$ and $b \ll c$, then $a \ll c$.
(b)If $a \ll b$ and $b \ll c$, then $a \ll c$.
(c)If $\theta \leq u \ll c$, for each $c \in P^{0}$, then $u=\theta$
(d)If $c \in P^{0}$ and $a_{n} \rightarrow \theta$, then there exists, $n_{0} \in \mathbb{N}$ such that for all $n>n_{0}$, we have $a_{n} \ll c$.
(e)If $\theta \leq a_{n} \leq b_{n}$, for each n and $a_{n} \rightarrow a, b_{n} \rightarrow b$, then $a \leq b$.
(f)If $a \leq \lambda a$, where $0<\lambda<1$, then $a=\theta$.

The concept of cone metric spaces is more general than that of metric spaces since each metric space is a cone metric space with $E=\mathbb{R}$ and $P=[0,+\infty)$.

Definition 2.4 [1] Let X be a nonempty set.If the mapping $d: X \times X \rightarrow E$ satisfies:
(a) $\theta<d(x, y)$ for all $x, y \in X, x \neq y$ and $d(x, y)=\theta$ if and only if $x=y$.
(b) $d(x, y)=d(y, x)$ for all $x, y \in X$.
(c) $d(x, y) \leq d(x, u)+d(u, v)+d(v, y)$ for all $x, y \in X$ and for all distinct points $u, v \in X \backslash\{x, y\}\{$ rectangular property $\}$.

Here d is called a cone rectangular metric on X, and (X, d) is called a cone rectangular metric space.

Example 2.5 [7] Let $X=\mathbb{R}, E=\mathbb{R}^{2}$ and $P=\{(x, y): x, y \geq 0\}$
Define $d: X \times X \rightarrow E$ as follows:

$$
d(x, y)= \begin{cases}(0,0) & \text { if } x=y \\ (3 a, 3) & \text { if } x \text { and } y \text { are both in }\{1,2\}, x \neq y \\ (a, 1) & \text { if } x \text { and } y \text { are not both at a time in }\{1,2\}, x \neq y\end{cases}
$$

where $a>0$ is a constant.Then (X, d) is a cone rectangular metric space.
But it is not a cone metric space since $d(1,2)=(3 a, 3)>d(1,3)+d(3,2)=$ ($2 a, 2$), the triangle inequality does not hold true.

Example 2.6 [9] Let $X=\mathbb{N}, E=\mathbb{C}_{\mathbb{R}}^{1}[0,1]$ with $\|x\|=\|x\|_{\infty}+\left\|x^{\prime}\right\|_{\infty}$ and $P=\{x \in E: x(t) \geq 0\}$ for $t \in[0,1]$. Then this cone is not normal. Define $d: X \times X \rightarrow E$ as follows:

$$
d(x, y)= \begin{cases}0, & \text { if } x=y \\ 3 e^{t} & \text { if } x \text { and } y \text { are both in }\{1,2\}, x \neq y \\ e^{t} & \text { if } x \text { and } y \text { are not both at a time in }\{1,2\}, x \neq y\end{cases}
$$

Then (X, d) is a cone rectangular metric space but it is not a cone metric space as it does not satisfy the triangular property.

Definition $2.7[7] \operatorname{Let}(X, d)$ be a cone rectangular metric space. Let $\left\{x_{n}\right\}$ be a sequence in X and $x \in X$. If for every $c \in E, c \gg \theta$ there is N such that for all $n>N, d\left(x_{n}, x\right) \ll c$, then $\left\{x_{n}\right\}$ is said to be convergent to x and x is the limit of $\left\{x_{n}\right\}$. This is denoted be $x_{n} \rightarrow x$ as $n \rightarrow+\infty$.

Definition $2.8[7] \operatorname{Let}(X, d)$ be a cone rectangular metric space, $\left\{x_{n}\right\}$ be a sequence in X.If for any $c \in X$ with $\theta \ll c$, there is N such that for all $n, m>N, d\left(x_{n}, x_{m}\right) \ll c$, then $\left\{x_{n}\right\}$ is called a Cauchy sequence in X.

Definition 2.9 [7] Let (X, d) be a cone rectangular metric space.If every Cauchy sequence is convergent in X, then X is called a complete cone rectangular metric space.

Definition 2.10 Let (X, d) be a cone rectangular metric space.A mapping $T: X \rightarrow X$ is called expansive if there exists a real constant $k>1$ such that

$$
d(T x, T y) \geq k d(x, y)
$$

for all $x, y \in X$.
Definition 2.11 [2] Let f and g be two self maps of a nonempty set X.If $f x=g x=y$ for some $x \in X$,then x is called the coincidence point of f and g and y is called the point of coincidence of f and g.

Definition 2.12 Two self mappings f and g are said to be weakly compatible if they commute at their coincidence points, that is $f x=g x$ implies that $f g x=g f x$.

Proposition 2.13 [2] If f and g are weakly compatible self maps of a nonempty set X such that they have a unique point of coincidence i.e.fx $=$ $g x=y$,then y is the unique common fixed point of f and g.

Now, we state our main results.

3 Main Results

Theorem 3.1 Let (X, d) be a cone rectangular metric space and let f, g : $X \rightarrow X$ be mappings which satisfy,

$$
\begin{equation*}
d(f x, f y) \geq \alpha d(g x, g y)+\beta d(f x, g x)+\gamma d(f y, g y) \tag{1}
\end{equation*}
$$

for all $x, y \in X$, where α, β and γ are nonnegative real numbers with
$\alpha+\beta+\gamma>1, \beta<1, \gamma<1$, and $\alpha>1$.If $g(X) \subseteq f(X)$ and either of $f(X)$ or $g(X)$ is complete, then f and g have a unique point of coincidence in X.If f and g are weakly compatible then they have a unique common fixed point in X.

Proof: Let $x_{0} \in X$,since $g(X) \subseteq f(X)$, we can choose $x_{1} \in X$ such that $g x_{0}=f x_{1}$. Continuing this process we construct a sequence $\left\{x_{n}\right\}$ in X such that $f x_{n}=g x_{n-1}$, for all $n \geq 1$.
If $g x_{n-1}=g x_{n}$ for some $n \geq 1$, then $f x_{n}=g x_{n}$ and x_{n} is a coincidence point of f and g.
Hence assume that $x_{n-1} \neq x_{n}$ for all $n \geq 1$.
By equation (1), we have

$$
\begin{aligned}
d\left(g x_{n-1}, g x_{n}\right) & =d\left(f x_{n}, f x_{n+1}\right) \\
& \geq \alpha d\left(g x_{n}, g x_{n+1}\right)+\beta d\left(f x_{n}, g x_{n}\right)+\gamma d\left(f x_{n+1}, g x_{n+1}\right) \\
& \geq \alpha d\left(g x_{n}, g x_{n+1}\right)+\beta d\left(g x_{n-1}, g x_{n}\right)+\gamma d\left(g x_{n}, g x_{n+1}\right)
\end{aligned}
$$

i.e.

$$
d\left(g x_{n}, g x_{n+1}\right) \leq \frac{1-\beta}{\alpha+\gamma} d\left(g x_{n-1}, g x_{n}\right)
$$

Hence,

$$
d\left(g x_{n}, g x_{n+1}\right) \leq \lambda d\left(g x_{n-1}, g x_{n}\right)
$$

where $\lambda=\frac{1-\beta}{\alpha+\gamma} \in(0,1)$.
By induction we get,

$$
\begin{equation*}
d\left(g x_{n}, g x_{n+1}\right) \leq \lambda^{n} d\left(g x_{0}, g x_{1}\right) \tag{2}
\end{equation*}
$$

for all $n \geq 0$.
Consider,

$$
\begin{aligned}
d\left(g x_{n-1}, g x_{n+1}\right) & =d\left(f x_{n}, f x_{n+2}\right) \\
& \geq \alpha d\left(g x_{n}, g x_{n+2}\right)+\beta d\left(f x_{n}, g x_{n}\right)+\gamma d\left(f x_{n+2}, g x_{n+2}\right) \\
& \geq \alpha d\left(g x_{n}, g x_{n+2}\right)+\beta d\left(g x_{n-1}, g x_{n}\right)+\gamma d\left(g x_{n+1}, g x_{n+2}\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\alpha d\left(g x_{n}, g x_{n+2}\right) & \leq d\left(g x_{n-1}, g x_{n+1}\right)-\beta d\left(g x_{n-1}, g x_{n}\right)-\gamma d\left(g x_{n+1}, g x_{n+2}\right) \\
& \leq d\left(g x_{n-1}, g x_{n}\right)+d\left(g x_{n}, g x_{n+2}\right)+d\left(g x_{n+2}, g x_{n+1}\right) \\
& -\beta d\left(g x_{n-1}, g x_{n}\right)-\gamma d\left(g x_{n+1}, g x_{n+2}\right)
\end{aligned}
$$

Hence,

$$
d\left(g x_{n}, g x_{n+2}\right) \leq \frac{1-\beta}{\alpha-1} d\left(g x_{n-1}, g x_{n}\right)+\frac{1-\gamma}{\alpha-1} d\left(g x_{n+1}, g x_{n+2}\right)
$$

i.e.

$$
\begin{equation*}
d\left(g x_{n}, g x_{n+2}\right) \leq a_{1} d\left(g x_{n-1}, g x_{n}\right)+a_{2} d\left(g x_{n+1}, g x_{n+2}\right) \tag{3}
\end{equation*}
$$

where $a_{1}=\frac{1-\beta}{\alpha-1}>0, a_{2}=\frac{1-\gamma}{\alpha-1}>0$
For the sequence $\left\{g x_{n}\right\}$, we consider $d\left(g x_{n}, g x_{n+p}\right)$ in two cases, p is even and p is odd.
Suppose p is even, let $p=2 m, m \geq 2$,then by (2),(3) and the rectangular inequality, we have,

$$
\begin{aligned}
d\left(g x_{n}, g x_{n+2 m}\right) \leq & d\left(g x_{n}, g x_{n+2}\right)+d\left(g x_{n+2}, g x_{n+3}\right)+\ldots+d\left(g x_{n+2 m-1}, g x_{n+2 m}\right) \\
\leq & a_{1} d\left(g x_{n-1}, g x_{n}\right)+a_{2} d\left(g x_{n+1}, g x_{n+2}\right)+d\left(g x_{n+2}, g x_{n+3}\right)+ \\
& \ldots+d\left(g x_{n+2 m-1}, g x_{n+2 m}\right) \\
\leq & a_{1} \lambda^{n-1} d\left(g x_{0}, g x_{1}\right)+a_{2} \lambda^{n+1} d\left(g x_{0}, g x_{1}\right)+\lambda^{n+2} d\left(g x_{0}, g x_{1}\right)+ \\
& \ldots+\lambda^{n+2 m-1} d\left(g x_{0}, g x_{1}\right) \\
\leq & a_{1} \lambda^{n-1} d\left(g x_{n-1}, g x_{n}\right)+a_{2} \lambda^{n+1} d\left(g x_{n+1}, g x_{n+2}\right)+\frac{\lambda^{n+2}}{1-\lambda} d\left(g x_{0}, g x_{1}\right)
\end{aligned}
$$

Suppose p is odd,let $p=2 m+1, m \geq 1$,then by (2) and the rectangular inequality, we have,

$$
\begin{aligned}
d\left(g x_{n}, g x_{n+2 m+1}\right) & \leq d\left(g x_{n}, g x_{n+1}\right)+d\left(g x_{n+1}, g x_{n+2}\right)+\ldots+d\left(g x_{n+2 m}, g x_{n+2 m+1}\right) \\
& \leq \lambda^{n} d\left(g x_{0}, g x_{1}\right)+\lambda^{n+1} d\left(g x_{0}, g x_{1}\right)+\ldots+\lambda^{n+2 m} d\left(g x_{0}, g x_{1}\right) \\
& \leq \frac{\lambda^{n}}{1-\lambda} d\left(g x_{0}, g x_{1}\right)
\end{aligned}
$$

As $a_{1}, a_{2}>0$ and $\lambda \in(0,1), a_{1} \lambda^{n-1} d\left(g x_{0}, g x_{1}\right) \rightarrow \theta, a_{2} \lambda^{n+1} d\left(g x_{0}, g x_{1}\right) \rightarrow \theta$, $\frac{\lambda^{n+2}}{1-\lambda} d\left(g x_{0}, g x_{1}\right) \rightarrow \theta, \frac{\lambda^{n}}{1-\lambda} d\left(g x_{0}, g x_{1}\right) \rightarrow \theta$ as $n \rightarrow \infty$,so by (a) and (d)of Remark (2.3),for every $c \in E$ with $\theta \ll c$, there exits $n_{0} \in \mathbb{N}$ such that $d\left(g x_{n}, g x_{n+p}\right) \ll$ c for all $n>n_{0}$.

Hence, $\left\{g x_{n}\right\}$ is a Cauchy sequence.Suppose $g(X)$ is a complete subspace of X, there exists $y \in g(X) \subseteq f(X)$ such that $g x_{n} \rightarrow y$ and also $f x_{n} \rightarrow y$, and if $f(X)$ is complete, this holds also with $y \in f(X)$.

Let $u \in X$, be such that $f u=y$.For $\theta \ll c$, we can choose a natural number $n_{0} \in \mathbb{N}$,such that $d\left(y, g x_{n-1}\right) \ll \frac{c}{3}, d\left(g x_{n-1}, g x_{n}\right) \ll \frac{c}{3}$ and $d\left(f x_{n}, f u\right) \ll \frac{\alpha c}{3}$ for all $n>n_{0}$
We have by (1),

$$
\begin{aligned}
d\left(g x_{n-1}, f u\right) & =d\left(f x_{n}, f u\right) \\
& \geq \alpha d\left(g x_{n}, g u\right)+\beta d\left(f x_{n}, g x_{n}\right)+\gamma d(f u, g u) \\
& \geq \alpha d\left(g x_{n}, g u\right)
\end{aligned}
$$

i.e.

$$
d\left(g x_{n}, g u\right) \leq \frac{1}{\alpha} d\left(g x_{n-1}, f u\right)
$$

By the rectangular inequality,

$$
\begin{aligned}
d(y, g u) & \leq d\left(y, g x_{n-1}\right)+d\left(g x_{n-1}, g x_{n}\right)+d\left(g x_{n}, g u\right) \\
& \leq d\left(y, g x_{n-1}\right)+d\left(g x_{n-1}, g x_{n}\right)+\frac{1}{\alpha} d\left(g x_{n-1}, f u\right) \\
& \leq d\left(y, g x_{n-1}\right)+d\left(g x_{n-1}, g x_{n}\right)+\frac{1}{\alpha} d\left(f x_{n}, f u\right)
\end{aligned}
$$

Thus,

$$
d(y, g u) \ll \frac{c}{3}+\frac{c}{3}+\frac{c}{3}=c
$$

for all $n>n_{0}$ and $g u=y$,hence $f u=g u=y$, which means that y is a coincidence point of f and g.
Suppose there exists another point of coincidence y^{*}, such that $g u^{*}=f u^{*}=y^{*}$ for some $u^{*} \in X$. Then,

$$
\begin{aligned}
d\left(y, y^{*}\right) & =d\left(f u, f u^{*}\right) \\
& \geq \alpha d\left(g u, g u^{*}\right)+\beta d(f u, g u)+\gamma d\left(f u^{*}, g u^{*}\right) \\
& \geq \alpha d\left(y, y^{*}\right)+\beta d(y, y)+\gamma d\left(y^{*}, y^{*}\right)
\end{aligned}
$$

Hence,

$$
d\left(y, y^{*}\right) \leq \frac{1}{\alpha} d\left(y, y^{*}\right)
$$

Since $\alpha>1$, we have by $\operatorname{Remark}(2.3)(\mathrm{f}), d\left(y, y^{*}\right)=\theta \mathrm{i}, \mathrm{e}, y=y^{*}$. Therefore f and g have a unique point of coincidence in X.If f and g are weakly compatible, then by Proposition (2.13), f and g have a unique common fixed point in X.

Corollary 3.2 Let (X, d) be a complete cone rectangular metric space and let $f, g: X \rightarrow X$ be mappings which satisfy,

$$
\begin{equation*}
d(f x, f y) \geq \alpha d(g x, g y) \tag{4}
\end{equation*}
$$

for all $x, y \in X$, where $\alpha>1$ is a constant.If $g(X) \subseteq f(X)$ and either of $f(X)$ or $g(X)$ is complete, then f and g have a unique point of coincidence in X.If f and g are weakly compatible then they have a unique common fixed point in X.

Proof:Taking $\beta=\gamma=0$ in Thm.(3.1), we get the result.

Example 3.3 Let $X=\{1,2,3,4\}, E=R^{2}$ and $P=\{(x, y): x, y \in X\}$ be a cone in E.
Define $d: X \times X \rightarrow E$ as follows:
$d(1,2)=d(2,1)=(3,6)$
$d(2,3)=d(3,2)=d(1,3)=d(3,1)=(1,2)$
$d(1,4)=d(4,1)=d(2,4)=d(4,2)=d(3,4)=d(4,3)=(2,4)$
then (X, d) is a cone rectangular metric space but not a cone metric space because it lacks the triangular property as
$(3,6)=d(1,2)>d(1,3)+d(3,2)=(1,2)+(1,2)=(2,4)$
since $(3,6)-(2,4)=(1,2) \in P$.
Now define mappings $f, g: X \rightarrow X$ as follows:

$$
\begin{aligned}
& f x=x \text { for all } x \in X \\
& g(x)= \begin{cases}3 & \text { if } x \neq 4 \\
1 & \text { if } x=4\end{cases}
\end{aligned}
$$

All conditions of Thm.(3.1) hold for $\alpha \in(1,2], \beta=0$ and $\gamma=0,3 \in X$ is the unique common fixed point of f and g.

Corollary 3.4 Let (X, d) be a complete cone rectangular metric space and let $f: X \rightarrow X$ be onto mapping which satisfies,

$$
\begin{equation*}
d(f x, f y) \geq \alpha d(x, y)+\beta d(f x, x)+\gamma d(f y, y) \tag{5}
\end{equation*}
$$

for all $x, y \in X$, where α, β and γ are nonnegative real numbers with $\alpha+\beta+\gamma>1, \beta<1, \gamma<1$, and $\alpha>1$. Then f has a unique fixed point in X.

Proof:It follows by taking $g=I$ in Thm.(3.1).
Corollary 3.5 Let (X, d) be a complete cone rectangular metric space and let $f: X \rightarrow X$ be onto mapping which satisfies,

$$
\begin{equation*}
d(f x, f y) \geq \alpha d(x, y) \tag{6}
\end{equation*}
$$

for all $x, y \in X$, where $\alpha>1$ is a constant. Then f has a unique fixed point in X.

Proof:It follows by taking $g=I$ and $\beta=\gamma=0$ in Thm.(3.1).

References

[1] A. Azam, M. Arshad and I. Beg, Banach contraction principle on cone rectangular metric spaces, Appl. Anal. Discrete Math., 3(2009), 236-241.
[2] M. Abbas and G. Jungck, Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl, 341(2008), 416-420.
[3] C.T. Aage and J.N. Salunke, Some fixed point theorems for expansion onto mappings on cone metric spaces, Acta Mathematica Sinica, 27(6) (2011), 1101-1106.
[4] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57(1-2) (2000), 31-37.
[5] B. Samet and C. Vetro, A fixed point theorem for uniformly locally contractive mappings in a c-chainable cone rectangular metric space, Surveys in Mathematics and its Applications, 6(2011), 107-116.
[6] L.G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332(2007), 1468-1476.
[7] M. Jleli and B. Samet, The Kannan's fixed point theorem in a cone rectangular metric space, J. Nonlinear Sci. Appl., 2(3) (2009), 161-167.
[8] S.K. Malhotra, J.B. Sharma and S. Shukla, g-weak contraction in ordered cone rectangular metric spaces, The Scientific World Journal, Article ID 810732(2013), 7 pages.
[9] S.K. Malhotra, S. Shukla and R. Sen, Some fixed point theorems for ordered Reich type contractions in cone rectangular metric spaces, Acta Mathematica Universitatis Comenianae, LXXXII(2) (2013), 165-175.
[10] Sh. Rezapour and R. Hamlbarani, Some notes on the paper cone metric spaces and fixed point theorems of contractive mappings, Math. Anal. Appl, 345(2008), 719-724.
[11] R.A. Rashwan and S.M. Saleh, Some fixed point theorems in cone rectangular metric spaces, Mathematica Aeterna., 2(6) (2012), 573-587.
[12] W. Shatanawi and F. Awawdeh, Some fixed and coincidence point theorems for expansive maps in cone metric spaces, Fixed Point Theory and Applications, 1(2012), 1-10.
[13] Z. Kadelburg, P.P. Murthy and S. Radenovic, Common fixed points for expansive mappings in cone metric spaces, Int. J. Math. Anal, 5(27) (2011), 1309-1319.
[14] Y. Han and S. Xu, Some new theorems of expanding mappings without continuity in cone metric spaces, Fixed Point Theory and Applications, 1(2013), 1-9.

