

Gen. Math. Notes, Vol. 29, No. 1, July 2015, pp.30-39 ISSN 2219-7184; Copyright ©ICSRS Publication, 2015 www.i-csrs.org Available free online at http://www.geman.in

Fixed Point Theorems for Expansion Mappings

in Cone Rectangular Metric Spaces

Sunanda R. Patil¹ and J.N. Salunke²

¹Department of Mathematics, K.C.E. Society's College of Engineering and Information Technology, Jalgaon-425001, India E-mail: sunanda.patil27@gmail.com ²Department of Mathematics, Swami Ramanand Teerth Marathwada University, Nanded-431606, India E-mail: drjnsalunke@gmail.com

(Received: 7-6-15 / Accepted: 11-7-15)

Abstract

In this paper we prove some fixed point theorems for mappings satisfying expansive conditions in cone rectangular metric spaces.

Keywords: Cone rectangular metric space, fixed point, weakly compatible mapping, expansion mapping.

1 Introduction

L.G. Huang and X. Zhang in [6] introduced cone metric spaces. Later, Rezapour and Hamlbrani [10] proved results in [6] removing the condition of normality of the underlying cone.

Following A.Branciari[4], cone rectangular metric spaces were introduced by A.Azam, M.Arshad and I.Beg [1] in which they replaced the triangular inequality in a metric by the rectangular inequality. Further Kannan's fixed point theorem, Reich type contraction and more results were proved in [5], [7], [8] and [11] for these spaces.

Many authors, [3], [12], [13], [14] have obtained coincidence point and fixed

point results for mappings satisfying expansive type conditions in cone metric spaces. We extend those results to the cone rectangular metric space.

2 Preliminaries

Definition 2.1 [6] Let E be a real Banach space and P a subset of E.P is called a cone if and only if:

(i) P is closed, nonempty, and $P \neq \{\theta\}$.

(*ii*)
$$a, b \in \mathbb{R}, a, b \ge 0, x, y \in P \Rightarrow ax + by \in P$$
.

(iii) $x \in Pand - x \in P \Rightarrow x = \theta$.

Given a cone $P \subset E$ we define a partial ordering \leq with respect to P by:

$$x \le y \Leftrightarrow y - x \in P$$

We shall write x < y to indicate that $x \leq y$ but $x \neq y$, while $x \ll y$ will stand for $y - x \in intP$, int P denotes the interior of P.

The cone P is called normal if there is a number k > 0 such that for all $x, y \in E$,

$$\theta \le x \le y \Rightarrow \|x\| \le k \, \|y\|$$

where $\|.\|$ is the norm in E.Here number k is called the normal constant of P.

In the following we always suppose that E is a Banach space, P is a solid cone in E with $\operatorname{int} P \neq \phi$ and \leq is partial ordering with respect to P.

Definition 2.2 [1] Let X be a nonempty set. If the mapping $\rho : X \times X \to E$ satisfies:

- (a) $\theta < \rho(x, y)$ for all $x, y \in X, x \neq y$ and $\rho(x, y) = \theta$ if and only if x = y.
- (b) $\rho(x, y) = \rho(y, x)$ for all $x, y \in X$.
- (c) $\rho(x,y) \le \rho(x,z) + \rho(z,y)$, for all $x, y, z \in X$

Then (X, ρ) is a cone metric space.

The following remark will be useful in proving the results which follow:

Remark 2.3 [9] Let P be a cone in a real Banach space E and let $a, b, c \in P$, then, (a) If $a \leq b$ and $b \ll c$, then $a \ll c$. (b) If $a \ll b$ and $b \ll c$, then $a \ll c$. (c) If $\theta \leq u \ll c$, for each $c \in P^0$, then $u = \theta$ (d) If $c \in P^0$ and $a_n \to \theta$, then there exists, $n_0 \in \mathbb{N}$ such that for all $n > n_0$, we have $a_n \ll c$. (e) If $\theta \leq a_n \leq b_n$, for each n and $a_n \to a, b_n \to b$, then $a \leq b$. (f) If $a \leq \lambda a$, where $0 < \lambda < 1$, then $a = \theta$.

The concept of cone metric spaces is more general than that of metric spaces since each metric space is a cone metric space with $E = \mathbb{R}$ and $P = [0, +\infty)$.

Definition 2.4 [1] Let X be a nonempty set. If the mapping $d: X \times X \to E$ satisfies:

- (a) $\theta < d(x, y)$ for all $x, y \in X, x \neq y$ and $d(x, y) = \theta$ if and only if x = y.
- (b) d(x,y) = d(y,x) for all $x, y \in X$.
- (c) $d(x,y) \le d(x,u) + d(u,v) + d(v,y)$ for all $x, y \in X$ and for all distinct points $u, v \in X \setminus \{x, y\}$ { rectangular property }.

Here d is called a cone rectangular metric on X, and (X, d) is called a cone rectangular metric space.

Example 2.5 [7] Let $X = \mathbb{R}$, $E = \mathbb{R}^2$ and $P = \{(x, y) : x, y \ge 0\}$ Define $d : X \times X \to E$ as follows:

$$d(x,y) = \begin{cases} (0,0) & \text{if } x = y; \\ (3a,3) & \text{if } x \text{ and } y \text{ are both in } \{1,2\}, x \neq y; \\ (a,1) & \text{if } x \text{ and } y \text{ are not both at } a \text{ time in } \{1,2\}, x \neq y \end{cases}$$

where a > 0 is a constant. Then (X, d) is a cone rectangular metric space. But it is not a cone metric space since d(1, 2) = (3a, 3) > d(1, 3) + d(3, 2) = (2a, 2), the triangle inequality does not hold true.

Example 2.6 [9] Let $X = \mathbb{N}$, $E = \mathbb{C}^1_{\mathbb{R}}[0,1]$ with $||x|| = ||x||_{\infty} + ||x'||_{\infty}$ and $P = \{x \in E : x(t) \ge 0\}$ for $t \in [0,1]$. Then this cone is not normal. Define $d : X \times X \to E$ as follows:

$$d(x,y) = \begin{cases} 0, & \text{if } x = y; \\ 3e^t & \text{if } x \text{ and } y \text{ are both in } \{1,2\}, x \neq y; \\ e^t & \text{if } x \text{ and } y \text{ are not both at a time in } \{1,2\}, x \neq y \end{cases}$$

Then (X, d) is a cone rectangular metric space but it is not a cone metric space as it does not satisfy the triangular property. Fixed Point Theorems for Expansion Mappings...

Definition 2.7 [7]Let (X, d) be a cone rectangular metric space.Let $\{x_n\}$ be a sequence in X and $x \in X$. If for every $c \in E, c \gg \theta$ there is N such that for all $n > N, d(x_n, x) \ll c$, then $\{x_n\}$ is said to be convergent to x and x is the limit of $\{x_n\}$. This is denoted be $x_n \to x$ as $n \to +\infty$.

Definition 2.8 [7]Let (X, d) be a cone rectangular metric space, $\{x_n\}$ be a sequence in X. If for any $c \in X$ with $\theta \ll c$, there is N such that for all $n, m > N, d(x_n, x_m) \ll c$, then $\{x_n\}$ is called a Cauchy sequence in X.

Definition 2.9 [7] Let (X, d) be a cone rectangular metric space. If every Cauchy sequence is convergent in X, then X is called a complete cone rectangular metric space.

Definition 2.10 Let (X, d) be a cone rectangular metric space. A mapping $T: X \to X$ is called expansive if there exists a real constant k > 1 such that

$$d(Tx, Ty) \ge kd(x, y)$$

for all $x, y \in X$.

Definition 2.11 [2] Let f and g be two self maps of a nonempty set X. If fx = gx = y for some $x \in X$, then x is called the coincidence point of f and g and y is called the point of coincidence of f and g.

Definition 2.12 Two self mappings f and g are said to be weakly compatible if they commute at their coincidence points, that is fx = gx implies that fgx = gfx.

Proposition 2.13 [2] If f and g are weakly compatible self maps of a nonempty set X such that they have a unique point of coincidence i.e. fx = gx = y, then y is the unique common fixed point of f and g.

Now, we state our main results.

3 Main Results

Theorem 3.1 Let (X, d) be a cone rectangular metric space and let $f, g : X \to X$ be mappings which satisfy,

$$d(fx, fy) \ge \alpha d(gx, gy) + \beta d(fx, gx) + \gamma d(fy, gy) \tag{1}$$

for all $x, y \in X$, where α, β and γ are nonnegative real numbers with $\alpha + \beta + \gamma > 1, \beta < 1, \gamma < 1, and \alpha > 1$. If $g(X) \subseteq f(X)$ and either of f(X) or g(X) is complete, then f and g have a unique point of coincidence in X. If f and g are weakly compatible then they have a unique common fixed point in X.

Proof: Let $x_0 \in X$, since $g(X) \subseteq f(X)$, we can choose $x_1 \in X$ such that $gx_0 = fx_1$. Continuing this process we construct a sequence $\{x_n\}$ in X such that $fx_n = gx_{n-1}$, for all $n \ge 1$.

If $gx_{n-1} = gx_n$ for some $n \ge 1$, then $fx_n = gx_n$ and x_n is a coincidence point of f and g.

Hence assume that $x_{n-1} \neq x_n$ for all $n \ge 1$. By equation (1), we have

$$d(gx_{n-1}, gx_n) = d(fx_n, fx_{n+1}) \\ \ge \alpha d(gx_n, gx_{n+1}) + \beta d(fx_n, gx_n) + \gamma d(fx_{n+1}, gx_{n+1}) \\ \ge \alpha d(gx_n, gx_{n+1}) + \beta d(gx_{n-1}, gx_n) + \gamma d(gx_n, gx_{n+1})$$

i.e.

$$d(gx_n, gx_{n+1}) \le \frac{1-\beta}{\alpha+\gamma} d(gx_{n-1}, gx_n)$$

Hence,

$$d(gx_n, gx_{n+1}) \le \lambda d(gx_{n-1}, gx_n)$$

where $\lambda = \frac{1-\beta}{\alpha+\gamma} \in (0,1)$. By induction we get,

$$d(gx_n, gx_{n+1}) \le \lambda^n d(gx_0, gx_1) \tag{2}$$

for all $n \ge 0$. Consider,

$$d(gx_{n-1}, gx_{n+1}) = d(fx_n, fx_{n+2})$$

$$\geq \alpha d(gx_n, gx_{n+2}) + \beta d(fx_n, gx_n) + \gamma d(fx_{n+2}, gx_{n+2})$$

$$\geq \alpha d(gx_n, gx_{n+2}) + \beta d(gx_{n-1}, gx_n) + \gamma d(gx_{n+1}, gx_{n+2})$$

Therefore,

$$\begin{aligned} \alpha d(gx_n, gx_{n+2}) &\leq d(gx_{n-1}, gx_{n+1}) - \beta d(gx_{n-1}, gx_n) - \gamma d(gx_{n+1}, gx_{n+2}) \\ &\leq d(gx_{n-1}, gx_n) + d(gx_n, gx_{n+2}) + d(gx_{n+2}, gx_{n+1}) \\ &- \beta d(gx_{n-1}, gx_n) - \gamma d(gx_{n+1}, gx_{n+2}) \end{aligned}$$

Hence,

$$d(gx_n, gx_{n+2}) \le \frac{1-\beta}{\alpha-1} d(gx_{n-1}, gx_n) + \frac{1-\gamma}{\alpha-1} d(gx_{n+1}, gx_{n+2})$$

Fixed Point Theorems for Expansion Mappings...

i.e.

$$d(gx_n, gx_{n+2}) \le a_1 d(gx_{n-1}, gx_n) + a_2 d(gx_{n+1}, gx_{n+2})$$
(3)

where $a_1 = \frac{1-\beta}{\alpha-1} > 0$, $a_2 = \frac{1-\gamma}{\alpha-1} > 0$ For the sequence $\{gx_n\}$, we consider $d(gx_n, gx_{n+p})$ in two cases, p is even and p is odd.

Suppose p is even, let $p = 2m, m \ge 2$, then by (2), (3) and the rectangular inequality, we have,

$$\begin{aligned} d(gx_n, gx_{n+2m}) &\leq d(gx_n, gx_{n+2}) + d(gx_{n+2}, gx_{n+3}) + \dots + d(gx_{n+2m-1}, gx_{n+2m}) \\ &\leq a_1 d(gx_{n-1}, gx_n) + a_2 d(gx_{n+1}, gx_{n+2}) + d(gx_{n+2}, gx_{n+3}) + \\ &\dots + d(gx_{n+2m-1}, gx_{n+2m}) \\ &\leq a_1 \lambda^{n-1} d(gx_0, gx_1) + a_2 \lambda^{n+1} d(gx_0, gx_1) + \lambda^{n+2} d(gx_0, gx_1) + \\ &\dots + \lambda^{n+2m-1} d(gx_0, gx_1) \\ &\leq a_1 \lambda^{n-1} d(gx_{n-1}, gx_n) + a_2 \lambda^{n+1} d(gx_{n+1}, gx_{n+2}) + \frac{\lambda^{n+2}}{1-\lambda} d(gx_0, gx_1) \end{aligned}$$

Suppose p is odd, let $p = 2m + 1, m \ge 1$,then by (2) and the rectangular inequality, we have,

$$\begin{aligned} d(gx_n, gx_{n+2m+1}) &\leq d(gx_n, gx_{n+1}) + d(gx_{n+1}, gx_{n+2}) + \dots + d(gx_{n+2m}, gx_{n+2m+1}) \\ &\leq \lambda^n d(gx_0, gx_1) + \lambda^{n+1} d(gx_0, gx_1) + \dots + \lambda^{n+2m} d(gx_0, gx_1) \\ &\leq \frac{\lambda^n}{1 - \lambda} d(gx_0, gx_1) \end{aligned}$$

As $a_1, a_2 > 0$ and $\lambda \in (0, 1), a_1 \lambda^{n-1} d(gx_0, gx_1) \to \theta, a_2 \lambda^{n+1} d(gx_0, gx_1) \to \theta, \frac{\lambda^{n+2}}{1-\lambda} d(gx_0, gx_1) \to \theta, \frac{\lambda^n}{1-\lambda} d(gx_0, gx_1) \to \theta$ as $n \to \infty$, so by (a) and (d) of Remark (2.3), for every $c \in E$ with $\theta \ll c$, there exits $n_0 \in \mathbb{N}$ such that $d(gx_n, gx_{n+p}) \ll c$ for all $n > n_0$.

Hence, $\{gx_n\}$ is a Cauchy sequence. Suppose g(X) is a complete subspace of X, there exists $y \in g(X) \subseteq f(X)$ such that $gx_n \to y$ and also $fx_n \to y$, and if f(X) is complete, this holds also with $y \in f(X)$.

Let $u \in X$, be such that fu = y. For $\theta \ll c$, we can choose a natural number $n_0 \in \mathbb{N}$, such that $d(y, gx_{n-1}) \ll \frac{c}{3}$, $d(gx_{n-1}, gx_n) \ll \frac{c}{3}$ and $d(fx_n, fu) \ll \frac{\alpha c}{3}$ for all $n > n_0$

We have by (1),

$$d(gx_{n-1}, fu) = d(fx_n, fu)$$

$$\geq \alpha d(gx_n, gu) + \beta d(fx_n, gx_n) + \gamma d(fu, gu)$$

$$\geq \alpha d(gx_n, gu)$$

i.e.

$$d(gx_n, gu) \le \frac{1}{\alpha} d(gx_{n-1}, fu)$$

By the rectangular inequality,

$$d(y, gu) \le d(y, gx_{n-1}) + d(gx_{n-1}, gx_n) + d(gx_n, gu)$$

$$\le d(y, gx_{n-1}) + d(gx_{n-1}, gx_n) + \frac{1}{\alpha}d(gx_{n-1}, fu)$$

$$\le d(y, gx_{n-1}) + d(gx_{n-1}, gx_n) + \frac{1}{\alpha}d(fx_n, fu)$$

Thus,

$$d(y,gu) \ll \frac{c}{3} + \frac{c}{3} + \frac{c}{3} = c$$

for all $n > n_0$ and gu = y, hence fu = gu = y, which means that y is a coincidence point of f and g.

Suppose there exists another point of coincidence y^* , such that $gu^* = fu^* = y^*$ for some $u^* \in X$. Then,

$$d(y, y^*) = d(fu, fu^*)$$

$$\geq \alpha d(gu, gu^*) + \beta d(fu, gu) + \gamma d(fu^*, gu^*)$$

$$\geq \alpha d(y, y^*) + \beta d(y, y) + \gamma d(y^*, y^*)$$

Hence,

$$d(y, y^*) \le \frac{1}{\alpha} d(y, y^*)$$

Since $\alpha > 1$, we have by Remark(2.3)(f), $d(y, y^*) = \theta$ i,e, $y = y^*$. Therefore f and g have a unique point of coincidence in X. If f and g are weakly compatible, then by Proposition (2.13), f and g have a unique common fixed point in X.

Corollary 3.2 Let (X, d) be a complete cone rectangular metric space and let $f, g: X \to X$ be mappings which satisfy,

$$d(fx, fy) \ge \alpha d(gx, gy) \tag{4}$$

for all $x, y \in X$, where $\alpha > 1$ is a constant. If $g(X) \subseteq f(X)$ and either of f(X) or g(X) is complete, then f and g have a unique point of coincidence in X. If f and g are weakly compatible then they have a unique common fixed point in X.

Fixed Point Theorems for Expansion Mappings...

Proof: Taking $\beta = \gamma = 0$ in Thm.(3.1), we get the result.

Example 3.3 Let $X = \{1, 2, 3, 4\}, E = R^2$ and $P = \{(x, y) : x, y \in X\}$ be a cone in E. Define $d : X \times X \to E$ as follows: d(1, 2) = d(2, 1) = (3, 6)d(2, 3) = d(3, 2) = d(1, 3) = d(3, 1) = (1, 2)d(1, 4) = d(4, 1) = d(2, 4) = d(4, 2) = d(3, 4) = d(4, 3) = (2, 4)then (X, d) is a cone rectangular metric space but not a cone metric space because it lacks the triangular property as (3, 6) = d(1, 2) > d(1, 3) + d(3, 2) = (1, 2) + (1, 2) = (2, 4)since $(3, 6) - (2, 4) = (1, 2) \in P$. Now define mappings $f, g : X \to X$ as follows: fx = x for all $x \in X$.

$$g(x) = \begin{cases} 3 & \text{if } x \neq 4; \\ 1 & \text{if } x = 4; \end{cases}$$

All conditions of Thm.(3.1) hold for $\alpha \in (1, 2], \beta = 0$ and $\gamma = 0, 3 \in X$ is the unique common fixed point of f and g.

Corollary 3.4 Let (X, d) be a complete cone rectangular metric space and let $f: X \to X$ be onto mapping which satisfies,

$$d(fx, fy) \ge \alpha d(x, y) + \beta d(fx, x) + \gamma d(fy, y)$$
(5)

for all $x, y \in X$, where α, β and γ are nonnegative real numbers with $\alpha + \beta + \gamma > 1, \beta < 1, \gamma < 1, and \alpha > 1$. Then f has a unique fixed point in X.

Proof: It follows by taking g = I in Thm.(3.1).

Corollary 3.5 Let (X, d) be a complete cone rectangular metric space and let $f: X \to X$ be onto mapping which satisfies,

$$d(fx, fy) \ge \alpha d(x, y) \tag{6}$$

for all $x, y \in X$, where $\alpha > 1$ is a constant. Then f has a unique fixed point in X.

Proof: It follows by taking g = I and $\beta = \gamma = 0$ in Thm.(3.1).

References

- [1] A. Azam, M. Arshad and I. Beg, Banach contraction principle on cone rectangular metric spaces, *Appl. Anal. Discrete Math.*, 3(2009), 236-241.
- [2] M. Abbas and G. Jungck, Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl, 341(2008), 416-420.
- [3] C.T. Aage and J.N. Salunke, Some fixed point theorems for expansion onto mappings on cone metric spaces, Acta Mathematica Sinica, 27(6) (2011), 1101-1106.
- [4] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, *Publ. Math. Debrecen*, 57(1-2) (2000), 31-37.
- [5] B. Samet and C. Vetro, A fixed point theorem for uniformly locally contractive mappings in a c-chainable cone rectangular metric space, *Surveys* in Mathematics and its Applications, 6(2011), 107-116.
- [6] L.G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332(2007), 1468-1476.
- [7] M. Jleli and B. Samet, The Kannan's fixed point theorem in a cone rectangular metric space, J. Nonlinear Sci. Appl., 2(3) (2009), 161-167.
- [8] S.K. Malhotra, J.B. Sharma and S. Shukla, g-weak contraction in ordered cone rectangular metric spaces, *The Scientific World Journal*, Article ID 810732(2013), 7 pages.
- [9] S.K. Malhotra, S. Shukla and R. Sen, Some fixed point theorems for ordered Reich type contractions in cone rectangular metric spaces, Acta Mathematica Universitatis Comenianae, LXXXII(2) (2013), 165-175.
- [10] Sh. Rezapour and R. Hamlbarani, Some notes on the paper cone metric spaces and fixed point theorems of contractive mappings, *Math. Anal. Appl*, 345(2008), 719-724.
- [11] R.A. Rashwan and S.M. Saleh, Some fixed point theorems in cone rectangular metric spaces, *Mathematica Aeterna.*, 2(6) (2012), 573-587.
- [12] W. Shatanawi and F. Awawdeh, Some fixed and coincidence point theorems for expansive maps in cone metric spaces, *Fixed Point Theory and Applications*, 1(2012), 1-10.

- [13] Z. Kadelburg, P.P. Murthy and S. Radenovic, Common fixed points for expansive mappings in cone metric spaces, *Int. J. Math. Anal*, 5(27) (2011), 1309-1319.
- [14] Y. Han and S. Xu, Some new theorems of expanding mappings without continuity in cone metric spaces, *Fixed Point Theory and Applications*, 1(2013), 1-9.