Gen. Math. Notes, Vol. 6, No. 2, October 2011, pp. 24-32
ISSN 2219-7184; Copyright © ICSRS Publication, 2011
www.i-csrs.org
Available free online at http://www.geman.in

On Degree of Approximation

by Product Means ${ }^{(E, q)\left(N, p_{n}\right)}$ of Fourier

Series

Mahendra Misra ${ }^{1}$, U.K. Misra ${ }^{2}$, B.P. Padhy ${ }^{3}$ and M.K. Muduli ${ }^{4}$
${ }^{1}$ Principal, Government Science College
Mlkangiri, Orissa
E-mail: mahendramisra@2007.gmail.com
${ }^{2}$ Department of Mathematics, Berhampur University
Berhampur-760007, Orissa, India
E-mail: umakanta_misra@yahoo.com
${ }^{3}$ Roland Institute of Technology, Golanthara-760008,
Odisha, India
E-mail: iraady@gmail.com
${ }^{4}$ Roland Institute of Technology, Golanthara-760008,
Odisha, India
E-mail: malayamudulimath@gmail.com

(Received: 7-7-11/ Accepted: 14-10-11)

Abstract

In this paper a theorem on degree of Approximation of a function $f \in \operatorname{Lip} \alpha$ by product summability $(E, q)\left(N, p_{n}\right)$ of Fourier series associated with f.

Keywords: Degree of Approximation, $\quad f \in \operatorname{Lip} \alpha$ class of function, (E, q) mean, $\left(N, p_{n}\right)$ mean, $(E, q)\left(N, p_{n}\right)$ product mean, Fourier series, Lebesgue integral

1 Introduction

Let $\sum a_{n}$ be a given infinite series with the sequence of partial sums $\left\{s_{n}\right\}$. Let $\left\{p_{n}\right\}$ be a sequence of positive real numbers such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty,\left(P_{-i}=p_{-i}=0, i \geq 0\right) \tag{1.1}
\end{equation*}
$$

The sequence -to-sequence transformation

$$
\begin{equation*}
t_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{n-v} s_{v} \tag{1.2}
\end{equation*}
$$

defines the sequence $\left\{t_{n}\right\}$ of the $\left(N, p_{n}\right)$-mean of the sequence $\left\{s_{n}\right\}$ generated by the by sequence of coefficient $\left\{p_{n}\right\}$. If

$$
\begin{equation*}
t_{n} \rightarrow s \text {, as } n \rightarrow \infty, \tag{1.3}
\end{equation*}
$$

then the series $\sum a_{n}$ is said to be $\left(N, p_{n}\right)$ summable to s • The conditions for regularity of Nörlund summability $\left(N, p_{n}\right)$ are easily seen to be
(i) $\frac{p_{n}}{P_{n}} \rightarrow 0$ as $n \rightarrow \infty$
(ii) $\sum_{k=0}^{n} p_{k}=O\left(P_{n}\right)$ as $n \rightarrow \infty$

The sequence -to-sequence transformation, [1]

$$
\begin{equation*}
T_{n}=\frac{1}{(1+q)^{n}} \sum_{v=0}^{n}\binom{n}{v} q^{n-v} s_{v} \tag{1.4}
\end{equation*}
$$

defines the sequence $\left\{T_{n}\right\}$ of the (E, q) mean of the sequence $\left\{s_{n}\right\}$. If

$$
\begin{equation*}
T_{n} \rightarrow s \text { as } n \rightarrow \infty \tag{1.5}
\end{equation*}
$$

then the series $\sum a_{n}$ is said to be (E, q) summable to s.
Clearly (E, q) method is regular.
Further, the (E, q) transform of the $\left(N, p_{n}\right)$ transform of $\left\{s_{n}\right\}$ is defined by

$$
\begin{aligned}
\tau_{n} & =\frac{1}{(1+q)^{n}} \sum_{k=0}^{n}\binom{n}{k} q^{n-k} T_{k} \\
& =\frac{1}{(1+q)^{n}} \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{k-v} s_{v}\right\}
\end{aligned}
$$

If

$$
\begin{equation*}
\tau_{n} \rightarrow s \text { as } n \rightarrow \infty \tag{1.7}
\end{equation*}
$$

then $\quad \sum a_{n}$ is said to be $(E, q)\left(N, p_{n}\right)$-summable to s.
Let $f(t)$ be a periodic function with period 2π, L-integrable over $(-\pi, \pi)$, The Fourier series associated with f at any point x is defined by

$$
\begin{equation*}
f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \equiv \sum_{n=0}^{\infty} A_{n}(x) \tag{1.8}
\end{equation*}
$$

Let $s_{n}(f ; x)$ be the n -th partial sum of (1.8).

The L_{∞}-norm of a function $f: R \rightarrow R$ is defined by

$$
\begin{equation*}
\|f\|_{\infty}=\sup \{|f(x)|: x \in R\} \tag{1.9}
\end{equation*}
$$

and the L_{v}-norm is defined by

$$
\begin{equation*}
\|f\|_{v}=\left(\int_{0}^{2 \pi}|f(x)|^{v}\right)^{\frac{1}{v}} \quad, v \geq 1 \tag{1.10}
\end{equation*}
$$

The degree of approximation of a function $f: R \rightarrow R$ by a trigonometric polynomial $P_{n}(x)$ of degree n under norm $\|.\|_{\infty}$ is defined by [4].

$$
\begin{equation*}
\left\|P_{n}-f\right\|_{\infty}=\sup \left\{\left|p_{n}(x)-f(x)\right|: x \in R\right\} \tag{1.11}
\end{equation*}
$$

and the degree of approximation $E_{n}(f)$ of a function $f \in L_{v}$ is given by

$$
\begin{equation*}
E_{n}(f)=\min _{P_{n}}\left\|P_{n}-f\right\|_{v} \tag{1.12}
\end{equation*}
$$

This method of approximation is called Trigonometric Fourier approximation.
A function $f \in \operatorname{Lip} \alpha$ if

$$
\begin{equation*}
|f(x+t)-f(x)|=O\left(|t|^{\alpha}\right), 0<\alpha \leq 1 \tag{1.13}
\end{equation*}
$$

We use the following notation throughout this paper :

$$
\begin{equation*}
\phi(t)=f(x+t)+f(x-t)-2 f(x), \tag{1.14}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{n}(t)=\frac{1}{2 \pi(1+q)^{n}} \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{k-v} \frac{\sin \left(v+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right\} . \tag{1.15}
\end{equation*}
$$

Further, the method $(E, q)\left(N, p_{n}\right)$ is assumed to be regular and this case is supposed through out the paper.

2 Known Theorem

Dealing with The degree of approximation by the product $(E, q)(c, 1)$-mean of Fourier series, Nigam [2] proved the following theorem:

Theorem 2.1 If a function $f, 2 \pi$-periodic, belonging to class Lip α, then its degree of approximation by $(E, q)(c, 1)$ summability mean on its Fourier series

$$
\sum_{n=0}^{\infty} A_{n}(t) \text { is given by }\left\|E_{n}^{q} c_{n}^{1}-f\right\|_{\infty}=o\left(\frac{1}{(n+1)^{\alpha}}\right), 0<\alpha<1
$$

where $E_{n}^{q} c_{n}^{1}$ represents the (E, q) transform of $(c, 1)$ transform of $s_{n}(f ; x)$.

3 Main Theorem

In this paper, we have proved a theorem on degree of approximation by the product mean $(E, q)\left(N, p_{n}\right)$ of Fourier series (1.8) .we prove

Theorem 3.1 If f is a 2π-Periodic function of class Lip α, then degree of approximation by the product $(E, q)\left(N, p_{n}\right)$ summability means on its Fourier series (1.8) is given by
$\left\|\tau_{n}-f\right\|_{\infty}=O\left(\frac{1}{(n+1)^{\alpha}}\right), 0<\alpha<1 \quad$ where τ_{n} on defined in (1.6) .

4 Required Lemmas

We require the following Lemmas to prove the theorem.

Lemma 4.1

$$
\left|K_{n}(t)\right|=O(n) \quad, 0 \leq t \leq \frac{1}{n+1}
$$

Proof:

For $0 \leq t \leq \frac{1}{n+1}$, we have $\sin n t \leq n \sin t$ then

$$
\begin{aligned}
\left|K_{n}(t)\right| & =\frac{1}{2 \pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{k-v} \frac{\sin \left(v+\frac{1}{2}\right)}{\sin \frac{t}{2}}\right\}\right| \\
& \leq \frac{1}{2 \pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{k-v} \frac{(2 v+1) \sin \frac{t}{2}}{\sin \frac{t}{2}}\right\}\right| \\
& \leq \frac{1}{2 \pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}(2 k+1)\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{k-v}\right\}\right| \\
& \leq \frac{(2 n+1)}{2 \pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\right| \\
& =\mathrm{O}(\mathrm{n}) .
\end{aligned}
$$

This proves the lemma.

Lemma 4.2

$$
\left|K_{n}(t)\right|=O\left(\frac{1}{t}\right), \text { for } \frac{1}{n+1} \leq t \leq \pi
$$

Proof:

For $\frac{1}{n+1} \leq t \leq \pi$, we have by Jordan's lemma, $\sin \left(\frac{t}{2}\right) \geq \frac{t}{\pi}, \sin n t \leq 1$
Then $\left|K_{n}(t)\right|=\frac{1}{2 \pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{k-v} \frac{\sin \left(v+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right\}\right|$

$$
\begin{aligned}
& \leq \frac{1}{2 \pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} \frac{\pi p_{k-v}}{t}\right\}\right| \\
& \left.=\frac{1}{2(1+q)^{n} t} \left\lvert\, \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{k-v}\right\}\right.\right\} . \\
& =\frac{1}{2(1+q)^{n} t}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\right| \\
& =O\left(\frac{1}{t}\right)
\end{aligned}
$$

This proves the lemma.

5 Proof of Theorem 3.1

Using Riemann -Lebesgue theorem, we have for the n-th partial sum $s_{n}(f ; x)$ of the Fourier series (1.8) of $f(x)$,

$$
s_{n}(f ; x)-f(x)=\frac{1}{2 \pi} \int_{0}^{\pi} \phi(t) \frac{\sin \left(n+\frac{1}{2}\right) t}{\sin \left(\frac{t}{2}\right)} d t
$$

following Titechmarch [3],the $\left(N, p_{n}\right)$ transform of $s_{n}(f ; x)$ using (1.2) is given by

$$
t_{n}-f(x)=\frac{1}{2 \pi P_{n}} \int_{0}^{\pi} \phi(t) \sum_{k=0}^{n} p_{n-k} \frac{\sin \left(n+\frac{1}{2}\right) t}{\sin \left(\frac{t}{2}\right)} d t
$$

Directing the $(E, q)\left(N, p_{n}\right)$ transform of $s_{n}(f ; x)$ by τ_{n}, we have

$$
\begin{align*}
& \left\|\tau_{n}-f\right\|=\frac{1}{2 \pi(1+q)^{n}} \int_{0}^{\pi} \phi(t) \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{k-v} \frac{\sin \left(v+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right\} d t \\
& =\int_{0}^{\pi} \phi(t) K_{n}(t) d t \\
& =\left\{\int_{0}^{\frac{1}{n+1}}+\int_{\frac{1}{n+1}}^{\pi}\right\} \phi(t) K_{n}(t) d t \\
& \tag{5.1}\\
& =I_{1}+I_{2}, \text { say }
\end{align*}
$$

Now

$$
\begin{aligned}
&\left|I_{1}\right|=\frac{1}{2 \pi(1+q)^{n}}\left|\int_{0}^{1 / n+1} \phi(t) \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{k-v} \frac{\sin \left(v+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right\} d t\right| \\
& \leq O(n) \int_{0}^{\frac{1}{n+1}}|\phi(t)| d t \quad, \text { using Lemma } 4.1 \\
&=O(n) \int_{0}^{\frac{1}{n+1}}\left|t^{\alpha}\right| d t \\
&=O(n)\left[\frac{t^{\alpha+1}}{\alpha+1}\right]_{0}^{\frac{1}{n+1}} \\
&= O(n)\left[\frac{1}{(\alpha+1)(n+1)^{\alpha+1}}\right]
\end{aligned}
$$

(5.2) $\quad=O\left[\frac{1}{(n+1)^{\alpha+1}}\right]$

Next

$$
\begin{aligned}
&\left|I_{2}\right| \leq \int_{\frac{1}{n+1}}^{\pi}|\phi(t)|\left|K_{n}(t)\right| d t \\
&=\int_{\frac{1}{n+1}}^{\pi}|\phi(t)| O\left(\frac{1}{t}\right) d t, \text { using Lemma } 4.2 \\
&=\int_{\frac{1}{n+1}}^{\pi}\left|t^{\alpha}\right| O\left(\frac{1}{t}\right) d t \\
&=\int_{\frac{1}{n+1}}^{n} t^{\alpha-1} d t \\
&=O\left(\frac{1}{(n+1)^{\alpha}}\right)
\end{aligned}
$$

Then from (5.2) and (5.3), we have

$$
\begin{aligned}
& \left|\tau_{n}-f(x)\right|=O\left(\frac{1}{(n+1)^{\alpha}}\right), \text { for } 0<\alpha<1 \\
& \left\|\tau_{n}-f(x)\right\|_{\infty}=\sup _{-\pi \lll \pi}\left|\tau_{n}-f(x)\right|=O\left(\frac{1}{(n+1)^{\alpha}}\right), 0<\alpha<1
\end{aligned}
$$

This completes the proof of the theorem.

6 Corollaries

The following corollaries can be derived from our main theorem.
Corollary 6.1 If $p_{n}=1, \forall n \in N$, theorem 2.1 follows from theorem 3.1.

Corollary 6.2 If $p_{n}=1, \forall n$ and $q=1$ then the theorem 3.1 reduces to degree of approximation for $(E, 1)(C, 1)$ method of Fourier series.

References

[1] G.H. Hardy, Divergent Series (1st edition), Oxford University Press, (1970).
[2] H.K. Nigam and K. Sharma, The degree of approximation by product means, Ultra Scientist, 22(3) (2010), 889-894.
[3] E.C. Titechmalch, The Theory of Functions, Oxford University Press, (1939).
[4] A. Zggmund, Trigonometric Series (2nd Edition, Vol. I), Cambridge University Press, Cambridge, (1959).

