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Abstract 
     In this paper a theorem on degree of Approximation of a function αLipf ∈    

by product summability  ( )( )npNqE ,,  of Fourier series associated withf . 
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1      Introduction 
 
Let ∑ na  be a given infinite series with the sequence of partial sums   { }ns . Let 

{ }np  be a sequence of positive real numbers such that    
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defines the sequence  { }nt  of the ( )npN,  -mean of the sequence  { }ns  generated 

by the  by sequence of coefficient { }np . If 
 
(1.3)     ,stn → as ∞→n  ,  

 
then the series ∑ na  is said to be ( )npN,  summable  tos  . 
The conditions for regularity of Nörlund summability  ( )npN,   are easily seen to 
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The sequence –to-sequence transformation, [1]   
 

(1.4)    ( ) υ
υ

υ υ
sq

n

q
T n

n

nn
−

=
∑ 









+
=

01

1
. 

 
defines the sequence { }nT   of the( )qE,   mean of the sequence  { }ns  . 

If 
(1.5)      sTn →  as ∞→n     

 
then the series ∑ na  is said to be ( )qE,  summable to s . 

Clearly  ( )qE,   method is regular.  
 
Further, the ( )qE,  transform of the ( )npN,  transform of { }ns   is defined by  
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If  
(1.7)   sn →τ   as ∞→n  

 
then   ∑ na  is said to be ( )( )npNqE ,, -summable to s .   

 
Let )(tf   be a periodic function with period 2π, L-integrable over (-π,π), The 
Fourier series associated withf  at any point  x is defined by  
 
(1.8)  
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Let ( )xfsn ;  be the n-th partial sum of (1.8). 

 
The ∞L -norm of a function  RRf →:  is defined  by  
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and the υL -norm is defined by  

(1.10)       ( )
υπ

υ
υ

1
2

0










= ∫ xff     , 1≥υ  

 
The degree of approximation of a function RRf →:  by a trigonometric 

polynomial )(xPn  of degree n under norm  
∞

.  is defined by [4]. 
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and the degree of approximation  )( fEn  of a function  υLf ∈  is given by  
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This method of approximation is called Trigonometric Fourier approximation. 

A function  αLipf ∈   if  
 

(1.13)   ( ) 10,)()( ≤<=−+ αα
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We use the following notation throughout this paper : 
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Further, the method ( )( )npNqE ,,  is assumed to be regular and this case is 

supposed through out the paper. 
 

2  Known Theorem 
 
Dealing with The degree of approximation by the product ( ) ( )1,, cqE -mean of 
Fourier series, Nigam [2] proved the following theorem: 
 
Theorem 2.1 If a function  π2,f - periodic, belonging to  class αLip , then its 

degree of approximation by ( ) ( )1,, cqE  summability  mean  on its Fourier series 
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where  1

n
q
ncE    represents the  ( )qE,   transform of ( )1,c  transform of ( )xfsn ; . 

 

3  Main Theorem 
 
In this paper, we have proved a theorem on degree of approximation by the 
product mean  ( )( )npNqE ,,   of Fourier series (1.8) .we prove  

 
Theorem 3.1 If  f  is a  −π2  Periodic function of class αLip , then degree of 

approximation by the product ( )( )npNqE ,,  summability  means on its Fourier 

series (1.8) is given by  
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4 Required Lemmas 
 
We require the following Lemmas to prove the theorem. 
 
Lemma 4.1 
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This proves the lemma.  

 
Lemma 4.2 
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Proof: 
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This proves the lemma. 
 

5 Proof of Theorem 3.1 
 
Using Riemann –Lebesgue theorem, we have for the n-th partial sum ( )xfsn ;   of 

the   Fourier series (1.8) of )(xf ,  
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following Titechmarch [3],the ( )npN,  transform  of ( )xfsn ;  using (1.2)  is 

given by  
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Directing the  ( )( )npNqE ,,  transform of ( )xfsn ;  by nτ , we have  
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Then  from (5.2) and (5.3) , we have  
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This completes the proof of the theorem.                                                                                   
  

6 Corollaries 
 
The following corollaries can be derived from our main theorem. 
 
Corollary 6.1 If ,,1 Nnpn ∈∀=  theorem 2.1 follows from theorem 3.1. 
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Corollary 6.2 If npn ∀= ,1  and 1=q   then the theorem 3.1 reduces to degree 

of approximation for  ( ) ( )1,1, CE   method of Fourier series. 
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