

Gen. Math. Notes, Vol. 6, No. 2, October 2011, pp. 24-32 ISSN 2219-7184; Copyright © ICSRS Publication, 2011 www.i-csrs.org Available free online at http://www.geman.in

On Degree of Approximation

by Product Means $(E,q)(N, p_n)$ of Fourier

Series

Mahendra Misra¹, U.K. Misra², B.P. Padhy³ and M.K. Muduli⁴

 ¹Principal, Government Science College Mlkangiri, Orissa
 E-mail: mahendramisra@2007.gmail.com
 ²Department of Mathematics, Berhampur University Berhampur–760007, Orissa, India
 E-mail: umakanta_misra@yahoo.com
 ³Roland Institute of Technology, Golanthara-760008, Odisha, India
 E-mail: iraady@gmail.com
 ⁴Roland Institute of Technology, Golanthara-760008, Odisha, India
 E-mail: iraady@gmail.com

(Received: 7-7-11/ Accepted: 14-10-11)

Abstract

In this paper a theorem on degree of Approximation of a function $f \in Lip \alpha$ by product summability $(E,q)(N, p_n)$ of Fourier series associated with f.

Keywords: Degree of Approximation, $f \in Lip \alpha$ class of function, (E,q)mean, (N, p_n) mean, $(E,q)(N, p_n)$ product mean, Fourier series, Lebesgue integral

1 Introduction

Let $\sum a_n$ be a given infinite series with the sequence of partial sums $\{s_n\}$. Let $\{p_n\}$ be a sequence of positive real numbers such that

(1.1)
$$P_n = \sum_{\nu=0}^n p_\nu \to \infty \quad \text{as} \quad n \to \infty \; , \; (P_{-i} = p_{-i} = 0 \; , i \ge 0)$$

The sequence -to-sequence transformation

(1.2)
$$t_n = \frac{1}{P_n} \sum_{\nu=0}^n p_{n-\nu} s_{\nu}$$

defines the sequence $\{t_n\}$ of the (N, p_n) -mean of the sequence $\{s_n\}$ generated by the by sequence of coefficient $\{p_n\}$. If

$$(1.3) t_n \to s , \text{ as } n \to \infty ,$$

then the series $\sum a_n$ is said to be (N, p_n) summable to s. The conditions for regularity of Nörlund summability (N, p_n) are easily seen to

be (i)
$$\frac{p_n}{P_n} \to 0$$
 as $n \to \infty$

(ii)
$$\sum_{k=0}^{n} p_k = O(P_n)$$
 as $n \to \infty$

The sequence –to-sequence transformation, [1]

(1.4)
$$T_{n} = \frac{1}{(1+q)^{n}} \sum_{\nu=0}^{n} \binom{n}{\nu} q^{n-\nu} s_{\nu}$$

defines the sequence $\{T_n\}$ of the (E,q) mean of the sequence $\{s_n\}$. If

$$(1.5) T_n \to s \text{ as } n \to \infty$$

then the series $\sum a_n$ is said to be (E,q) summable to s. Clearly (E,q) method is regular.

Further, the (E,q) transform of the (N, p_n) transform of $\{s_n\}$ is defined by

$$au_n = \ rac{1}{(1+q)^n} \sum_{k=0}^n {n \choose k} q^{n-k} \, T_k$$

(1.6)
$$= \frac{1}{(1+q)^n} \sum_{k=0}^n \binom{n}{k} q^{n-k} \left\{ \frac{1}{P_k} \sum_{\nu=0}^k p_{k-\nu} s_\nu \right\}$$

If

then $\sum a_n$ is said to be $(E,q)(N, p_n)$ -summable to s.

Let f(t) be a periodic function with period 2π , L-integrable over $(-\pi,\pi)$, The Fourier series associated with f at any point x is defined by

(1.8)

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right) \equiv \sum_{n=0}^{\infty} A_n(x)$$

Let $s_n(f; x)$ be the n-th partial sum of (1.8).

The L_{∞} -norm of a function $f: R \to R$ is defined by

(1.9)
$$||f||_{\infty} = \sup\{|f(x)| : x \in R\}$$

and the L_v -norm is defined by

(1.10)
$$||f||_{v} = \left(\int_{0}^{2\pi} |f(x)|^{v}\right)^{\frac{1}{v}}, v \ge 1$$

The degree of approximation of a function $f: R \to R$ by a trigonometric polynomial $P_n(x)$ of degree n under norm $\|\cdot\|_{\infty}$ is defined by [4].

1

(1.11)
$$||P_n - f||_{\infty} = \sup\{|p_n(x) - f(x)| : x \in R\}$$

and the degree of approximation $E_n(f)$ of a function $f \in L_v$ is given by

(1.12)
$$E_{n}(f) = \min_{P_{n}} ||P_{n} - f||_{v}$$

This method of approximation is called Trigonometric Fourier approximation. A function $f \in Lip \alpha$ if

(1.13)
$$|f(x+t) - f(x)| = O(|t|^{\alpha}), 0 < \alpha \le 1$$

We use the following notation throughout this paper :

(1.14)
$$\phi(t) = f(x+t) + f(x-t) - 2f(x),$$

and

(1.15)
$$K_{n}(t) = \frac{1}{2\pi(1+q)^{n}} \sum_{k=0}^{n} {n \choose k} q^{n-k} \left\{ \frac{1}{P_{k}} \sum_{\nu=0}^{k} p_{k-\nu} \frac{\sin\left(\nu + \frac{1}{2}\right)t}{\sin\frac{t}{2}} \right\}.$$

Further, the method $(E,q)(N, p_n)$ is assumed to be regular and this case is supposed through out the paper.

2 Known Theorem

Dealing with The degree of approximation by the product (E,q)(c,1)-mean of Fourier series, Nigam [2] proved the following theorem:

Theorem 2.1 If a function $f_{,2\pi}$ - periodic, belonging to class $Lip\alpha$, then its degree of approximation by (E,q)(c,1) summability mean on its Fourier series

$$\sum_{n=0}^{\infty} A_n(t) \text{ is given by } \left\| E_n^q c_n^1 - f \right\|_{\infty} = o\left(\frac{1}{(n+1)^{\alpha}}\right), 0 < \alpha < 1,$$

where $E_n^q c_n^1$ represents the (E,q) transform of (c,1) transform of $s_n(f;x)$.

3 Main Theorem

In this paper, we have proved a theorem on degree of approximation by the product mean $(E,q)(N, p_n)$ of Fourier series (1.8) we prove

Theorem 3.1 If f is a 2π – Periodic function of class $Lip\alpha$, then degree of approximation by the product $(E,q)(N, p_n)$ summability means on its Fourier series (1.8) is given by

$$\|\tau_n - f\|_{\infty} = O\left(\frac{1}{(n+1)^{\alpha}}\right), 0 < \alpha < 1$$
 where τ_n on defined in (1.6).

4 Required Lemmas

We require the following Lemmas to prove the theorem.

Lemma 4.1

$$\left|K_{n}(t)\right| = O(n) \quad , 0 \le t \le \frac{1}{n+1}$$

Proof:

For $0 \le t \le \frac{1}{n+1}$, we have sinnt \le nsint then

$$|K_{n}(t)| = \frac{1}{2\pi (1+q)^{n}} \left| \sum_{k=0}^{n} \binom{n}{k} q^{n-k} \left\{ \frac{1}{P_{k}} \sum_{\nu=0}^{k} p_{k-\nu} \frac{\sin\left(\nu + \frac{1}{2}\right)t}{\sin\frac{t}{2}} \right\} \right|$$

$$\leq \frac{1}{2\pi (1+q)^n} \left| \sum_{k=0}^n \binom{n}{k} q^{n-k} \left\{ \frac{1}{P_k} \sum_{\nu=0}^k p_{k-\nu} \frac{(2\nu+1)\sin\frac{t}{2}}{\sin\frac{t}{2}} \right\} \right|$$

$$\leq \frac{1}{2\pi (1+q)^{n}} \left| \sum_{k=0}^{n} \binom{n}{k} q^{n-k} (2k+1) \left\{ \frac{1}{P_{k}} \sum_{\nu=0}^{k} p_{k-\nu} \right\} \right|$$

$$\leq \frac{(2n+1)}{2\pi(1+q)^n} \left| \sum_{k=0}^n \binom{n}{k} q^{n-k} \right|$$

=O(n).

This proves the lemma.

Lemma 4.2

$$|K_n(t)| = O\left(\frac{1}{t}\right), \text{ for } \frac{1}{n+1} \le t \le \pi.$$

Proof:
For
$$\frac{1}{n+1} \le t \le \pi$$
, we have by Jordan's lemma, $\sin\left(\frac{t}{2}\right) \ge \frac{t}{\pi}$, $\sin nt \le 1$
Then $|K_n(t)| = \frac{1}{2\pi(1+q)^n} \left| \sum_{k=0}^n \binom{n}{k} q^{n-k} \left\{ \frac{1}{P_k} \sum_{\nu=0}^k p_{k-\nu} \frac{\sin\left(\nu + \frac{1}{2}\right)t}{\sin\frac{t}{2}} \right\} \right|$
 $\le \frac{1}{2\pi(1+q)^n} \left| \sum_{k=0}^n \binom{n}{k} q^{n-k} \left\{ \frac{1}{P_k} \sum_{\nu=0}^k \frac{\pi}{t} \frac{p_{k-\nu}}{t} \right\} \right|$
 $= \frac{1}{2(1+q)^n t} \left| \sum_{k=0}^n \binom{n}{k} q^{n-k} \left\{ \frac{1}{P_k} \sum_{\nu=0}^k p_{k-\nu} \right\} \right|.$
 $= \frac{1}{2(1+q)^n t} \left| \sum_{k=0}^n \binom{n}{k} q^{n-k} \right|$
 $= O\left(\frac{1}{t}\right).$

This proves the lemma.

5 **Proof of Theorem 3.1**

Using Riemann – Lebesgue theorem, we have for the n-th partial sum $s_n(f;x)$ of the Fourier series (1.8) of f(x),

$$s_n(f;x) - f(x) = \frac{1}{2\pi} \int_0^{\pi} \phi(t) \frac{\sin\left(n + \frac{1}{2}\right)t}{\sin\left(\frac{t}{2}\right)} dt$$

following Titechmarch [3], the (N, p_n) transform of $s_n(f; x)$ using (1.2) is given by

$$t_n - f(x) = \frac{1}{2\pi P_n} \int_0^{\pi} \phi(t) \sum_{k=0}^n p_{n-k} \frac{\sin\left(n + \frac{1}{2}\right)t}{\sin\left(\frac{t}{2}\right)} dt,$$

Directing the $(E,q)(N,p_n)$ transform of $s_n(f;x)$ by τ_n , we have

$$\|\tau_{n} - f\| = \frac{1}{2\pi(1+q)^{n}} \int_{0}^{\pi} \phi(t) \sum_{k=0}^{n} {n \choose k} q^{n-k} \left\{ \frac{1}{P_{k}} \sum_{\nu=0}^{k} p_{k-\nu} \frac{\sin\left(\nu + \frac{1}{2}\right)t}{\sin\frac{t}{2}} \right\} dt$$
$$= \int_{0}^{\pi} \phi(t) \ K_{n}(t) dt$$
$$= \left\{ \int_{0}^{\frac{1}{n+1}} + \int_{\frac{1}{n+1}}^{\pi} \right\} \phi(t) \ K_{n}(t) \ dt$$
(5.1)
$$= I_{1} + I_{2}, say$$

Now

$$|I_{1}| = \frac{1}{2\pi (1+q)^{n}} \left| \int_{0}^{1/n+1} \phi(t) \sum_{k=0}^{n} {n \choose k} q^{n-k} \left\{ \frac{1}{P_{k}} \sum_{\nu=0}^{k} p_{k-\nu} \frac{\sin\left(\nu + \frac{1}{2}\right)t}{\sin\frac{t}{2}} \right\} dt$$

$$\leq O(n) \int_{0}^{\frac{1}{n+1}} |\phi(t)| dt \quad \text{, using Lemma 4.1}$$

$$= O(n) \int_{0}^{\frac{1}{n+1}} \left| t^{\alpha} \right| dt$$
$$= O(n) \left[\frac{t^{\alpha+1}}{1 + 1} \right]^{\frac{1}{n+1}}$$

$$O(n)\left[\frac{t^{\alpha+1}}{\alpha+1}\right]_{0}^{\frac{1}{n+1}}$$

$$= O(n) \left[\frac{1}{(\alpha+1)(n+1)^{\alpha+1}} \right].$$

(5.2)
$$= O\left[\frac{1}{\left(n+1\right)^{\alpha+1}}\right]$$

Next

$$|I_{2}| \leq \int_{\frac{1}{n+1}}^{\pi} |\phi(t)| |K_{n}(t)| dt$$

$$= \int_{\frac{1}{n+1}}^{\pi} |\phi(t)| O\left(\frac{1}{t}\right) dt \quad \text{, using Lemma 4.2}$$

$$= \int_{\frac{1}{n+1}}^{\pi} |t^{\alpha}| O\left(\frac{1}{t}\right) dt$$

$$= \int_{\frac{1}{n+1}}^{\pi} t^{\alpha-1} dt$$

$$= O\left(\frac{1}{(n+1)^{\alpha}}\right)$$
(5.3)

Then from (5.2) and (5.3), we have

$$\left| \tau_{n} - f(x) \right| = O\left(\frac{1}{(n+1)^{\alpha}}\right) , \text{ for } 0 < \alpha < 1$$
$$\left\| \tau_{n} - f(x) \right\|_{\infty} = \sup_{-\pi < x < \pi} \left| \tau_{n} - f(x) \right| = O\left(\frac{1}{(n+1)^{\alpha}}\right) , 0 < \alpha < 1$$

This completes the proof of the theorem.

6 Corollaries

The following corollaries can be derived from our main theorem.

Corollary 6.1 If $p_n = 1$, $\forall n \in N$, theorem 2.1 follows from theorem 3.1.

•

Corollary 6.2 If $p_n = 1$, $\forall n$ and q = 1 then the theorem 3.1 reduces to degree of approximation for (E,1) (C,1) method of Fourier series.

References

- [1] G.H. Hardy, *Divergent Series (1st edition)*, Oxford University Press, (1970).
- [2] H.K. Nigam and K. Sharma, The degree of approximation by product means, *Ultra Scientist*, 22(3) (2010), 889-894.
- [3] E.C. Titechmalch, *The Theory of Functions*, Oxford University Press, (1939).
- [4] A. Zggmund, *Trigonometric Series (2nd Edition, Vol. I)*, Cambridge University Press, Cambridge, (1959).