

Gen. Math. Notes, Vol. 28, No. 1, May 2015, pp. 50-58 ISSN 2219-7184; Copyright © ICSRS Publication, 2015 www.i-csrs.org Available free online at http://www.geman.in

Lacunary Weak I-Statistical Convergence

Hafize Gümüş

Faculty of Eregli Education, Necmettin Erbakan University Ereğli Konya- 42310, Turkey E-mail: hgumus@konya.edu.tr

(Received: 14-3-15 / Accepted: 26-4-15)

Abstract

In this study, we provide a new approach to I – statistical convergence. We introduce a new concept with I – statistical convergence and weak convergence together and we call it weak I – statistical convergence or WS(I) – convergence. Then we introduce this concept for lacunary sequences and we obtain lacunary weak I- statistical convergence i.e. WS_{θ}(I) – convergence is any other definition in our study. After giving this description, we investigate their relationship and we have some results.

Keywords: *I-statistical convergence, weak statistical convergence, lacunary sequence.*

1 Introduction

In this area, statistical convergence is an important concept and Zygmund [15] gave it in the first edition of his monograph published in Warsaw in 1935. It was formally introduced by Fast and Steinhaus [5, 14] and later was reintroduced by Schoenberg. [13] This concept has a wide application area for example number theory [4], measure theory [10], trigonometric series [15], summability theory [6],

etc. Fridy gave important properties about statistical convergence in his study [7], Fridy and Orhan studied statistical convergence with lacunary sequences. [8].

Let K be a subset of the set of all natural numbers N and $K_n = |\{k \le n : k \in K\}|$ where the vertical bars indicate the number of elements in the enclosed set. The natural density of K is defined by $\delta(K) = \lim_{n \to \infty} \frac{1}{n} |\{k \le n : k \in K\}|$. If a property P(k) holds for all $k \in A$ with $\delta(A) = 1$ we say that P holds for almost all k that is a.a.k.

Definition 1.1: [14] A number sequence $x = (x_k)$ is statistically convergent to *x* provided that for every $\varepsilon > 0$,

$$\lim_{n\to\infty}\frac{1}{n}\left|\left\{k\leq n: |x_k-x|\geq\varepsilon\right\}\right|=0.$$

In this case we write $st - \lim x_k = x$.

Statistical convergence was extended to I – convergence in a metric space in Kostyrko, Salát and Wilezyński's study. [9]

Definition 1.2: A family of sets $I \subseteq 2^{\mathbb{N}}$ is called an ideal if and only if

(i) $\phi \in I$ (ii) For each $A, B \in I$ we have $A \cup B \in I$ (iii) For each $A \in I$ and each $B \subseteq A$ we have $B \in I$

An ideal is called non-trivial if $N \notin I$ and a non-trivial ideal is called admissible if $\{n\} \in I$ for each $n \in N$.

Definition 1.3: A family of sets $F \subseteq 2^{\mathbb{N}}$ is called a filter in \mathbb{N} if and only if

(i) $\phi \notin F$ (ii) For each $A, B \in F$ we have $A \cap B \in F$ (iii) For each $A \in F$ and each $B \supseteq A$ we have $B \in F$

Proposition 1.1 *I is a non-trivial ideal in* N *if and only if*

$$F = F(I) = \{M = N \setminus A : A \in I\}$$

is a filter in N.

Throughout the paper, *I* will be an admissible ideal.

Definition 1.4: A real sequence $x = (x_k)$ is said to be I – convergent to $L \in \Re$ if and only if for each $\varepsilon > 0$ the set

$$A_{\varepsilon} = \left\{ k \in \mathbf{N} : \left| x_k - L \right| \ge \varepsilon \right\}$$

belongs to I. The number L is called the I – limit of the sequence x.

Example 1.1: Take for I class the I_f of all finite subsets of N. Then I_f is an admissible ideal and I_f – convergence coincides with the usual convergence.

In 2011, Das, Savas and Ghosal [3] have introduced the concept of I – statistical convergence and I – lacunary statistical convergence.

Definition 1.5: [3] A sequence $x = (x_k)$ is said to be I – statistically convergent to L for each $\varepsilon > 0$ and $\delta > 0$,

$$\left\{n \in \mathbf{N} : \frac{1}{n} | \left\{k \le n : |x_k - L| \ge \varepsilon \right\} | \ge \delta \right\} \in I.$$

Example 1.2: Let us take the sequence (y_n) where $y_n = \begin{cases} 1, & n = 1 \text{ to } 10 \\ n - 10, & n \ge 10 \end{cases}$ and the ideal I_d which is the ideal of density zero sets of N. Let $A = \{1^2, 2^2, 3^2, ...\}$. Define $x = (x_k)$ in a normed linear space X by,

$$x_{k} = \begin{cases} ku, \text{ for } n - \left[\sqrt{y_{n}}\right] + 1 \le k \le n, n \notin A\\ ku, \text{ for } n - y_{n} + 1 \le k \le n, n \in A\\ \theta, \text{ otherwise} \end{cases}$$

where $u \in X$ is a fixed element with ||u|| = 1 and θ is the null element of X. Then the sequence $x = (x_k)$ is I – statistically convergent but it is not statistically convergent.

Now, we will give the definition of I – lacunary statistically convergent sequences from the paper of Das, Savas and Ghosal. But first, we need to remind lacunary sequence.

Definition 1.6: A lacunary sequence is an increasing integer sequence $\theta = (k_r)$ such that $k_0 = 0$ and $h_r = k_r - k_{r-1} \rightarrow \infty$ as $r \rightarrow \infty$. The intervals determined by θ will be denoted by $J_r = (k_{r-1}, k_r]$ and the ratio $\frac{k_r}{k_{r-1}}$ will be

denoted by q_r .

Definition 1.7: [3] Let θ be a lacunary sequence. A sequence $x = (x_k)$ is said to be I – lacunary statistically convergent to L for each $\varepsilon > 0$ and $\delta > 0$,

$$\left\{ r \in \mathbf{N} : \frac{1}{h_r} | \left\{ k \in J_r : |x_k - L| \ge \varepsilon \right\} | \ge \delta \right\} \in I.$$

Let's continue to remind important concepts that we need for our study.

Definition 1.8: Let B be a Banach space, $x = (x_k)$ be a B-valued sequence and $x \in B$. The sequence $x = (x_k)$ is weakly convergent to x provided that for any f in the continuous dual B^* of B,

$$\lim_{k \to 0} f(x_k - x) = 0$$

and in this case we write $w - \lim x_k = x$.

Definition 1.9: Let B be a Banach space, $x = (x_k)$ be a B-valued sequence and $x \in B$. The sequence $x = (x_k)$ is weakly C_1 -convergent to x provided that for any f in the continuous dual B^* of B,

$$\lim_{n} \frac{1}{n} \sum_{k=1}^{n} f(x_{k} - x) = 0$$

In 2000, Connor et al. [2], have introduced a new concept of weak statistical convergence and have characterized Banach spaces with seperable duals via statistical convergence. Pehlivan and Karaev [12] have also used the idea of weak statistical convergence in strengthening a result of Gokhberg and Klein on compact operators. Bhardwaj and Bala have investigated some relations between weak convergent sequences and weakly statistically convergent sequences [1].

Following Connor et al. we define weak statistical convergence as follows:

Definition 1.10: [2] Let B be a Banach space, $x = (x_k)$ be a B-valued sequence and $x \in B$. The sequence $x = (x_k)$ is weakly statistically convergent to x provided that for any f in the continuous dual B^* of B the sequence $(f(x_k - x))$ is statistically convergent to x i.e.

$$\lim_{n} \frac{1}{n} \left| \left\{ k \le n : \left| f(x_k - x) \right| \ge \varepsilon \right\} \right| = 0$$

and in this case we write $W - st - \lim x_k = x$.

It is easy to see that the weak statistical limit of a weakly statistically convergent sequence is unique.

In 2011, Nuray [11] studied weak statistical convergence by using lacunary sequences.

Definition 1.11: Let B be a Banach space, $x = (x_k)$ be a B-valued sequence, θ be a lacunary sequence and $x \in B$. $x = (x_k)$ is weakly lacunary statistically convergent to x or WS_{θ} – convergent to x provided that for any f in the continuous dual B^* of B,

$$\lim_{r} \frac{1}{h_{r}} \left| \left\{ k \in J_{r} : \left| f(x_{k} - x) \right| \ge \varepsilon \right\} \right| = 0.$$

2 Lacunary Weak *I*- Statistical Convergence

Definition 2.1: Let B be a Banach space, $x = (x_k)$ be a B-valued sequence and $x \in B$. The sequence $x = (x_k)$ is weakly I – convergent to x provided that for any f in the continuous dual B^* of B,

$$\{k \in \mathbb{N} : |f(x_k - x)| \ge \varepsilon\} \in I.$$

The set of all weakly I – convergent sequences is denoted by WI and if we take $I = I_f$ the ideal of all finite subsets of N, we have the usual weak convergence.

Example 2.1: I_d is an admissible ideal and WI_d – convergence coincides with the weak statistical convergence.

Example 2.2: Denote by I_{θ} the class of all $K \subset \mathbb{N}$ with

$$\lim_{r} \frac{1}{h_r} |\{k \in J_r : k \in K\}| = 0.$$

Then I_{θ} is an admissible ideal and WI_{θ} – convergence coincides with the lacunary weak statistical convergence.

We now introduce our main definitions.

Definition 2.2: Let *B* be a Banach space, $x = (x_k)$ be a *B*-valued sequence and $x \in B$. The sequence $x = (x_k)$ is weakly I – statistically convergent to x provided that for any f in the continuous dual B^* of *B* and every $\varepsilon > 0$ and $\delta > 0$,

$$\left\{n \in \mathbb{N} : \frac{1}{n} | \left\{k \le n : |f(x_k - x)| \ge \varepsilon\right\} \ge \delta \right\} \in I.$$

The set of all weakly I – statistically convergent sequences is denoted by WS(I).

Definition 2.3: Let *B* be a Banach space, $x = (x_k)$ be a *B*-valued sequence, $x \in B$ and $\theta = (k_r)$ be a lacunary sequence. The sequence $x = (x_k)$ is lacunary weak *I* – statistically convergent to x provided that for any f in the continuous dual B^* of *B* and every $\varepsilon > 0$ and $\delta > 0$,

$$\left\{ r \in \mathbf{N} : \frac{1}{h_r} \left| \left\{ k \in J_r : \left| f(x_k - x) \right| \ge \varepsilon \right\} \right| \ge \delta \right\} \in I.$$

The set of all lacunary weak I – statistically convergent sequences is denoted by $WS_{\theta}(I)$.

Definition 2.4: Let B be a Banach space, $x = (x_k)$ be a B-valued sequence, $x \in B$ and $\theta = (k_r)$ be a lacunary sequence. The sequence $x = (x_k)$ is $WN_{\theta}(I)$ – convergent to x provided that for any f in the continuous dual B^* of B and every $\varepsilon > 0$,

$$\left\{ r \in \mathbf{N} : \frac{1}{h_r} \sum_{k \in J_r} \left| f(x_k - x) \right| \ge \varepsilon \right\} \in I.$$

Theorem 2.1: Let $\theta = (k_r)$ be a lacunary sequence. Then (x_k) is $WN_{\theta}(I) - convergent$ to x if and only if (x_k) is $WS_{\theta}(I) - convergent$ to x.

Proof: Assume that (x_k) is $WN_{\theta}(I)$ – convergent to x and $\varepsilon > 0$. We can write,

$$\frac{1}{h_r} \sum_{k \in J_r} |f(x_k - x)| \ge \frac{1}{h_r} \sum_{k \in J_r \text{ and } |f(x_k - x)|} |f(x_k - x)|$$
$$\ge \frac{\varepsilon}{h_r} |\{k \in J_r : |f(x_k - x)| \ge \varepsilon\}$$

Then,

$$\frac{1}{\varepsilon h_r} \sum_{k \in J_r} \left| f(x_k - x) \right| \ge \frac{1}{h_r} \left| \left\{ k \in J_r : \left| f(x_k - x) \right| \ge \varepsilon \right\} \right|$$

and for any $\delta > 0$,

$$\left\{r \in \mathbf{N} : \frac{1}{h_r} \left| \left\{k \in J_r : \left| f(x_k - x) \right| \ge \varepsilon \right\} \right| \ge \delta \right\} \subseteq \left\{r \in \mathbf{N} : \frac{1}{h_r} \sum_{k \in J_r} \left| f(x_k - x) \right| \ge \varepsilon \delta \right\}.$$

We know that the right side is in ideal. So, the left side is also in ideal.

Now suppose that (x_k) is $WS_{\theta}(I)$ – convergent to x. Since $f \in B^*$, f is bounded. Then there exists a $K \ge 0$ for all $k \in \mathbb{N}$ such that $|f(x_k - x)| \le K$. Given $\varepsilon > 0$, we get,

$$\frac{1}{h_r} \sum_{k \in J_r} \left| f(x_k - x) \right| = \frac{1}{h_r} \sum_{k \in J_r \text{ and } |f(x_k - x)| \ge \frac{\varepsilon}{2}} \left| f(x_k - x) \right| + \frac{1}{h_r} \sum_{k \in J_r \text{ and } |f(x_k - x)| < \frac{\varepsilon}{2}} \left| f(x_k - x) \right|$$
$$\leq K \frac{1}{h_r} \left| \left\{ k \in J_r : \left| f(x_k - x) \right| \ge \frac{\varepsilon}{2} \right\} \right| + \frac{\varepsilon}{2}.$$

Consequently we have,

$$\left\{ r \in \mathbf{N} : \frac{1}{h_r} \sum_{k \in J_r} \left| f(x_k - x) \right| \ge \varepsilon \right\} \subseteq \left\{ r \in \mathbf{N} : \frac{1}{h_r} \left| \left\{ k \in J_r : \left| f(x_k - x) \right| \ge \frac{\varepsilon}{2} \right\} \right| \ge \frac{\varepsilon}{2K} \right\} \in I.$$

Theorem 2.2: Let $\theta = (k_r)$ be a lacunary sequence with $\liminf q_r > 1$. Then WS(I) – convergence implies $WS_{\theta}(I)$ – convergence.

Proof: Assume that $\liminf q_r > 1$. Then there exists an $\alpha > 0$ such that $q_r \ge 1 + \alpha$ for all sufficiently large *r*. This implies $\frac{h_r}{k_r} \ge \frac{\alpha}{1 + \alpha}$. Since (x_k) is WS(I) – convergent to x, for every $\varepsilon > 0$ and sufficiently large *r* we have,

$$\frac{1}{k_r} \left| \left\{ k \le k_r : \left| f(x_k - x) \right| \ge \varepsilon \right\} \right| \ge \frac{1}{k_r} \left| \left\{ k \in J_r : \left| f(x_k - x) \right| \ge \varepsilon \right\} \right|$$
$$\ge \frac{\alpha}{1 + \alpha} \frac{1}{h_r} \left| \left\{ k \in J_r : \left| f(x_k - x) \right| \ge \varepsilon \right\} \right|$$

Then for any $\delta > 0$ we get

$$\left\{r \in \mathbb{N} : \frac{1}{h_r} \left| \left\{k \in J_r : \left| f(x_k - x) \right| \ge \varepsilon \right\} \right| \ge \delta \right\} \subseteq \left\{r \in \mathbb{N} : \frac{1}{k_r} \left| \left\{k \le k_r : \left| f(x_k - x) \right| \ge \varepsilon \right\} \right| \ge \frac{\delta \alpha}{1 + \alpha} \right\} \in I.$$

This proves the theorem.

Theorem 2.3: Let $\theta = (k_r)$ be a lacunary sequence with $\limsup q_r < \infty$. Then $WS_{\theta}(I)$ – convergence implies WS(I) – convergence.

Proof: If $\limsup q_r < \infty$ then there is a K > 0 such that $q_r < K$ for all r. Suppose that (x_k) is $WS_{\theta}(I)$ - convergent to x and $\varepsilon, \delta, \eta > 0$. Define the sets,

$$M = \left\{ r \in \mathbf{N} : \frac{1}{h_r} | \left\{ k \in J_r : |f(x_k - x)| \ge \varepsilon \right\} | < \delta \right\}$$
$$R = \left\{ n \in \mathbf{N} : \frac{1}{n} | \left\{ k \le n : |f(x_k - x)| \ge \varepsilon \right\} | < \eta \right\}.$$

Let F(I) be the filter associated with the ideal *I*. It is obvious that $M \in F(I)$. If we can show that $R \in F(I)$ then we will have the proof. For all $j \in M$ let,

$$A_{j} = \frac{1}{h_{j}} \left| \left\{ k \in J_{j} : \left| f(x_{k} - x) \right| \ge \varepsilon \right\} \right| < \delta.$$

Choose $n \in \mathbb{N}$ such that $k_{r-1} < n < k_r$ for some $r \in M$. Now,

$$\begin{split} \frac{1}{n} \Big| \Big\{ k \le n : \big| f(x_k - x) \big| \ge \mathcal{E} \Big\} &\le \frac{1}{k_{r-1}} \Big| \Big\{ k \le k_r : \big| f(x_k - x) \big| \ge \mathcal{E} \Big\} \\ &= \frac{1}{k_{r-1}} \Big\{ k \in J_1 : \big| f(x_k - x) \big| \ge \mathcal{E} \Big\} + \ldots + \frac{1}{k_{r-1}} \Big\{ k \in J_r : \big| f(x_k - x) \big| \ge \mathcal{E} \Big\} \\ &= \frac{k_1}{k_{r-1}} \frac{1}{h_1} \Big\{ k \in J_1 : \big| f(x_k - x) \big| \ge \mathcal{E} \Big\} + \frac{k_2 - k_1}{k_{r-1}} \frac{1}{h_2} \Big\{ k \in J_2 : \big| f(x_k - x) \big| \ge \mathcal{E} \Big\} + \ldots \\ &+ \frac{k_r - k_{r-1}}{k_{r-1}} \frac{1}{h_r} \Big\{ k \in J_r : \big| f(x_k - x) \big| \ge \mathcal{E} \Big\} \\ &= \frac{k_1}{k_{r-1}} A_1 + \frac{k_2 - k_1}{k_{r-1}} A_2 + \ldots + \frac{k_r - k_{r-1}}{k_{r-1}} A_r \\ &\le \sup_{j \in M} A_j \frac{k_r}{k_{r-1}} \\ &< K. \delta \end{split}$$

Choosing $\eta = \frac{\delta}{K}$ and in view of the fact that $\bigcup \{n : k_{r-1} < n < k_r, r \in M\} \subset R$ then we have $R \in F(I)$.

References

- [1] V.K. Bhardwaj and I. Bala, On weak statistical convergence, *International Journal of Mathematics and Math. Sci.*, Article ID 38530(2007), 9 pages.
- [2] J. Connor, M. Ganichev and V. Kadets, A characterization of Banach spaces with separable duals via weak statistical convergence, *J. Math. Anal. Appl.*, 244(2000), 251-261.
- [3] P. Das, E. Savas and S.K. Ghosal, On generalizations of certain summability methods using ideals, *Applied Math. Letters*, 24(2011), 1509-1514.

- [4] P. Erdös and G. Tenenbaum, Sur les densites de certaines suites d'entiers, *Proceedings of the London Math. Soc.*, 59(3) (1989), 438-438.
- [5] H. Fast, Sur la convergence statistique, *Coll. Math.*, 2(1951), 241-244.
- [6] A.R. Freedman and I.J. Sember, Densities and summability, *Pacific Journal of Math.*, 95(2) (1981), 293-305.
- [7] J.A. Fridy, On statistical convergence, *Analysis*, 5(1985), 301-313.
- [8] J.A. Fridy and C. Orhan, Lacunary statistical convergence, *Pac. J. Math*, 160(1993), 43-51.
- [9] P. Kostyrko, T. Salát and W. Wilezyński, I-convergence, *Real Analysis Exchange*, 26(2) (2000/2001), 669-686.
- [10] H.I. Miller, A measure theoretical subsequence characterization of statistical convergence, *Trans. of the Amer. Math. Soc.*, 347(5) (1995), 1811-1819.
- [11] F. Nuray, Lacunary weak statistical convergence, *Math. Bohemica*, 136(3) (2011), 259-268.
- [12] S. Pehlivan and T. Karaev, Some results related with statistical convergence and Berezin symbols, *Jour. of Math. Analysis and Appl.*, 299(2) (2004), 333-340.
- [13] I.J. Schoenberg, The integrability of certain functions and related summability methods, *The Amer. Math. Monthly*, 66(5) (1959), 361-375.
- [14] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, *Collog. Math.*, 2(1951), 73-74.
- [15] A. Zygmund, *Trigonometric Series*, Cambridge University Press, Cambridge, UK, (1979).