

Gen. Math. Notes, Vol. 27, No. 2, April 2015, pp.37-46 ISSN 2219-7184; Copyright ©ICSRS Publication, 2015 www.i-csrs.org Available free online at http://www.geman.in

Some Generalized Difference

Sequence Spaces of Non-Absolute Type

Sinan Ercan¹ and Çiğdem A. Bektaş²

¹Department of Mathematics, Firat University, Elaziğ, Turkey E-mail: sinanercan45@gmail.com ²Department of Mathematics, Firat University, Elaziğ, Turkey E-mail: cigdemas78@hotmail.com

(Received: 4-3-15 / Accepted: 12-4-15)

Abstract

In this paper, we introduce the spaces $\ell_{\infty}(\Delta_{\lambda}^{m})$, $c(\Delta_{\lambda}^{m})$ and $c_{0}(\Delta_{\lambda}^{m})$, which are BK-spaces of non-absolute type and we prove that these spaces are linearly isomorphic to the spaces ℓ_{∞} , c and c_{0} , respectively. Moreover, we give some inclusion relations and compute the $\alpha -$, $\beta -$ and $\gamma -$ duals of these spaces. We also determine the Schauder basis of the $c(\Delta_{\lambda}^{m})$ and $c_{0}(\Delta_{\lambda}^{m})$.

Keywords: Sequence spaces of non-absolute type, BK-spaces, Difference Sequence Spaces.

1 Introduction

A sequence space is defined to be a linear space of real or complex sequences. Let w denote the spaces of all complex sequences. If $x \in w$, then we simply write $x = (x_k)$ instead of $x = (x_k)_{k=0}^{\infty}$.

Let X be a sequence space. If X is a Banach space and

$$\tau_k : X \to C, \ \tau_k (x) = x_k \ (k = 1, 2, ...)$$

is a continuous for all k, X is called a BK-space.

We shall write ℓ_{∞} , c and c_0 for the sequence spaces of all bounded, convergent and null sequences, respectively, which are BK-spaces with the norm given by $||x||_{\infty} = \sup_{k} |x_k|$ for all $k \in \mathbf{N}$.

For a sequence space X, the matrix domain X_A of an infinite matrix A defined by

$$X_A = \{x = (x_k) \in w : Ax \in X\}$$

$$\tag{1}$$

which is a sequence space.

We shall denote the collection of all finite subsets of \mathbf{N} by \mathcal{F} .

M. Mursaleen and A. K. Noman [9] introduced the sequence spaces ℓ_{∞}^{λ} , c^{λ} and c_0^{λ} as the sets of all λ – bounded, λ – convergent and λ – null sequences, respectively, that is

$$\ell_{\infty}^{\lambda} = \{x \in w : \sup_{n} |\Lambda_{n}(x)| < \infty\}$$

$$c^{\lambda} = \{x \in w : \lim_{n \to \infty} \Lambda_{n}(x) \text{ exists}\}$$

$$c_{0}^{\lambda} = \{x \in w : \lim_{n \to \infty} \Lambda_{n}(x) = 0\}$$

where $\Lambda_n(x) = \frac{1}{\lambda_n} \sum_{k=0}^n (\lambda_k - \lambda_{k-1}) x_k, \ k \in \mathbf{N}.$

M. Mursaleen and A. K. Noman [10] also introduced the sequence spaces $c^{\lambda}(\Delta)$ and $c_{0}^{\lambda}(\Delta)$, respectively, that is

$$c^{\lambda}(\Delta) = \{ x \in w : \lim_{n \to \infty} \bar{\Lambda}_n(x) \text{ exists} \}$$
$$c_0^{\lambda}(\Delta) = \{ x \in w : \lim_{n \to \infty} \bar{\Lambda}_n(x) = 0 \}.$$

where $\bar{\Lambda}_n(x) = \frac{1}{\lambda_n} \sum_{k=0}^n (\lambda_k - \lambda_{k-1}) (x_k - x_{k-1}), \ k \in \mathbf{N}.$

H. Ganie and N. A. Sheikh [2] introduced the spaces $c_0(\Delta_u^{\lambda})$ and $c(\Delta_u^{\lambda})$ as follows:

$$c_0(\Delta_u^{\lambda}) = \{x \in w : \lim_{n \to \infty} \widehat{\Lambda}_n(x) = 0\}$$

$$c(\Delta_u^{\lambda}) = \{x \in w : \lim_{n \to \infty} \widehat{\Lambda}_n(x) \text{ exists}\}$$

where $\widehat{\Lambda}_n(x) = \frac{1}{\lambda_n} \sum_{k=0}^n (\lambda_k - \lambda_{k-1}) u_k(x_k - x_{k-1}), k \in \mathbf{N}.$

2 The Sequence Spaces $\ell_{\infty}(\Delta_{\lambda}^m)$, $c(\Delta_{\lambda}^m)$ and $c_0(\Delta_{\lambda}^m)$ of Non-Absolute Type

We define the sequence spaces $\ell_{\infty}(\Delta_{\lambda}^m)$, $c(\Delta_{\lambda}^m)$ and $c_0(\Delta_{\lambda}^m)$ as follows;

$$\ell_{\infty}(\Delta_{\lambda}^{m}) = \left\{ x \in w : \sup_{n} \left| \tilde{\Lambda}_{n}(x) \right| < \infty \right\}$$
$$c(\Delta_{\lambda}^{m}) = \left\{ x \in w : \lim_{n \to \infty} \tilde{\Lambda}_{n}(x) \text{ exists} \right\}$$
$$c_{0}(\Delta_{\lambda}^{m}) = \left\{ x \in w : \lim_{n \to \infty} \tilde{\Lambda}_{n}(x) = 0 \right\}$$

Some Generalized Difference...

where $\tilde{\Lambda}_n(x) = \frac{1}{\lambda_n} \sum_{k=0}^n (\lambda_k - \lambda_{k-1}) \Delta^m x_k$, $k, m \in \mathbf{N}$. Δ denotes the difference operator. i.e., $\Delta^0 x_k = x_k$, $\Delta x_k = x_k - x_{k-1}$ and $\Delta^m x_k = \sum_{v=0}^m (-1)^v \begin{pmatrix} m \\ v \end{pmatrix} x_{k-v}$. $\lambda = (\lambda_k)_{k=0}^{\infty}$ is a strictly increasing sequence of positive reals tending to infinity, that is $0 < \lambda_0 < \lambda_1 < \dots$ and $\lambda_k \to \infty$ as $k \to \infty$.

Here and in sequel, we use the convention that any term with a negative subscript is equal to naught. e.g. $\lambda_{-1} = 0$ and $x_{-1} = 0$.

If we take m = 1 sequence spaces which we defined reduces to $\ell_{\infty}^{\lambda}(\Delta)$, $c^{\lambda}(\Delta)$ and $c_{0}^{\lambda}(\Delta)$.

We define the matrix $\tilde{\Lambda} = (\tilde{\lambda}_{nk})$ for all $n, k \in \mathbf{N}$ by

$$\tilde{\lambda}_{nk} = \begin{cases} \sum_{i=k}^{n} \binom{m}{i-k} (-1)^{i-k} \frac{\lambda_i - \lambda_{i-1}}{\lambda_n}, & k \le n \\ 0, & n < k \end{cases}$$

 $\tilde{\Lambda} = (\tilde{\lambda}_{nk})$ equality can be easily seen from

$$\tilde{\Lambda}_n(x) = \frac{1}{\lambda_n} \sum_{k=0}^n \left(\lambda_k - \lambda_{k-1}\right) \Delta^m x_k \tag{2}$$

for all $m, n \in \mathbf{N}$ and every $x = (x_k) \in w$. Then it leads us together with (1) to the fact that

$$\ell_{\infty} (\Delta_{\lambda}^{m}) = (\ell_{\infty})_{\tilde{\Lambda}}, \ c_{0} (\Delta_{\lambda}^{m}) = (c_{0})_{\tilde{\Lambda}}, \ c (\Delta_{\lambda}^{m}) = (c)_{\tilde{\Lambda}}$$

The matrix $\tilde{\Lambda} = (\tilde{\lambda}_{nk})$ is a triangle, i.e., $\tilde{\lambda}_{nn} \neq 0$ and $\tilde{\lambda}_{nk} = 0$ (k > n) for all $n, k \in \mathbb{N}$. Further, for any sequence $x = (x_k)$ we define the sequence $y(\lambda) = \{y_k(\lambda)\}$ as the $\tilde{\Lambda}$ -transform of x, i.e., $y(\lambda) = \tilde{\Lambda}(x)$ and so we have that

$$y(\lambda) = \sum_{j=0}^{k} \sum_{i=j}^{k} (-1)^{i-j} \binom{m}{i-j} \left(\frac{\lambda_i - \lambda_{i-1}}{\lambda_k}\right) x_j$$
(3)

for $k \in \mathbf{N}$. Here and in what follows, the summation running from 0 to k-1 is equal to zero when k = 0.

Theorem 2.1 $\ell_{\infty}(\Delta_{\lambda}^{m}), c_{0}(\Delta_{\lambda}^{m})$ and $c(\Delta_{\lambda}^{m})$ are BK-spaces with the norm

$$\|x\|_{(\ell_{\infty})_{\tilde{\Lambda}}} = \left\|\tilde{\Lambda}_n(x)\right\|_{\infty} = \sup_n \left|\tilde{\Lambda}_n(x)\right|.$$
(4)

Proof: We know that c and c_0 are BK-spaces with their natural norms from [5]. (3) holds and $\tilde{\Lambda} = (\tilde{\lambda}_{nk})$ is a triangle matrix and from Theorem 4.3.12 of Wilansky [1], we derive that $\ell_{\infty}(\Delta_{\lambda}^{m})$, $c_0(\Delta_{\lambda}^{m})$ and $c(\Delta_{\lambda}^{m})$ are BK-spaces. This completes the proof.

Remark 2.2 The absolute property does not hold on the $\ell_{\infty}(\Delta_{\lambda}^{m})$, $c_{0}(\Delta_{\lambda}^{m})$ and $c(\Delta_{\lambda}^{m})$ spaces. For instance, if we take $|x| = (|x_{k}|)$ we hold $||x||_{(\ell_{\infty})_{\bar{\Lambda}}} \neq ||x|||_{(\ell_{\infty})_{\bar{\Lambda}}}$. Thus, the space $\ell_{\infty}(\Delta_{\lambda}^{m})$, $c_{0}(\Delta_{\lambda}^{m})$ and $c(\Delta_{\lambda}^{m})$ are BK-space of non-absolute type.

Theorem 2.3 The sequence spaces $\ell_{\infty}(\Delta_{\lambda}^{m})$, $c_{0}(\Delta_{\lambda}^{m})$ and $c(\Delta_{\lambda}^{m})$ of nonabsolute type are linearly isomorphic to the spaces ℓ_{∞} , c_{0} and c, respectively, that is $\ell_{\infty}(\Delta_{\lambda}^{m}) \cong \ell_{\infty}$, $c_{0}(\Delta_{\lambda}^{m}) \cong c_{0}$ and $c(\Delta_{\lambda}^{m}) \cong c$.

Proof: We only consider $c_0(\Delta_{\lambda}^m) \cong c_0$ and others will prove similarly. To prove the theorem we must show the existence of linear bijection operator between $c_0(\Delta_{\lambda}^m)$ and c_0 . Hence, let define the linear operator with the notation (3), from $c_0(\Delta_{\lambda}^m)$ and c_0 by $x \to y(\lambda) = Tx$.

Then $Tx = y(\lambda) = \Lambda(x) \in c_0$ for every $x \in c_0(\Delta_{\lambda}^m)$. Also, the linearity of T is clear. Further, it is trivial that x = 0 whenever Tx = 0. Hence T is injective.

Let $y = (y_k) \in c_0$ and define the sequence $x = \{x(\lambda)\}$ by

$$x_k(\lambda) = \sum_{j=0}^k \left(\begin{array}{c} m+k-j-1\\ k-j \end{array} \right) \sum_{i=j-1}^j (-1)^{j-i} \frac{\lambda_i}{\lambda_j - \lambda_{j-1}} y_i.$$
(5)

and we have

$$\Delta^m x_k = \sum_{i=k-1}^k \left(-1\right)^{k-i} \frac{\lambda_i}{\lambda_k - \lambda_{k-1}} y_i.$$
(6)

Thus, for every $k \in \mathbf{N}$, we have by (2) that

$$\tilde{\Lambda}_{n}(x) = \frac{1}{\lambda_{n}} \sum_{k=0}^{n} \sum_{i=k-1}^{k} (-1)^{k-i} \lambda_{i} y_{i} = \frac{1}{\lambda_{n}} \sum_{k=0}^{n} (\lambda_{k} y_{k} - \lambda_{k-1} y_{k-1}) = y_{n} \quad (7)$$

This shows that $\tilde{\Lambda}(x) = y$ and since $y \in c_0$, we obtain that $\tilde{\Lambda}(x) \in c_0$. Thus we deduce that $x \in c_0(\Delta_{\lambda}^m)$ and Tx = y. Hence T is surjective.

Further, we have for every $x \in c_0(\Delta^m_\lambda)$ that

$$\|Tx\|_{c_0} = \|Tx\|_{\ell_{\infty}} = \|y(\lambda)\|_{\ell_{\infty}} = \|\tilde{\Lambda}(x)\|_{\ell_{\infty}} = \|x\|_{(c_0)_{\tilde{\Lambda}}}$$
(8)

which means that $c_0(\Delta_{\lambda}^m)$ and c_0 is linearly isomorphic.

3 The Inclusion Relations

Theorem 3.1 The inclusion $c_0(\Delta^m_\lambda) \subset c(\Delta^m_\lambda)$ strictly holds.

Some Generalized Difference...

Proof: It is clear that $c_0(\Delta_{\lambda}^m) \subset c(\Delta_{\lambda}^m)$. To show strict, consider the sequence $x = (x_k)$ defined by $x_k = k^m$ for all $k \in \mathbf{N}$. Then we obtain that

$$\tilde{\Lambda}_n(x) = \frac{1}{\lambda_n} \sum_{k=0}^n \left(\lambda_k - \lambda_{k-1}\right) \Delta^m x_k = m!$$
(9)

for $n \in \mathbf{N}$ which shows that $\Lambda(x) \in c - c_0$. Thus, the sequence x is in $c(\Delta_{\lambda}^m)$ but not in $c_0(\Delta_{\lambda}^m)$. Hence the inclusion $c_0(\Delta_{\lambda}^m) \subset c(\Delta_{\lambda}^m)$ is strict and this completes the proof.

Theorem 3.2 The inclusion $c \subset c_0(\Delta_{\lambda}^m)$ strictly holds.

Proof: Let $x \in c$. Then $\tilde{\Lambda}(x) \in c_0$. This shows that $x \in c_0(\Delta_{\lambda}^m)$. Hence, the inclusion $c \subset c_0(\Delta_{\lambda}^m)$ holds. Then, consider the sequence $y = (y_k)$ defined by $y_k = \sqrt{k+1}$ for $k \in \mathbb{N}$. It is trivial that $y \notin c$. On the other hand, it can easily be seen that $\tilde{\Lambda}(y) \in c_0$ and $y \in c_0(\Delta_{\lambda}^m)$. Consequently, the sequence y is in $c_0(\Delta_{\lambda}^m)$ but not in c. We therefore deduce that the inclusion $c \subset c_0(\Delta_{\lambda}^m)$ is strict. This concludes proof.

Theorem 3.3 The inclusion $c\left(\Delta_{\lambda}^{m-1}\right) \subset c\left(\Delta_{\lambda}^{m}\right)$ holds.

Proof: Let $x \in c\left(\Delta_{\lambda}^{m-1}\right)$. Then we have

$$\tilde{\Lambda}_n(x) = \frac{1}{\lambda_n} \sum_{k=0}^n \left(\lambda_k - \lambda_{k-1}\right) \Delta^{m-1} x_k \to l \quad (k \to \infty) \,. \tag{10}$$

Furthermore, we obtain that $x \in c(\Delta_{\lambda}^{m})$ from the following inequality, hence the inclusion $c(\Delta_{\lambda}^{m-1}) \subset c(\Delta_{\lambda}^{m})$ holds.

$$\frac{1}{\lambda_n} \sum_{k=0}^n \left(\lambda_k - \lambda_{k-1}\right) \Delta^m x_k \bigg| \le \left| \frac{1}{\lambda_n} \sum_{k=0}^n \left(\lambda_k - \lambda_{k-1}\right) \Delta^{m-1} x_k - l \right| + \left| \frac{1}{\lambda_n} \sum_{k=0}^n \left(\lambda_k - \lambda_{k-1}\right) \Delta^{m-1} x_{k-1} - l \right| \to 0.$$
(11)

Theorem 3.4 The inclusion $\ell_{\infty}(\Delta_{\lambda}^{m-1}) \subset \ell_{\infty}(\Delta_{\lambda}^{m})$ strictly holds.

Proof: Let $x \in \ell_{\infty}(\Delta_{\lambda}^{m-1})$. Then we have

$$\left|\tilde{\Lambda}_{n}(x)\right| = \left|\frac{1}{\lambda_{n}}\sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right)\Delta^{m-1}x_{k}\right| \le K$$
(12)

for K > 0. We obtain the following equality that $x \in \ell_{\infty}(\Delta_{\lambda}^{m})$, hence the inclusion $\ell_{\infty}(\Delta_{\lambda}^{m-1}) \subset \ell_{\infty}(\Delta_{\lambda}^{m})$ holds.

$$\left|\frac{1}{\lambda_n}\sum_{k=0}^n (\lambda_k - \lambda_{k-1})\Delta^m x_k\right| \le \left|\frac{1}{\lambda_n}\sum_{k=0}^n (\lambda_k - \lambda_{k-1})\Delta^{m-1} x_k\right| + \left|\frac{1}{\lambda_n}\sum_{k=0}^n (\lambda_k - \lambda_{k-1})\Delta^{m-1} x_{k-1}\right|$$
(13)

To show strict, we consider $x = (x_k)$ defined by $x = (k^m)$, then we obtain $x \in \ell_{\infty}(\Delta_{\lambda}^m) - \ell_{\infty}(\Delta_{\lambda}^{m-1})$.

4 The Bases for the Spaces $c(\Delta_{\lambda}^{m})$ and $c_{0}(\Delta_{\lambda}^{m})$

If a normed sequence space X contains a sequence (b_n) with the property that for every $x \in X$ there is a unique sequence (α_n) of scalars such that

$$\lim_{n} \|x - (\alpha_0 b_0 + \alpha_1 b_1 + \dots + \alpha_n b_n)\| = 0.$$
(14)

Then (b_n) is called a Schauder basis (or briefly basis) for X. The series $\sum \alpha_k b_k$ which has the sum x is then called the expansion of x with respect to (b_n) , and written as $x = \sum_k \alpha_k b_k$.

Theorem 4.1 Define the sequence $b^{(k)}(\lambda, m) = \left\{b_n^{(k)}(\lambda, m)\right\}_{k=0}^{\infty}$ for every fixed $k, m \in \mathbb{N}$ and by

$$b_{n}^{(k)}(\lambda,m) = \begin{cases} \begin{pmatrix} m+n-k-1\\ n-k \end{pmatrix} \frac{\lambda_{k}}{\lambda_{k}-\lambda_{k-1}} - \begin{pmatrix} m+n-k-2\\ n-k-1 \end{pmatrix} \frac{\lambda_{k}}{\lambda_{k+1}-\lambda_{k}}, & n > k\\ \frac{\lambda_{k}}{\lambda_{k}-\lambda_{k-1}}, & n = k \\ 0, & n < k \end{cases}$$
(15)

Then, the sequence $\left\{b_n^{(k)}(\lambda,m)\right\}_{k=0}^{\infty}$ is a basis for the space $c_0(\Delta_{\lambda}^m)$ and every $x \in c_0(\Delta_{\lambda}^m)$ has a unique representation of the form

$$x = \sum_{k} \alpha_k(\lambda) b^{(k)}(\lambda, m)$$
(16)

where $\alpha_k(\lambda) = \tilde{\Lambda}_k(x)$ for all $k \in \mathbf{N}$.

Theorem 4.2 The sequence $\{b, b^{(0)}(\lambda, m), b^{(1)}(\lambda, m), ...\}$ is a basis for the space $c(\Delta_{\lambda}^{m})$ and every $x \in c(\Delta_{\lambda}^{m})$ has a unique representation of the form

$$x = lb + \sum_{k} \left[\alpha_k \left(\lambda \right) - l \right] b^{(k)} \left(\lambda, m \right); \tag{17}$$

where $\alpha_k(\lambda) = \tilde{\Lambda}_k(x)$ for all $k \in \mathbf{N}$, the sequence $b = (b_k)$ is defined by

$$b_{k} = \sum_{j=0}^{k} \left(\begin{array}{c} m+k-j-1\\ k-j \end{array} \right).$$
(18)

Corollary 4.3 The difference sequence spaces $c(\Delta_{\lambda}^{m})$ and $c_{0}(\Delta_{\lambda}^{m})$ are seperable.

Some Generalized Difference...

5 The $\alpha -, \beta -$ and γ -Duals of the Spaces $c(\Delta_{\lambda}^{m})$ and $c_{0}(\Delta_{\lambda}^{m})$

In this section, we introduce and prove the theorems determining the $\alpha -, \beta$ and $\gamma -$ duals of the difference sequence spaces $c(\Delta_{\lambda}^{m})$ and $c_{0}(\Delta_{\lambda}^{m})$ of nonabsolute type.

For arbitrary sequence spaces X and Y, the set M(X, Y) defined by

$$M(X,Y) = \{a = (a_k) \in w : ax = (a_k x_k) \in Y \text{ for all } x = (x_k) \in X\}$$
(19)

is called the multiplier space of X and Y.

With the notation of (19); the $\alpha -, \beta -$ and γ -duals of a sequence space X, which are respectively denoted by X^{α}, X^{β} and X^{γ} are defined by

$$X^{\alpha} = M(X, \ell_1), X^{\beta} = M(X, cs) \text{ and } X^{\gamma} = M(X, bs).$$
⁽²⁰⁾

Now, we may begin with lemmas which are needed in proving theorems.

Lemma 5.1 $A \in (c_0 : \ell_1) = (c : \ell_1)$ if and only if

$$\sup_{K\in\mathcal{F}}\sum_{n}\left|\sum_{k\in K}a_{nk}\right|<\infty.$$
(21)

Lemma 5.2 $A \in (c_0 : c)$ if and only if

 $\lim_{n} a_{nk} \quad exists \ for \ each \ k \in \mathbf{N},\tag{22}$

$$\sup_{n} \sum_{k} |a_{nk}| < \infty.$$
(23)

Lemma 5.3 $A \in (c:c)$ if and only if (22) and (23) hold, and

$$\lim_{n} \sum_{k} a_{nk} \quad exists. \tag{24}$$

Lemma 5.4 $A \in (c_0 : \ell_\infty) = (c : \ell_\infty)$ if and only if (23) holds.

Lemma 5.5 $A \in (\ell_{\infty} : c)$ if and only if (22) holds and

$$\lim_{n \to \infty} \sum_{k} |a_{nk}| = \sum_{k} |\alpha_k|.$$
(25)

Theorem 5.6 The α -dual of the space $c_0(\Delta_{\lambda}^m)$ and $c(\Delta_{\lambda}^m)$ is the set

$$b_1^{\lambda} = \left\{ a = (a_k) \in w : \sup_{K \in \mathcal{F}} \sum_n \left| \sum_{k \in K} b_{nk} \left(\lambda, m \right) \right| < \infty \right\};$$
(26)

where the matrix $B^{\lambda} = \left(b_{nk}^{\lambda m}\right)$ is defined via the sequence $a = (a_k)$ by

Sinan Ercan et al.

$$b_{n}^{(k)}\left(\lambda,m\right) = \begin{cases} \left[\left(\begin{array}{c} m+n-k-1\\ n-k \end{array} \right) \frac{\lambda_{k}}{\lambda_{k}-\lambda_{k-1}} - \left(\begin{array}{c} m+n-k-2\\ n-k-1 \end{array} \right) \frac{\lambda_{k}}{\lambda_{k+1}-\lambda_{k}} \right] a_{n}, \quad n > k \\ \frac{\lambda_{n}}{\lambda_{n}-\lambda_{n-1}} a_{n}, \quad n = k \\ 0, \quad n < k \\ (27) \end{cases}$$

Proof: Let $a = (a_k) \in w$. Then, we obtain the equality

$$a_{k}x_{k} = \sum_{k=0}^{n} \left(\begin{array}{c} m+n-k-1\\ n-k \end{array} \right) \sum_{j=k-1}^{k} (-1)^{k-j} \frac{\lambda_{j}}{\lambda_{k} - \lambda_{k-1}} y_{j} = B_{n}^{\lambda}(y) \,, \quad (n \in \mathbf{N}) \,.$$
(28)

Thus, we observe by (28) that $ax = (a_k x_k) \in \ell_1$ whenever $x = (x_k) \in c_0 (\Delta_{\lambda}^m)$ or $c(\Delta_{\lambda}^m)$ if and only if $B^{\lambda}y \in \ell_1$ whenever $y = (y_k) \in c_0$ or c. This means that the the sequence $a = (a_k)$ is in the α -dual of the spaces $c_0(\Delta_{\lambda}^m)$ or $c(\Delta_{\lambda}^m)$ if and only if $B^{\lambda} \in (c_0 : \ell_1) = (c : \ell_1)$. We therefore obtain by Lemma 5.1 with B^{λ} instead of A that $a \in \{c_0(\Delta_{\lambda}^m)\}^{\alpha} = \{c(\Delta_{\lambda}^m)\}^{\alpha}$ if and only if

$$\sup_{K\in\mathcal{F}}\sum_{n}\left|\sum_{k\in K}b_{nk}\left(\lambda,m\right)\right|<\infty.$$
(29)

Which leads us to the consequence that $\{c_0(\Delta_{\lambda}^m)\}^{\alpha} = \{c(\Delta_{\lambda}^m)\}^{\alpha} = b_1^{\lambda}$. This concludes proof.

Theorem 5.7 Define the sets

$$b_2^{\lambda} = \left\{ a = (a_k) \in w : \sum_{j=k}^{\infty} \left(\begin{array}{c} m+n-j-1\\ n-j \end{array} \right) a_j \text{ exists for each } k \in \mathbf{N}. \right\}$$
(30)

$$b_{3}^{\lambda} = \left\{ a = (a_{k}) \in w : \sup_{n \in \mathbf{N}} \sum_{k=0}^{n-1} |g_{k}(n)| < \infty. \right\}$$
(31)

$$b_4^{\lambda} = \left\{ a = (a_k) \in w : \sup_{n \in \mathbf{N}} \left| \frac{\lambda_n}{\lambda_n - \lambda_{n-1}} a_n \right| < \infty. \right\}$$
(32)

$$b_5^{\lambda} = \left\{ a = (a_k) \in w : \lim_{n \to \infty} \sum_{k=0}^n \sum_{j=0}^k \left(\begin{array}{c} m+k-j-1\\ k-j \end{array} \right) a_k \text{ exists.} \right\}$$
(33)

$$b_6^{\lambda} = \left\{ a = (a_k) \in w : \lim_{n \to \infty} \sum_k \left| t_{nk}^{\lambda} \right| = \sum_k \left| \lim_{n \to \infty} t_{nk}^{\lambda} \right| \right\}$$
(34)

where the matrice $T^{\lambda} = (t_{nk}^{\lambda})$ is defined as follow:

$$t_{nk}^{\lambda} = \begin{cases} a_k(n), & k < n\\ \frac{\lambda_n}{\lambda_n - \lambda_{n-1}} a_n, & k = n\\ 0, & k > n \end{cases}$$
(35)

for all $k, n \in \mathbf{N}$ and the $a_k(n)$ is defined by

$$a_{k}(n) = \lambda_{k} \left(\frac{1}{\lambda_{k} - \lambda_{k-1}} \sum_{j=k}^{n} \binom{m+j-k-1}{j-k} a_{j} - \frac{1}{\lambda_{k+1} - \lambda_{k}} \sum_{j=k}^{n} \binom{m+j-k-2}{j-k-1} a_{j} \right) y_{k}$$
(36)
for $k < n$. Then $\{c_{0}(\Delta_{\lambda}^{m})\}^{\beta} = b_{2}^{\lambda} \cap b_{3}^{\lambda} \cap b_{4}^{\lambda}, \{c(\Delta_{\lambda}^{m})\}^{\beta} = b_{2}^{\lambda} \cap b_{3}^{\lambda} \cap b_{4}^{\lambda} \cap b_{5}^{\lambda}$ and

 $\left\{\ell_{\infty}\left(\Delta_{\lambda}^{m}\right)\right\}^{\beta} = b_{2}^{\lambda} \cap b_{4}^{\lambda} \cap b_{6}^{\lambda}.$

Proof: We have from (5)

$$\begin{split} \sum_{k=0}^{n} a_k x_k &= \sum_{k=0}^{n} \left[\sum_{j=0}^{k} \binom{m+k-j-1}{k-j} \sum_{i=j-1}^{j} (-1)^{j-i} \frac{\lambda_i}{\lambda_j - \lambda_{j-1}} y_i \right] a_k \\ &= \sum_{k=0}^{n-1} \lambda_k \left[\frac{\sum_{j=k}^{n} \binom{m+j-k-1}{j-k}}{\lambda_k - \lambda_{k-1}} a_j - \frac{\sum_{j=k+1}^{n} \binom{m+j-k-2}{j-k-1}}{\lambda_{k+1} - \lambda_k} \right] y_k + \frac{a_n \lambda_n}{\lambda_n - \lambda_{n-1}} y_n \\ &= \sum_{k=0}^{n-1} a_k \left(n \right) y_k + \frac{a_n \lambda_n}{\lambda_n - \lambda_{n-1}} y_n = \left(T^{\lambda} y \right)_n; (n \in \mathbf{N}) \,. \end{split}$$

Then we derive that $ax = (a_k x_k) \in cs$ whenever $x = (x_k) \in c_0(\Delta_{\lambda}^m)$ if and only if $T^{\lambda}y \in c$ whenever $y = (y_k) \in c_0$. This means that $a = (a_k) \in \{c_0(\Delta_{\lambda}^m)\}^{\beta}$ if and only if $T^{\lambda} \in (c_0 : c)$. Therefore, by using Lemma 5.2, we obtain

$$\sum_{j=k}^{\infty} \left(\begin{array}{c} m+k-j-1\\ k-j \end{array} \right) a_j \quad exists \ for \ each \ k \in \mathbf{N}, \tag{37}$$

$$\sup_{n \in \mathbf{N}} \sum_{k=0}^{n-1} |a_k(n)| < \infty \tag{38}$$

and

$$\sup_{k \in \mathbf{N}} \sum_{k=0}^{n-1} \left| \frac{\lambda_k}{\lambda_k - \lambda_{k-1}} a_k \right| < \infty.$$
(39)

Hence we conclude that $\{c_0(\Delta_{\lambda}^m)\}^{\beta} = b_2^{\lambda} \cap b_3^{\lambda} \cap b_4^{\lambda}$.

Theorem 5.8 $\{c_0(\Delta_{\lambda}^m)\}^{\gamma} = \{c(\Delta_{\lambda}^m)\}^{\gamma} = \{\ell_{\infty}(\Delta_{\lambda}^m)\}^{\gamma} = b_3^{\lambda} \cap b_4^{\lambda}.$

Proof: It can be proved similarly as the proof of the Theorem 5.7 with Lemma 5.4 instead of Lemma 5.2.

Acknowledgements: We thank the anonymous referees for their comments and suggestions that improved the presentation of this paper.

References

- A. Wilansky, Summability Through Functional Analysis, North-Holland Mathematics Studies, Elsevier Science Publishers, Amsterdam, New York, (1984).
- [2] A.H. Ganie and N.A. Sheikh, On some new sequence spaces of nonabsolute type and matrix transformations, *Journal of Egyptian Math.*, 21(2013), 108-114.
- [3] C. Asma and R. Çolak, On the Köthe-Toeplitz duals of some generalized sets of difference sequences, *Demonstratio Math*, 33(2000), 797-803.
- [4] E. Malkowsky and S.D. Parashar, Matrix transformations in space of bounded and convergent difference sequence of order, *Analysis*, 17(1997), 87-97.
- [5] F. Başar, *Summability Theory and Its Applications*, Bentham Science Publishers, (2011).
- [6] I.J. Maddox, *Elements of Functional Analysis (2nd ed.)*, The University Press, Cambridge, (1988).
- [7] K. Raj and S.K. Sharma, Some generalized difference double sequence spaces defined by a sequence of Orlicz-function, *Cubo*, 14(2012), 167-189.
- [8] K. Raj and A. Kilicman, On certain generalized paranormed spaces, J. Inequal. Appl., 37(2015).
- [9] M. Mursaleen and A.K. Noman, On the spaces of λ -convergent and bounded sequences, *Thai J. Math.*, 2(2010), 311-329.
- [10] M. Mursaleen and A.K. Noman, On some new difference sequence spaces of non-absolute type, *Math Comput. Mod.*, 52(2010), 603-617.
- [11] S.A. Mohiuddine, K. Raj and A. Alotaibi, Some paranormed double difference sequence spaces for Orlicz functions and bounded-regular matrices, *Abstr. Appl. Anal.*, Article ID 419064(2014), 10 pages.
- [12] S. Ercan and Ç.A. Bektaş, On some sequence spaces of non-absolute type, Kragujevac Journal of Mathematics, 38(1) (2014), 195-202.