Gen. Math. Notes, Vol. 27, No. 2, April 2015, pp.37-46
ISSN 2219-7184; Copyright (c)ICSRS Publication, 2015
www.i-csrs.org
Available free online at http://www.geman.in

Some Generalized Difference Sequence Spaces of Non-Absolute Type

Sinan Ercan ${ }^{1}$ and Çiğdem A. Bektaş ${ }^{2}$
${ }^{1}$ Department of Mathematics, Firat University, Elaziğ, Turkey
E-mail: sinanercan45@gmail.com
${ }^{2}$ Department of Mathematics, Firat University, Elaziğ, Turkey
E-mail: cigdemas78@hotmail.com

(Received: 4-3-15 / Accepted: 12-4-15)

Abstract

In this paper, we introduce the spaces $\ell_{\infty}\left(\Delta_{\lambda}^{m}\right), c\left(\Delta_{\lambda}^{m}\right)$ and $c_{0}\left(\Delta_{\lambda}^{m}\right)$, which are BK-spaces of non-absolute type and we prove that these spaces are linearly isomorphic to the spaces ℓ_{∞}, c and c_{0}, respectively. Moreover, we give some inclusion relations and compute the $\alpha-, \beta-$ and $\gamma-$ duals of these spaces. We also determine the Schauder basis of the $c\left(\Delta_{\lambda}^{m}\right)$ and $c_{0}\left(\Delta_{\lambda}^{m}\right)$.

Keywords: Sequence spaces of non-absolute type, BK-spaces, Difference Sequence Spaces.

1 Introduction

A sequence space is defined to be a linear space of real or complex sequences. Let w denote the spaces of all complex sequences. If $x \in w$, then we simply write $x=\left(x_{k}\right)$ instead of $x=\left(x_{k}\right)_{k=0}^{\infty}$.

Let X be a sequence space. If X is a Banach space and

$$
\tau_{k}: X \rightarrow C, \tau_{k}(x)=x_{k} \quad(k=1,2, \ldots)
$$

is a continuous for all k, X is called a $B K$-space.
We shall write ℓ_{∞}, c and c_{0} for the sequence spaces of all bounded, convergent and null sequences, respectively, which are $B K$-spaces with the norm given by $\|x\|_{\infty}=\sup _{k}\left|x_{k}\right|$ for all $k \in \mathbf{N}$.

For a sequence space X, the matrix domain X_{A} of an infinite matrix A defined by

$$
\begin{equation*}
X_{A}=\left\{x=\left(x_{k}\right) \in w: A x \in X\right\} \tag{1}
\end{equation*}
$$

which is a sequence space.
We shall denote the collection of all finite subsets of \mathbf{N} by \mathcal{F}.
M. Mursaleen and A. K. Noman [9] introduced the sequence spaces $\ell_{\infty}^{\lambda}, c^{\lambda}$ and c_{0}^{λ} as the sets of all λ-bounded, λ-convergent and λ - null sequences, respectively, that is

$$
\begin{aligned}
\ell_{\infty}^{\lambda} & =\left\{x \in w: \sup _{n}\left|\Lambda_{n}(x)\right|<\infty\right\} \\
c^{\lambda} & =\left\{x \in w: \lim _{n \rightarrow \infty} \Lambda_{n}(x) \text { exists }\right\} \\
c_{0}^{\lambda} & =\left\{x \in w: \lim _{n \rightarrow \infty} \Lambda_{n}(x)=0\right\}
\end{aligned}
$$

where $\Lambda_{n}(x)=\frac{1}{\lambda_{n}} \sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) x_{k}, \quad k \in \mathbf{N}$.
M. Mursaleen and A. K. Noman [10] also introduced the sequence spaces $c^{\lambda}(\Delta)$ and $c_{0}^{\lambda}(\Delta)$, respectively, that is

$$
\begin{array}{r}
c^{\lambda}(\Delta)=\left\{x \in w: \lim _{n \rightarrow \infty} \bar{\Lambda}_{n}(x) \text { exists }\right\} \\
c_{0}^{\lambda}(\Delta)=\left\{x \in w: \lim _{n \rightarrow \infty} \bar{\Lambda}_{n}(x)=0\right\}
\end{array}
$$

where $\bar{\Lambda}_{n}(x)=\frac{1}{\lambda_{n}} \sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right)\left(x_{k}-x_{k-1}\right), k \in \mathbf{N}$.
H. Ganie and N. A. Sheikh [2] introduced the spaces $c_{0}\left(\Delta_{u}^{\lambda}\right)$ and $c\left(\Delta_{u}^{\lambda}\right)$ as follows:

$$
\begin{aligned}
c_{0}\left(\Delta_{u}^{\lambda}\right) & =\left\{x \in w: \lim _{n \rightarrow \infty} \widehat{\Lambda}_{n}(x)=0\right\} \\
c\left(\Delta_{u}^{\lambda}\right) & =\left\{x \in w: \lim _{n \rightarrow \infty} \widehat{\Lambda}_{n}(x) \text { exists }\right\}
\end{aligned}
$$

where $\widehat{\Lambda}_{n}(x)=\frac{1}{\lambda_{n}} \sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) u_{k}\left(x_{k}-x_{k-1}\right), k \in \mathbf{N}$.

2 The Sequence Spaces $\ell_{\infty}\left(\Delta_{\lambda}^{m}\right), c\left(\Delta_{\lambda}^{m}\right)$ and $c_{0}\left(\Delta_{\lambda}^{m}\right)$ of Non-Absolute Type

We define the sequence spaces $\ell_{\infty}\left(\Delta_{\lambda}^{m}\right), c\left(\Delta_{\lambda}^{m}\right)$ and $c_{0}\left(\Delta_{\lambda}^{m}\right)$ as follows;

$$
\begin{array}{r}
\ell_{\infty}\left(\Delta_{\lambda}^{m}\right)=\left\{x \in w: \sup _{n}\left|\tilde{\Lambda}_{n}(x)\right|<\infty\right\} \\
c\left(\Delta_{\lambda}^{m}\right)=\left\{x \in w: \lim _{n \rightarrow \infty} \tilde{\Lambda}_{n}(x) \text { exists }\right\} \\
c_{0}\left(\Delta_{\lambda}^{m}\right)=\left\{x \in w: \lim _{n \rightarrow \infty} \tilde{\Lambda}_{n}(x)=0\right\}
\end{array}
$$

where $\tilde{\Lambda}_{n}(x)=\frac{1}{\lambda_{n}} \sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) \Delta^{m} x_{k}, k, m \in \mathbf{N} . \Delta$ denotes the difference operator. i.e., $\Delta^{0} x_{k}=x_{k}, \Delta x_{k}=x_{k}-x_{k-1}$ and $\Delta^{m} x_{k}=\sum_{v=0}^{m}(-1)^{v}\binom{m}{v} x_{k-v}$. $\lambda=\left(\lambda_{k}\right)_{k=0}^{\infty}$ is a strictly increasing sequence of positive reals tending to infinity, that is $0<\lambda_{0}<\lambda_{1}<\ldots$ and $\lambda_{k} \rightarrow \infty$ as $k \rightarrow \infty$.

Here and in sequel, we use the convention that any term with a negative subscript is equal to naught. e.g. $\lambda_{-1}=0$ and $x_{-1}=0$.

If we take $m=1$ sequence spaces which we defined reduces to $\ell_{\infty}^{\lambda}(\Delta), c^{\lambda}(\Delta)$ and $c_{0}^{\lambda}(\Delta)$.

We define the matrix $\tilde{\Lambda}=\left(\tilde{\lambda}_{n k}\right)$ for all $n, k \in \mathbf{N}$ by

$$
\tilde{\lambda}_{n k}=\left\{\begin{array}{cc}
\sum_{i=k}^{n}\binom{m}{i-k}(-1)^{i-k} \frac{\lambda_{i}-\lambda_{i-1}}{\lambda_{n}}, & k \leq n \\
0, & n<k
\end{array} .\right.
$$

$\tilde{\Lambda}=\left(\tilde{\lambda}_{n k}\right)$ equality can be eaisly seen from

$$
\begin{equation*}
\tilde{\Lambda}_{n}(x)=\frac{1}{\lambda_{n}} \sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) \Delta^{m} x_{k} \tag{2}
\end{equation*}
$$

for all $m, n \in \mathbf{N}$ and every $x=\left(x_{k}\right) \in w$. Then it leads us together with (1) to the fact that

$$
\ell_{\infty}\left(\Delta_{\lambda}^{m}\right)=\left(\ell_{\infty}\right)_{\tilde{\Lambda}}, c_{0}\left(\Delta_{\lambda}^{m}\right)=\left(c_{0}\right)_{\tilde{\Lambda}}, c\left(\Delta_{\lambda}^{m}\right)=(c)_{\tilde{\Lambda}}
$$

The matrix $\tilde{\Lambda}=\left(\tilde{\lambda}_{n k}\right)$ is a triangle, i.e., $\tilde{\lambda}_{n n} \neq 0$ and $\tilde{\lambda}_{n k}=0(k>n)$ for all $n, k \in \mathbf{N}$. Further, for any sequence $x=\left(x_{k}\right)$ we define the sequence $y(\lambda)=\left\{y_{k}(\lambda)\right\}$ as the $\tilde{\Lambda}$-transform of x, i.e., $y(\lambda)=\tilde{\Lambda}(x)$ and so we have that

$$
\begin{equation*}
y(\lambda)=\sum_{j=0}^{k} \sum_{i=j}^{k}(-1)^{i-j}\binom{m}{i-j}\left(\frac{\lambda_{i}-\lambda_{i-1}}{\lambda_{k}}\right) x_{j} \tag{3}
\end{equation*}
$$

for $k \in \mathbf{N}$. Here and in what follows, the summation running from 0 to $k-1$ is equal to zero when $k=0$.

Theorem $2.1 \ell_{\infty}\left(\Delta_{\lambda}^{m}\right), c_{0}\left(\Delta_{\lambda}^{m}\right)$ and $c\left(\Delta_{\lambda}^{m}\right)$ are BK-spaces with the norm

$$
\begin{equation*}
\|x\|_{\left(\ell_{\infty}\right)_{\bar{\Lambda}}}=\left\|\tilde{\Lambda}_{n}(x)\right\|_{\infty}=\sup _{n}\left|\tilde{\Lambda}_{n}(x)\right| . \tag{4}
\end{equation*}
$$

Proof: We know that c and c_{0} are $B K$-spaces with their natural norms from [5]. (3) holds and $\tilde{\Lambda}=\left(\tilde{\lambda}_{n k}\right)$ is a triangle matrix and from Theorem 4.3.12 of Wilansky [1], we derive that $\ell_{\infty}\left(\Delta_{\lambda}^{m}\right), c_{0}\left(\Delta_{\lambda}^{m}\right)$ and $c\left(\Delta_{\lambda}^{m}\right)$ are $B K$-spaces. This completes the proof.

Remark 2.2 The absolute property does not hold on the $\ell_{\infty}\left(\Delta_{\lambda}^{m}\right), c_{0}\left(\Delta_{\lambda}^{m}\right)$ and $c\left(\Delta_{\lambda}^{m}\right)$ spaces. For instance, if we take $|x|=\left(\left|x_{k}\right|\right)$ we hold $\|x\|_{\left(\ell_{\infty}\right)_{\tilde{\Lambda}}} \neq$ $\||x|\|_{\left(\ell_{\infty}\right)_{\tilde{\Lambda}}}$.Thus, the space $\ell_{\infty}\left(\Delta_{\lambda}^{m}\right), c_{0}\left(\Delta_{\lambda}^{m}\right)$ and $c\left(\Delta_{\lambda}^{m}\right)$ are BK-space of nonabsolute type.

Theorem 2.3 The sequence spaces $\ell_{\infty}\left(\Delta_{\lambda}^{m}\right), c_{0}\left(\Delta_{\lambda}^{m}\right)$ and $c\left(\Delta_{\lambda}^{m}\right)$ of nonabsolute type are linearly isomorphic to the spaces ℓ_{∞}, c_{0} and c, respectively, that is $\ell_{\infty}\left(\Delta_{\lambda}^{m}\right) \cong \ell_{\infty}, c_{0}\left(\Delta_{\lambda}^{m}\right) \cong c_{0}$ and $c\left(\Delta_{\lambda}^{m}\right) \cong c$.

Proof: We only consider $c_{0}\left(\Delta_{\lambda}^{m}\right) \cong c_{0}$ and others will prove similarly. To prove the theorem we must show the existence of linear bijection operator between $c_{0}\left(\Delta_{\lambda}^{m}\right)$ and c_{0}. Hence, let define the linear operator with the notation (3), from $c_{0}\left(\Delta_{\lambda}^{m}\right)$ and c_{0} by $x \rightarrow y(\lambda)=T x$.

Then $T x=y(\lambda)=\tilde{\Lambda}(x) \in c_{0}$ for every $x \in c_{0}\left(\Delta_{\lambda}^{m}\right)$. Also, the linearity of T is clear. Further, it is trivial that $x=0$ whenever $T x=0$. Hence T is injective.

Let $y=\left(y_{k}\right) \in c_{0}$ and define the sequence $x=\{x(\lambda)\}$ by

$$
\begin{equation*}
x_{k}(\lambda)=\sum_{j=0}^{k}\binom{m+k-j-1}{k-j} \sum_{i=j-1}^{j}(-1)^{j-i} \frac{\lambda_{i}}{\lambda_{j}-\lambda_{j-1}} y_{i} . \tag{5}
\end{equation*}
$$

and we have

$$
\begin{equation*}
\Delta^{m} x_{k}=\sum_{i=k-1}^{k}(-1)^{k-i} \frac{\lambda_{i}}{\lambda_{k}-\lambda_{k-1}} y_{i} \tag{6}
\end{equation*}
$$

Thus, for every $k \in \mathbf{N}$, we have by (2) that

$$
\begin{equation*}
\tilde{\Lambda}_{n}(x)=\frac{1}{\lambda_{n}} \sum_{k=0}^{n} \sum_{i=k-1}^{k}(-1)^{k-i} \lambda_{i} y_{i}=\frac{1}{\lambda_{n}} \sum_{k=0}^{n}\left(\lambda_{k} y_{k}-\lambda_{k-1} y_{k-1}\right)=y_{n} \tag{7}
\end{equation*}
$$

This shows that $\tilde{\Lambda}(x)=y$ and since $y \in c_{0}$, we obtain that $\tilde{\Lambda}(x) \in c_{0}$. Thus we deduce that $x \in c_{0}\left(\Delta_{\lambda}^{m}\right)$ and $T x=y$. Hence T is surjective.

Further, we have for every $x \in c_{0}\left(\Delta_{\lambda}^{m}\right)$ that

$$
\begin{equation*}
\|T x\|_{c_{0}}=\|T x\|_{\ell_{\infty}}=\|y(\lambda)\|_{\ell_{\infty}}=\|\tilde{\Lambda}(x)\|_{\ell_{\infty}}=\|x\|_{\left(c_{0}\right)_{\bar{\Lambda}}} \tag{8}
\end{equation*}
$$

which means that $c_{0}\left(\Delta_{\lambda}^{m}\right)$ and c_{0} is linearly isomorphic.

3 The Inclusion Relations

Theorem 3.1 The inclusion $c_{0}\left(\Delta_{\lambda}^{m}\right) \subset c\left(\Delta_{\lambda}^{m}\right)$ strictly holds.

Proof: It is clear that $c_{0}\left(\Delta_{\lambda}^{m}\right) \subset c\left(\Delta_{\lambda}^{m}\right)$. To show strict, consider the sequence $x=\left(x_{k}\right)$ defined by $x_{k}=k^{m}$ for all $k \in \mathbf{N}$. Then we obtain that

$$
\begin{equation*}
\tilde{\Lambda}_{n}(x)=\frac{1}{\lambda_{n}} \sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) \Delta^{m} x_{k}=m! \tag{9}
\end{equation*}
$$

for $n \in \mathbf{N}$ which shows that $\tilde{\Lambda}(x) \in c-c_{0}$. Thus, the sequence x is in $c\left(\Delta_{\lambda}^{m}\right)$ but not in $c_{0}\left(\Delta_{\lambda}^{m}\right)$. Hence the inclusion $c_{0}\left(\Delta_{\lambda}^{m}\right) \subset c\left(\Delta_{\lambda}^{m}\right)$ is strict and this completes the proof.

Theorem 3.2 The inclusion $c \subset c_{0}\left(\Delta_{\lambda}^{m}\right)$ strictly holds.
Proof: Let $x \in c$. Then $\tilde{\Lambda}(x) \in c_{0}$. This shows that $x \in c_{0}\left(\Delta_{\lambda}^{m}\right)$. Hence, the inclusion $c \subset c_{0}\left(\Delta_{\lambda}^{m}\right)$ holds. Then, consider the sequence $y=\left(y_{k}\right)$ defined by $y_{k}=\sqrt{k+1}$ for $k \in \mathbf{N}$. It is trivial that $y \notin c$. On the other hand, it can easily be seen that $\tilde{\Lambda}(y) \in c_{0}$ and $y \in c_{0}\left(\Delta_{\lambda}^{m}\right)$.Consequently, the sequence y is in $c_{0}\left(\Delta_{\lambda}^{m}\right)$ but not in c. We therefore deduce that the inclusion $c \subset c_{0}\left(\Delta_{\lambda}^{m}\right)$ is strict. This concludes proof.

Theorem 3.3 The inclusion $c\left(\Delta_{\lambda}^{m-1}\right) \subset c\left(\Delta_{\lambda}^{m}\right)$ holds .
Proof: Let $x \in c\left(\Delta_{\lambda}^{m-1}\right)$. Then we have

$$
\begin{equation*}
\tilde{\Lambda}_{n}(x)=\frac{1}{\lambda_{n}} \sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) \Delta^{m-1} x_{k} \rightarrow l \quad(k \rightarrow \infty) . \tag{10}
\end{equation*}
$$

Furthermore, we obtain that $x \in c\left(\Delta_{\lambda}^{m}\right)$ from the following inequality, hence the inclusion $c\left(\Delta_{\lambda}^{m-1}\right) \subset c\left(\Delta_{\lambda}^{m}\right)$ holds.

$$
\begin{gather*}
\left|\frac{1}{\lambda_{n}} \sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) \Delta^{m} x_{k}\right| \leq\left|\frac{1}{\lambda_{n}} \sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) \Delta^{m-1} x_{k}-l\right| \tag{11}\\
+\left|\frac{1}{\lambda_{n}} \sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) \Delta^{m-1} x_{k-1}-l\right| \rightarrow 0 .
\end{gather*}
$$

Theorem 3.4 The inclusion $\ell_{\infty}\left(\Delta_{\lambda}^{m-1}\right) \subset \ell_{\infty}\left(\Delta_{\lambda}^{m}\right)$ strictly holds.
Proof: Let $x \in \ell_{\infty}\left(\Delta_{\lambda}^{m-1}\right)$. Then we have

$$
\begin{equation*}
\left|\tilde{\Lambda}_{n}(x)\right|=\left|\frac{1}{\lambda_{n}} \sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) \Delta^{m-1} x_{k}\right| \leq K \tag{12}
\end{equation*}
$$

for $K>0$. We obtain the following equality that $x \in \ell_{\infty}\left(\Delta_{\lambda}^{m}\right)$, hence the inclusion $\ell_{\infty}\left(\Delta_{\lambda}^{m-1}\right) \subset \ell_{\infty}\left(\Delta_{\lambda}^{m}\right)$ holds.

$$
\begin{equation*}
\left|\frac{1}{\lambda_{n}} \sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) \Delta^{m} x_{k}\right| \leq\left|\frac{1}{\lambda_{n}} \sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) \Delta^{m-1} x_{k}\right|+\left|\frac{1}{\lambda_{n}} \sum_{k=0}^{n}\left(\lambda_{k}-\lambda_{k-1}\right) \Delta^{m-1} x_{k-1}\right| . \tag{13}
\end{equation*}
$$

To show strict, we consider $x=\left(x_{k}\right)$ defined by $x=\left(k^{m}\right)$, then we obtain $x \in \ell_{\infty}\left(\Delta_{\lambda}^{m}\right)-\ell_{\infty}\left(\Delta_{\lambda}^{m-1}\right)$.

4 The Bases for the Spaces $c\left(\Delta_{\lambda}^{m}\right)$ and $c_{0}\left(\Delta_{\lambda}^{m}\right)$

If a normed sequence space X contains a sequence $\left(b_{n}\right)$ with the property that for every $x \in X$ there is a unique sequence $\left(\alpha_{n}\right)$ of scalars such that

$$
\begin{equation*}
\lim _{n}\left\|x-\left(\alpha_{0} b_{0}+\alpha_{1} b_{1}+\ldots+\alpha_{n} b_{n}\right)\right\|=0 \tag{14}
\end{equation*}
$$

Then $\left(b_{n}\right)$ is called a Schauder basis (or briefly basis) for X. The series $\sum \alpha_{k} b_{k}$ which has the sum x is then called the expansion of x with respect to $\left(b_{n}\right)$, and written as $x=\sum_{k} \alpha_{k} b_{k}$.

Theorem 4.1 Define the sequence $b^{(k)}(\lambda, m)=\left\{b_{n}^{(k)}(\lambda, m)\right\}_{k=0}^{\infty}$ for every fixed $k, m \in \mathbf{N}$ and by

$$
b_{n}^{(k)}(\lambda, m)=\left\{\begin{array}{cc}
\binom{m+n-k-1}{n-k} \frac{\lambda_{k}}{\lambda_{k}-\lambda_{k-1}}-\binom{m+n-k-2}{n-k-1} \frac{\lambda_{k}}{\lambda_{k+1}-\lambda_{k}}, & n>k \tag{15}\\
\frac{\lambda_{k}}{\lambda_{k}-\lambda_{k-1}}, & n=k \\
0, & n<k
\end{array}\right.
$$

Then, the sequence $\left\{b_{n}^{(k)}(\lambda, m)\right\}_{k=0}^{\infty}$ is a basis for the space $c_{0}\left(\Delta_{\lambda}^{m}\right)$ and every $x \in c_{0}\left(\Delta_{\lambda}^{m}\right)$ has a unique representation of the form

$$
\begin{equation*}
x=\sum_{k} \alpha_{k}(\lambda) b^{(k)}(\lambda, m) \tag{16}
\end{equation*}
$$

where $\alpha_{k}(\lambda)=\tilde{\Lambda}_{k}(x)$ for all $k \in \mathbf{N}$.
Theorem 4.2 The sequence $\left\{b, b^{(0)}(\lambda, m), b^{(1)}(\lambda, m), \ldots\right\}$ is a basis for the space $c\left(\Delta_{\lambda}^{m}\right)$ and every $x \in c\left(\Delta_{\lambda}^{m}\right)$ has a unique representation of the form

$$
\begin{equation*}
x=l b+\sum_{k}\left[\alpha_{k}(\lambda)-l\right] b^{(k)}(\lambda, m) \tag{17}
\end{equation*}
$$

where $\alpha_{k}(\lambda)=\tilde{\Lambda}_{k}(x)$ for all $k \in \mathbf{N}$, the sequence $b=\left(b_{k}\right)$ is defined by

$$
\begin{equation*}
b_{k}=\sum_{j=0}^{k}\binom{m+k-j-1}{k-j} . \tag{18}
\end{equation*}
$$

Corollary 4.3 The difference sequence spaces $c\left(\Delta_{\lambda}^{m}\right)$ and $c_{0}\left(\Delta_{\lambda}^{m}\right)$ are seperable.

5 The $\alpha-, \beta$ - and $\gamma-$ Duals of the Spaces $c\left(\Delta_{\lambda}^{m}\right)$ and $c_{0}\left(\Delta_{\lambda}^{m}\right)$

In this section, we introduce and prove the theorems determining the $\alpha-, \beta-$ and γ - duals of the difference sequence spaces $c\left(\Delta_{\lambda}^{m}\right)$ and $c_{0}\left(\Delta_{\lambda}^{m}\right)$ of nonabsolute type.

For arbitrary sequence spaces X and Y, the set $M(X, Y)$ defined by

$$
\begin{equation*}
M(X, Y)=\left\{a=\left(a_{k}\right) \in w: a x=\left(a_{k} x_{k}\right) \in Y \text { for all } x=\left(x_{k}\right) \in X\right\} \tag{19}
\end{equation*}
$$

is called the multipier space of X and Y.
With the notation of (19); the $\alpha-, \beta$ - and γ-duals of a sequence space X, which are respectively denoted by X^{α}, X^{β} and X^{γ} are defined by

$$
\begin{equation*}
X^{\alpha}=M\left(X, \ell_{1}\right), X^{\beta}=M(X, c s) \text { and } X^{\gamma}=M(X, b s) . \tag{20}
\end{equation*}
$$

Now, we may begin with lemmas which are needed in proving theorems.
Lemma 5.1 $A \in\left(c_{0}: \ell_{1}\right)=\left(c: \ell_{1}\right)$ if and only if

$$
\begin{equation*}
\sup _{K \in \mathcal{F}} \sum_{n}\left|\sum_{k \in K} a_{n k}\right|<\infty \tag{21}
\end{equation*}
$$

Lemma 5.2 $A \in\left(c_{0}: c\right)$ if and only if

$$
\begin{gather*}
\lim _{n} a_{n k} \text { exists for each } k \in \mathbf{N} \tag{22}\\
\sup _{n} \sum_{k}\left|a_{n k}\right|<\infty \tag{23}
\end{gather*}
$$

Lemma 5.3 $A \in(c: c)$ if and only if (22) and (23) hold, and

$$
\begin{equation*}
\lim _{n} \sum_{k} a_{n k} \text { exists. } \tag{24}
\end{equation*}
$$

Lemma 5.4 $A \in\left(c_{0}: \ell_{\infty}\right)=\left(c: \ell_{\infty}\right)$ if and only if (23) holds.
Lemma 5.5 $A \in\left(\ell_{\infty}: c\right)$ if and only if (22) holds and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k}\left|a_{n k}\right|=\sum_{k}\left|\alpha_{k}\right| . \tag{25}
\end{equation*}
$$

Theorem 5.6 The α-dual of the space $c_{0}\left(\Delta_{\lambda}^{m}\right)$ and $c\left(\Delta_{\lambda}^{m}\right)$ is the set

$$
\begin{equation*}
b_{1}^{\lambda}=\left\{a=\left(a_{k}\right) \in w: \sup _{K \in \mathcal{F}} \sum_{n}\left|\sum_{k \in K} b_{n k}(\lambda, m)\right|<\infty\right\} ; \tag{26}
\end{equation*}
$$

where the matrix $B^{\lambda}=\left(b_{n k}^{\lambda m}\right)$ is defined via the sequence $a=\left(a_{k}\right)$ by

$$
b_{n}^{(k)}(\lambda, m)=\left\{\begin{array}{cl}
{\left[\binom{m+n-k-1}{n-k} \frac{\lambda_{k}}{\lambda_{k}-\lambda_{k-1}}-\binom{m+n-k-2}{n-k-1} \frac{\lambda_{k}}{\lambda_{k+1}-\lambda_{k}}\right] a_{n},} & n>k \tag{27}\\
\frac{\lambda_{n}}{\lambda_{n}-\lambda_{n-1}} a_{n}, & n=k \\
0, & n<k
\end{array}\right.
$$

Proof: Let $a=\left(a_{k}\right) \in w$. Then, we obtain the equality

$$
\begin{equation*}
a_{k} x_{k}=\sum_{k=0}^{n}\binom{m+n-k-1}{n-k} \sum_{j=k-1}^{k}(-1)^{k-j} \frac{\lambda_{j}}{\lambda_{k}-\lambda_{k-1}} y_{j}=B_{n}^{\lambda}(y), \quad(n \in \mathbf{N}) . \tag{28}
\end{equation*}
$$

Thus, we observe by (28) that $a x=\left(a_{k} x_{k}\right) \in \ell_{1}$ whenever $x=\left(x_{k}\right) \in c_{0}\left(\Delta_{\lambda}^{m}\right)$ or $c\left(\Delta_{\lambda}^{m}\right)$ if and only if $B^{\lambda} y \in \ell_{1}$ whenever $y=\left(y_{k}\right) \in c_{0}$ or c. This means that the the sequence $a=\left(a_{k}\right)$ is in the α-dual of the spaces $c_{0}\left(\Delta_{\lambda}^{m}\right)$ or $c\left(\Delta_{\lambda}^{m}\right)$ if and only if $B^{\lambda} \in\left(c_{0}: \ell_{1}\right)=\left(c: \ell_{1}\right)$. We therefore obtain by Lemma 5.1 with B^{λ} instead of A that $a \in\left\{c_{0}\left(\Delta_{\lambda}^{m}\right)\right\}^{\alpha}=\left\{c\left(\Delta_{\lambda}^{m}\right)\right\}^{\alpha}$ if and only if

$$
\begin{equation*}
\sup _{K \in \mathcal{F}} \sum_{n}\left|\sum_{k \in K} b_{n k}(\lambda, m)\right|<\infty \tag{29}
\end{equation*}
$$

Which leads us to the consequence that $\left\{c_{0}\left(\Delta_{\lambda}^{m}\right)\right\}^{\alpha}=\left\{c\left(\Delta_{\lambda}^{m}\right)\right\}^{\alpha}=b_{1}^{\lambda}$. This concludes proof.

Theorem 5.7 Define the sets

$$
\begin{gather*}
b_{2}^{\lambda}=\left\{a=\left(a_{k}\right) \in w: \sum_{j=k}^{\infty}\binom{m+n-j-1}{n-j} a_{j} \text { exists for each } k \in \mathbf{N} .\right\} \tag{30}\\
b_{3}^{\lambda}=\left\{a=\left(a_{k}\right) \in w: \sup _{n \in \mathbf{N}} \sum_{k=0}^{n-1}\left|g_{k}(n)\right|<\infty .\right\} \tag{31}\\
b_{4}^{\lambda}=\left\{a=\left(a_{k}\right) \in w: \sup _{n \in \mathbf{N}}\left|\frac{\lambda_{n}}{\lambda_{n}-\lambda_{n-1}} a_{n}\right|<\infty .\right\} \tag{32}\\
b_{5}^{\lambda}=\left\{a=\left(a_{k}\right) \in w: \lim _{n \rightarrow \infty} \sum_{k=0}^{n} \sum_{j=0}^{k}\binom{m+k-j-1}{k-j} a_{k} \text { exists. }\right\} \tag{33}\\
b_{6}^{\lambda}=\left\{a=\left(a_{k}\right) \in w: \lim _{n \rightarrow \infty} \sum_{k}\left|t_{n k}^{\lambda}\right|=\sum_{k}\left|\lim _{n \rightarrow \infty} t_{n k}^{\lambda}\right|\right\} \tag{34}
\end{gather*}
$$

where the matrice $T^{\lambda}=\left(t_{n k}^{\lambda}\right)$ is defined as follow:

$$
t_{n k}^{\lambda}=\left\{\begin{array}{cc}
a_{k}(n), & k<n \tag{35}\\
\frac{\lambda_{n}}{\lambda_{n}-\lambda_{n-1}} a_{n}, & k=n \\
0, & k>n
\end{array}\right.
$$

for all $k, n \in \mathbf{N}$ and the $a_{k}(n)$ is defined by
$a_{k}(n)=\lambda_{k}\left(\frac{1}{\lambda_{k}-\lambda_{k-1}} \sum_{j=k}^{n}\binom{m+j-k-1}{j-k} a_{j}-\frac{1}{\lambda_{k+1}-\lambda_{k}} \sum_{j=k}^{n}\binom{m+j-k-2}{j-k-1} a_{j}\right) y_{k}$
for $k<n$. Then $\left\{c_{0}\left(\Delta_{\lambda}^{m}\right)\right\}^{\beta}=b_{2}^{\lambda} \cap b_{3}^{\lambda} \cap b_{4}^{\lambda},\left\{c\left(\Delta_{\lambda}^{m}\right)\right\}^{\beta}=b_{2}^{\lambda} \cap b_{3}^{\lambda} \cap b_{4}^{\lambda} \cap b_{5}^{\lambda}$ and $\left\{\ell_{\infty}\left(\Delta_{\lambda}^{m}\right)\right\}^{\beta}=b_{2}^{\lambda} \cap b_{4}^{\lambda} \cap b_{6}^{\lambda}$.

Proof: We have from (5)

$$
\begin{aligned}
\sum_{k=0}^{n} a_{k} x_{k} & =\sum_{k=0}^{n}\left[\sum_{j=0}^{k}\binom{m+k-j-1}{k-j} \sum_{i=j-1}^{j}(-1)^{j-i} \frac{\lambda_{i}}{\lambda_{j}-\lambda_{j-1}} y_{i}\right] a_{k} \\
& =\sum_{k=0}^{n-1} \lambda_{k}\left[\frac{\sum_{j=k}^{n}\binom{m+j-k-1}{j-k} a_{j}}{\lambda_{k}-\lambda_{k-1}}-\frac{\sum_{j=k+1}^{n}\binom{m+j-k-2}{j-k-1} a_{j}}{\lambda_{k+1}-\lambda_{k}}\right] y_{k}+\frac{a_{n} \lambda_{n}}{\lambda_{n}-\lambda_{n-1}} y_{n} \\
& =\sum_{k=0}^{n-1} a_{k}(n) y_{k}+\frac{a_{n} \lambda_{n}}{\lambda_{n}-\lambda_{n-1}} y_{n}=\left(T^{\lambda} y\right)_{n} ;(n \in \mathbf{N})
\end{aligned}
$$

Then we derive that $a x=\left(a_{k} x_{k}\right) \in c s$ whenever $x=\left(x_{k}\right) \in c_{0}\left(\Delta_{\lambda}^{m}\right)$ if and only if $T^{\lambda} y \in c$ whenever $y=\left(y_{k}\right) \in c_{0}$. This means that $a=\left(a_{k}\right) \in\left\{c_{0}\left(\Delta_{\lambda}^{m}\right)\right\}^{\beta}$ if and only if $T^{\lambda} \in\left(c_{0}: c\right)$. Therefore, by using Lemma 5.2 , we obtain

$$
\begin{gather*}
\sum_{j=k}^{\infty}\binom{m+k-j-1}{k-j} a_{j} \text { exists for each } k \in \mathbf{N} \tag{37}\\
\sup _{n \in \mathbf{N}} \sum_{k=0}^{n-1}\left|a_{k}(n)\right|<\infty \tag{38}
\end{gather*}
$$

and

$$
\begin{equation*}
\sup _{k \in \mathbf{N}} \sum_{k=0}^{n-1}\left|\frac{\lambda_{k}}{\lambda_{k}-\lambda_{k-1}} a_{k}\right|<\infty . \tag{39}
\end{equation*}
$$

Hence we conclude that $\left\{c_{0}\left(\Delta_{\lambda}^{m}\right)\right\}^{\beta}=b_{2}^{\lambda} \cap b_{3}^{\lambda} \cap b_{4}^{\lambda}$.
Theorem $5.8\left\{c_{0}\left(\Delta_{\lambda}^{m}\right)\right\}^{\gamma}=\left\{c\left(\Delta_{\lambda}^{m}\right)\right\}^{\gamma}=\left\{\ell_{\infty}\left(\Delta_{\lambda}^{m}\right)\right\}^{\gamma}=b_{3}^{\lambda} \cap b_{4}^{\lambda}$.
Proof: It can be proved similalry as the proof of the Theorem 5.7 with Lemma 5.4 instead of Lemma 5.2.

Acknowledgements: We thank the anonymous referees for their comments and suggestions that improved the presentation of this paper.

References

[1] A. Wilansky, Summability Through Functional Analysis, North-Holland Mathematics Studies, Elsevier Science Publishers, Amsterdam, New York, (1984).
[2] A.H. Ganie and N.A. Sheikh, On some new sequence spaces of nonabsolute type and matrix transformations, Journal of Egyptian Math., 21(2013), 108-114.
[3] C. Asma and R. Çolak, On the Köthe-Toeplitz duals of some generalized sets of difference sequences, Demonstratio Math, 33(2000), 797-803.
[4] E. Malkowsky and S.D. Parashar, Matrix transformations in space of bounded and convergent difference sequence of order, Analysis, 17(1997), 87-97.
[5] F. Başar, Summability Theory and Its Applications, Bentham Science Publishers, (2011).
[6] I.J. Maddox, Elements of Functional Analysis (2nd ed.), The University Press, Cambridge, (1988).
[7] K. Raj and S.K. Sharma, Some generalized difference double sequence spaces defined by a sequence of Orlicz-function, Cubo, 14(2012), 167-189.
[8] K. Raj and A. Kilicman, On certain generalized paranormed spaces, J. Inequal. Appl., 37(2015).
[9] M. Mursaleen and A.K. Noman, On the spaces of λ-convergent and bounded sequences, Thai J. Math., 2(2010), 311-329.
[10] M. Mursaleen and A.K. Noman, On some new difference sequence spaces of non-absolute type, Math Comput. Mod., 52(2010), 603-617.
[11] S.A. Mohiuddine, K. Raj and A. Alotaibi, Some paranormed double difference sequence spaces for Orlicz functions and bounded-regular matrices, Abstr. Appl. Anal., Article ID 419064(2014), 10 pages.
[12] S. Ercan and Ç.A. Bektaş, On some sequence spaces of non-absolute type, Kragujevac Journal of Mathematics, 38(1) (2014), 195-202.

