Gen. Math. Notes, Vol. 5, No. 1, July 2011, pp.27-33
ISSN 2219-7184; Copyright ©ICSRS Publication, 2011
www.i-csrs.org
Available free online at http://www.geman.in

On Generalized Solutions of Boundary Value Problems for Some Class of Fourth Order Operator-Differential Equations on the Segment

R.Z. Humbataliyev
Institute of Mathematics and Mechanics of NAS of Azerbaijan, Baku
E-mail: rovshangumbataliev@rambler.ru

(Received: 3-6-11/Accepted:17-6-11)

Abstract

In the paper we give definition of a generalized solution of boundary value problems for some fourth order operator-differential equations, and prove the existence of generalized solution of this problem by the coefficients of the equations on the segment.

Keywords: Hilbert spaces, existence of generalized solution, operatordifferential equation.

1 Introduction

Let H be a separable Hilbert space, A be a positive-definite self-adjoint operator in H with domain of definition $D(A)$. By H_{γ} we denote a scale of Hilbert space that is generated by the operator A, i.e. $H_{\gamma}=D\left(A^{\gamma}\right),(\gamma \geq 0),(x, y)_{\gamma}=$ $\left(A^{\gamma} x, A^{\gamma} y\right), x, y \in D\left(A^{\gamma}\right)$. By $L_{2, \gamma}\left((a, b) ; H_{\gamma}\right)$ we denote a Hilbert space of the vector-function $f(t)$ defined in (a, b) almost everywhere, with values from H, measurable square integrable in the Bochner sense

$$
\|f\|_{L_{2}((a, b) ; H)}=\left(\int_{a}^{b}\|f\|_{\gamma}^{2} d t\right)^{1 / 2} .
$$

Then we determine the Hilbert spaces

$$
W_{2}^{2}((a, b) ; H)=\left\{u \mid u^{\prime \prime} \in L_{2}((a, b) ; H), A^{2} u \in L_{2}\left((a, b) ; H_{2}\right)\right\}
$$

with the norm

$$
\|u\|_{W_{2}^{2}((a, b) ; H)}=\left(\left\|u^{\prime \prime}\right\|_{L_{2}((a, b) ; H)}+\left\|A^{2} u\right\|_{L_{2}((a, b) ; H)}^{2}\right)^{1 / 2}
$$

Here and in future the derivatives are understood in the sense of distribution [1]. By $D^{4}((a, b) ; H)$ we denote a linear set of infinitely-differentiable functions with values from $H_{4}=D\left(A^{4}\right)$ having compact supports in (a, b). Further we determine the space $\stackrel{\circ}{W}_{2}^{2}((a, b) ; H) \subset W_{2}^{2}((a, b) ; H)$ in the following way.

$$
\stackrel{\circ}{W}_{2}^{2}((a, b) ; H)=\left\{u \mid u \in W_{2}^{2}((a, b) ; H), u^{(j)}(a)=u^{(j)}(b)=0, \quad j=0,1\right\} .
$$

In sequel, we'll assume that (a, b) is as $[0,1]$. Assume that

$$
\begin{gathered}
L_{2}((a, b) ; H) \equiv L_{2}([0,1] ; H), \quad W_{2}^{2}((a, b) ; H) \equiv W_{2}^{2}([0,1] ; H), \\
\stackrel{\circ}{W}_{2}^{2}((a, b) ; H) \equiv \stackrel{\circ}{W}_{2}^{2}([0,1] ; H), \quad D^{4}((a, b) ; H) \equiv D^{4}([0,1] ; H) .
\end{gathered}
$$

In the separable Hilbert space H we consider a polynomial operator bundle in the following form

$$
\begin{equation*}
P(\lambda)=\left(-\lambda^{2} E+A^{2}\right)^{2}+\sum_{j=0}^{4} A_{j} \lambda^{(4-j)} \tag{1}
\end{equation*}
$$

and the related boundary value problem

$$
\begin{gather*}
P(d / d t) u(t) \equiv\left(-\frac{d^{2}}{d t^{2}}+A^{2}\right)^{2} u(t)+\sum_{j=1}^{4} A_{j} u^{(4-j)}(t)=f(t), \quad t \in[0,1] \tag{2}\\
u^{(j)}(0)=\varphi_{j}, u^{(j)}(1)=\psi_{j}, \quad j=0,1 \tag{3}
\end{gather*}
$$

where A is a self-adjoint positive-definite operator, $A_{j}(j=\overline{1,4})$ are linear, generally speaking, unbounded operators in $H, f \in L_{2}([0,1] ; H), \varphi_{j}, \psi_{j} \in$ $H, j=0,1$.

In the paper we'll give a generalized solution of boundary value problem $(2),(3)$ and prove for it theorems on the existence of a generalized solution in terms of coefficients of the investigated fourth order differential equation on the seqment.

2 Auxiliary Facts

Denote

$$
\begin{array}{rlrl}
P_{0}\left(\frac{d}{d t}\right) u(t) & =\left(-\frac{d^{2}}{d t^{2}}+A^{2}\right)^{2} u(t), & u(t) & \in{\stackrel{\circ}{W_{2}}}_{2}^{2}([0,1] ; H), \\
P_{1}\left(\frac{d}{d t}\right) u(t) & =\sum_{j=0}^{4} A_{j} u^{(4-j)}(t), & u(t) \in{\stackrel{\circ}{W_{2}}}_{2}^{2}([0,1] ; H),
\end{array}
$$

and

$$
P u(t)=P_{0} u(t)+P_{1} u(t), \quad u(t) \in \stackrel{\circ}{W}_{2}^{2}([0,1] ; H)
$$

Now we formulate a lemma that shows the conditions on operator coefficients (1) under which the expression $P_{1}\left(\frac{d}{d t}\right) u(t)$ makes sense for the function from the class $\stackrel{\circ}{W}_{2}^{2}([0,1] ; H)$.

Lemma 2.1. [2]. Let A be a self-adjoint positive-definite operator, $B_{0}=A_{0}$, $B_{1}=A_{1} A^{-1}, B_{2}=A^{-1} A_{2} A^{-1}, B_{3}=A^{-2} A_{3} A^{-1}, B_{4}=A^{-2} A_{4} A^{-2}$ be bounded ope-rators in H. Then the bilinear functional $\left(P_{1}\left(\frac{d}{d t}\right) u, \xi\right)_{L_{2}([0,1] ; H)}$ determined on $D^{4}([0,1] ; H) \oplus \stackrel{\circ}{W}_{2}^{2}([0,1] ; H)$ continues to the space $W_{2}^{2}([0,1] ; H) \oplus$ $\stackrel{\circ}{W}_{2}^{2}([0,1] ; H)$ continuously up to the bilinear functional $P_{1}(u, \xi)$ acting in the following way

$$
\begin{gathered}
P_{1}(u, \xi)=\sum_{j=0}^{1}(-1)^{j}\left(A_{j} u^{(2-j)}, \xi^{\prime \prime}\right)_{L_{2}([0,1] ; H)}-\left(A_{2} u \prime, \xi^{\prime}\right)_{L_{2}([0,1] ; H)}+ \\
\\
+\sum_{j=3}^{4}\left(A_{j} u^{(4-j)}, \xi\right)_{L_{2}([0,1] ; H)}
\end{gathered}
$$

Lemma 2.2. Let all the conditions of lemma 1 be fulfilled. Then a bilinear functional $\left(P\left(\frac{d}{d t}\right) u, \xi\right)_{L_{2}([0,1] ; H)}$ determined on the space $D^{4}([0,1] ; H) \oplus$ $\stackrel{\circ}{W}_{2}^{2}([0,1] ; H)$ of the bilinear functional

$$
P(u, \xi)=(u, \xi)_{W_{2}^{2}([0,1] ; H)}+P_{1}(u, \xi)+2\left(A u^{\prime}, \xi^{\prime}\right)_{L_{2}([0,1] ; H)}
$$

where $P_{1}(u, \xi)$ is determined as in lemma 1.

Proof. Really

$$
P\left(\frac{d}{d t}\right) u(t)=P_{0} u(t)+P_{1} u(t) .
$$

Integrating the following expression by parts we get

$$
\begin{aligned}
& \left(P_{0}\left(\frac{d}{d t}\right) u, \xi\right)_{L_{2}([0,1] ; H)}=\left(\left(-\frac{d^{2}}{d t^{2}}+A^{2}\right)^{2} u, \xi\right)_{L_{2}([0,1] ; H)}= \\
& =\left(\left(\frac{d^{4}}{d t^{4}}-2 A^{2} \frac{d^{2}}{d t^{2}}+A^{4}\right) u, \xi\right)_{L_{2}([0,1] ; H)}=\left(u^{\prime \prime}, \xi^{\prime \prime}\right)_{L_{2}([0,1] ; H)}+ \\
& \quad+2\left(A u^{\prime}, A \xi^{\prime}\right)_{L_{2}([0,1] ; H)}+\left(A^{2} u, A^{2} \xi\right)_{L_{2}([0,1] ; H)}
\end{aligned}
$$

Since $A u^{\prime}(t) \in L_{2}([0,1] ; H), A \xi^{\prime}(t) \in L_{2}([0,1] ; H)$, the right hand side of the last equality continues by continuity from the space $D^{4}([0,1] ; H) \oplus \stackrel{\circ}{W}_{2}^{2}([0,1] ; H)$ to $W_{2}^{2}([0,1] ; H) \oplus \stackrel{\circ}{W}_{2}^{2}([0,1] ; H)$. The lemma is proved.
Determination. The vector function $u(t) \in W_{2}^{2}([0,1] ; H)$ is said to be a generalized solution of boundary value problem (2), (3) if it satisfies conditions of (3) and for any function $\xi(t) \in{\stackrel{\circ}{W_{2}}}_{2}^{2}([0,1] ; H)$ the equality

$$
P(u, \xi)=(f, \xi)_{L_{2}([0,1] ; H)}
$$

is fulfilled.
Now, let's cite a lemma on the solvability of a boundary value problem for an operator-differential equation representing the principal part of equation (3).

Lemma 2.3. Let $\varphi_{0}, \psi_{0} \in H_{3 / 2}=D\left(A^{3 / 2}\right), \varphi_{1}, \psi_{1} \in H_{1 / 2}=D\left(A^{1 / 2}\right)$. Then the boundary value problems

$$
\begin{gather*}
P_{0}\left(\frac{d}{d t}\right) u(t)=\left(-\frac{d^{2}}{d t^{2}}+A^{2}\right)^{2} u(t)=f(t), \quad t \in[0,1], \tag{4}\\
u^{(j)}(0)=\varphi_{j}, \quad u^{(j)}(1)=\psi_{j}, \quad j=0,1 \tag{5}
\end{gather*}
$$

has a unique solution.

3 Basic Results

Assuming the above mentioned facts we prove a theorem on the existence of a generalized solution of boundary value problem (2), (3).

Theorem 3.1. Let A be a self-adjoint positive-definite operator, $B_{0}=A_{0}$, $B_{1}=A_{1} A^{-1}, B_{2}=A^{-1} A_{2} A^{-1}, B_{3}=A^{-2} A_{3} A^{-1}, B_{4}=A^{-2} A_{4} A^{-2}$ be bounded operators in H and it holds the inequality

$$
\begin{equation*}
\delta=\sum_{j=0}^{4} \gamma_{j}\left\|B_{j}\right\|<1 \tag{6}
\end{equation*}
$$

where $\gamma_{0}=\gamma_{4}=1, \gamma_{1}=\gamma_{3}=1 / 2, \gamma_{2}=1 / 4$. Then boundary value problem (2), (3) has a unique generalized solution.

Proof. Show that by fulfilling inequality (6) for any $\xi \in \stackrel{\circ}{W}_{2}^{2}([0,1] ; H)$ it holds the inequality

$$
\left|\left(P\left(\frac{d}{d t}\right) \xi, \xi\right)_{L_{2}([0,1] ; H)}\right| \geq d\|\xi\|_{W_{2}^{2}([0,1] ; H)}^{2}, \quad(d>0) .
$$

Obviously

$$
\begin{aligned}
& \left(P\left(\frac{d}{d t}\right) \xi, \xi\right)_{L_{2}([0,1] ; H)}=\|\xi\|_{W_{2}^{2}([0,1] ; H)}^{2}+ \\
+ & 2\left\|A \xi^{\prime}\right\|_{L_{2}([0,1] ; H)}^{2}+\left(P_{1}\left(\frac{d}{d t}\right) \xi, \xi\right)_{L_{2}([0,1] ; H)}
\end{aligned}
$$

Therefore

$$
\begin{align*}
& \left|\left(P\left(\frac{d}{d t}\right) \xi, \xi\right)_{L_{2}([0,1] ; H)}\right| \geq\|\xi\|_{W_{2}^{2}([0,1] ; H)}^{2}+ \\
+ & 2\left\|A \xi^{\prime}\right\|_{L_{2}([0,1] ; H)}^{2}-\left(P_{1}\left(\frac{d}{d t}\right) \xi, \xi\right)_{L_{2}([0,1] ; H)} \tag{7}
\end{align*}
$$

Since

$$
\begin{aligned}
& \left|\left(P_{1}\left(\frac{d}{d t}\right) \xi, \xi\right)_{L_{2}([0,1] ; H)}\right| \leq\left|\sum_{j=0}^{1}\left(A_{j} \xi^{(2-j)}, \xi^{\prime \prime}\right)_{L_{2}([0,1] ; H)}\right|+ \\
& \quad+\left|\left(A_{2} \xi^{\prime}, \xi\right)_{L_{2}([0,1] ; H)}\right|+\left|\sum_{j=3}^{4}\left(A_{j} \xi^{(4-j)}, \xi\right)_{L_{2}([0,1] ; H)}\right|
\end{aligned}
$$

then

$$
\begin{gather*}
\left|\left(A_{2} \xi^{\prime}, \xi^{\prime}\right)_{L_{2}([0,1] ; H)}\right|=\left|\left(B_{2} A \xi^{\prime}, A \xi^{\prime}\right)_{L_{2}([0,1] ; H)}\right| \leq \\
\leq\left\|B_{2}\right\|\left\|A \xi^{\prime}\right\|_{L_{2}([0,1] ; H)}\left\|A \xi^{\prime}\right\|_{L_{2}([0,1] ; H)}=\left\|B_{2}\right\|\left\|A \xi^{\prime}\right\|_{L_{2}([0,1] ; H)}^{2} \tag{8}
\end{gather*}
$$

On the other hand

$$
\left\|A \xi^{\prime}\right\|_{L_{2}([0,1] ; H)}^{2} \leq \frac{1}{2}\left(\left\|\xi^{\prime \prime}\right\|_{L_{2}([0,1] ; H)}^{2}+\left\|A^{2} \xi\right\|_{L_{2}([0,1] ; H)}^{2}\right)
$$

Then

$$
2\left\|A \xi^{\prime}\right\|_{L_{2}([0,1] ; H)}^{2} \leq \frac{1}{2}\left(\left\|\xi^{\prime \prime}\right\|_{L_{2}([0,1] ; H)}^{2}+2\left\|A \xi^{\prime}\right\|_{L_{2}([0,1] ; H)}^{2}+\left\|A^{2} \xi\right\|_{L_{2}([0,1] ; H)}^{2}\right)
$$

or

$$
\left\|A \xi^{\prime}\right\|_{L_{2}([0,1] ; H)}^{2} \leq \frac{1}{4}\left(\left\|\xi^{\prime \prime}\right\|_{L_{2}([0,1] ; H)}^{2}+2\left\|A \xi^{\prime}\right\|_{L_{2}([0,1] ; H)}^{2}+\left\|A^{2} \xi\right\|_{L_{2}([0,1] ; H)}^{2}\right) .
$$

Allowing for the last inequality in (8) we get

$$
\begin{equation*}
\left\|\left(A_{2} \xi^{\prime}, \xi^{\prime}\right)\right\|_{L_{2}([0,1] ; H)}^{2} \leq\left\|B_{2}\right\| \frac{1}{4}\left(\|\xi\|_{W_{2}^{2}([0,1] ; H)}^{2}+2\left\|A \xi^{\prime}\right\|_{L_{2}([0,1] ; H)}^{2}\right) \tag{9}
\end{equation*}
$$

In the same way, for $j=0$ we have

$$
\begin{align*}
& \left|\left(A_{0} \xi^{\prime \prime}, \xi^{\prime \prime}\right)_{L_{2}([0,1] ; H)}\right| \leq\left\|B_{0}\right\|\left\|\xi^{\prime \prime}\right\|_{L_{2}([0,1] ; H)}^{2} \leq \\
& \leq\left\|B_{0}\right\|\left(\left\|\xi^{\prime \prime}\right\|_{W_{2}^{2}([0,1] ; H)}^{2}+2\left\|A \xi^{\prime}\right\|_{L_{2}([0,1] ; H)}^{2}\right) \tag{10}
\end{align*}
$$

for $j=1$

$$
\begin{gather*}
\left|\left(A_{1} \xi^{\prime}, \xi^{\prime}\right)_{L_{2}([0,1] ; H)}\right| \leq\left|\left(B_{1} A \xi^{\prime}, \xi^{\prime \prime}\right)_{L_{2}([0,1] ; H)}\right| \leq \\
\leq\left\|B_{1}\right\|\left\|A \xi^{\prime}\right\|_{L_{2}([0,1] ; H)}\left\|\xi^{\prime}\right\|_{L_{2}([0,1] ; H)} \leq \\
\leq\left\|B_{1}\right\| \frac{1}{2}\left(\left\|\xi^{\prime \prime}\right\|_{L_{2}([0,1] ; H)}^{2}+\left\|A \xi^{\prime}\right\|_{L_{2}([0,1] ; H)}\right) \leq \\
\leq \frac{1}{2}\left\|B_{1}\right\|\left(\|\xi\|_{W_{2}^{2}([0,1] ; H)}^{2}+2\left\|A \xi^{\prime}\right\|_{L_{2}([0,1] ; H)}^{2}\right), \tag{11}
\end{gather*}
$$

for $j=3$

$$
\begin{gather*}
\left|\left(A_{3} \xi^{\prime}, \xi^{\prime}\right)_{L_{2}([0,1] ; H)}\right|=\left|\left(B_{3} A \xi^{\prime}, A^{2} \xi\right)_{L_{2}([0,1] ; H)}\right| \leq \\
\leq\left\|B_{3}\right\|\|A \xi\|_{L_{2}([0,1] ; H)}\left\|A^{2} \xi\right\|_{L_{2}([0,1] ; H)} \leq \\
\leq\left\|B_{3}\right\| \frac{1}{2}\left(\left\|A \xi^{\prime}\right\|_{L_{2}([0,1] ; H)}^{2}+\left\|A^{2} \xi\right\|_{L_{2}([0,1] ; H)}^{2}\right) \leq \\
\leq \frac{1}{2}\left\|B_{3}\right\|\left(\|\xi\|_{W_{2}^{2}([0,1] ; H)}^{2}+2\left\|A \xi^{\prime}\right\|_{L_{2}([0,1] ; H)}^{2}\right) \tag{12}
\end{gather*}
$$

for $j=4$

$$
\begin{gather*}
\left|\left(A_{4} \xi, \xi\right)_{L_{2}([0,1] ; H)}\right|=\left|\left(B_{4} A^{2} \xi, A^{2} \xi\right)_{L_{2}([0,1] ; H)}\right| \leq\left\|B_{4}\right\|\left\|A^{2} \xi\right\|_{L_{2}([0,1] ; H)}^{2}= \\
=\left\|B_{4}\right\|\left(\|\xi\|_{W_{2}^{2}([0,1] ; H)}^{2}+2\left\|A^{2} \xi^{\prime}\right\|_{L_{2}([0,1] ; H)}^{2}\right) \tag{13}
\end{gather*}
$$

Thereby, allowing for inequalities (9)-(13) in (7) we get

$$
\left|\left(P\left(\frac{d}{d t}\right) \xi, \xi\right)_{L_{2}([0,1] ; H)}\right| \geq(1-\delta)\left(\|\xi\|_{W_{2}^{2}([0,1] ; H)}^{2}+2\left\|A \xi^{\prime}\right\|_{L_{2}([0,1] ; H)}^{2}\right) .
$$

Now, we search for the generalized solution of boundary value problem (2), (3) in the form of

$$
u(t)=v_{0}(t)+v(t)
$$

where $v_{0}(t)$ is a generalized solution of boundary value problem (4), (5) and $v(t) \in \stackrel{\circ}{W}_{2}^{2}([0,1] ; H)$. Then, to determine $v(t)$ we get

$$
\begin{gathered}
P\left(v_{0}+v, \xi\right)=\left(v_{0}+v, \xi\right)_{W_{2}^{2}([0,1] ; H)}+P_{1}\left(v_{0}+v, \xi\right)+2\left(A v_{0}^{\prime}+A v^{\prime}, A \xi\right)_{L_{2}([0,1] ; H)} \equiv \\
\equiv\left(v_{0}, \xi\right)_{W_{2}^{2}([0,1] ; H)}+(v, \xi)_{W_{2}^{2}([0,1] ; H)}+P_{1}\left(v_{0}, \xi\right)+P_{1}(v, \xi)+ \\
+2\left(A v_{0}^{\prime}, A \xi^{\prime}\right)_{L_{2}([0,1] ; H)}=(f, \xi)_{L_{2}([0,1] ; H)} .
\end{gathered}
$$

Hence we get

$$
\begin{equation*}
\left(v_{0}, \xi\right)_{W_{2}^{2}([0,1] ; H)}+P_{1}(v, \xi)+2\left(A v^{\prime}, A \xi\right)_{L_{2}([0,1] ; H)}=-P_{1}\left(v_{0}, \xi\right) \tag{14}
\end{equation*}
$$

The right hand side of relation (14) determines a continuous functional in $W_{2}^{2}([0,1] ; H) \oplus \stackrel{\circ}{W}_{2}^{2}([0,1] ; H)$, the left-hand side uses equality (7) and satisfies the conditions of Lax-Milgram theorem [3]. Therefore there exists a unique vector - function $v(t) \in \stackrel{\circ}{W}_{2}^{2}([0,1] ; H)$ satisfying equality (14), i.e. $u(t)=$ $v(t)+v_{0}(t)$ is a generalized solution of boundary value problem (2), (3). The theorem is proved.

References

[1] J.L. Lions and E. Majenes, Inhomogeneous Boundary Value Problems and their Applications, Mir, (1971).
[2] R.Z. Humbataliyev, On generalized solution of fourth order operatordifferential equations, Izv. AN Azerb., Ser. Fiz.-Tech. and Math., XVIII(1998), 18-21.
[3] L. Bers, F. John and M. Schechter, Partial Equations. / M., Mir, (1966).

