Gen. Math. Notes, Vol. 25, No. 2, December 2014, pp.31-40
ISSN 2219-7184; Copyright (c)ICSRS Publication, 2014
www.i-csrs.org
Available free online at http://www.geman.in

Coefficient Estimates for Bi-Mocanu-Convex Functions of Complex Order

Janusz Sokó ${ }^{1}$, Nanjundan Magesh ${ }^{2}$ and Jagadeesan Yamini ${ }^{3}$
${ }^{1}$ Department of Mathematics, Rzeszów University of Technology
Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland E-mail: jsokol@prz.edu.pl
${ }^{2}$ Post-Graduate and Research Department of Mathematics
Government Arts College for Men, Krishnagiri-635001, Tamilnadu, India
E-mail: nmagi_2000@yahoo.co.in
${ }^{3}$ Department of Mathematics, Govt First Grade College
Vijayanagar, Bangalore-560104, Karnataka, India
E-mail: yaminibalaji@gmail.com

(Received: 8-5-14 / Accepted: 11-7-14)

Abstract

In this paper, we propose to investigate the coefficient estimates for certain subclasses bi-Mocanu-convex functions in the open unit disk \mathbb{U}. The results presented in this paper would generalize and improve some recent works.

Keywords: Analytic functions, Univalent functions, Bi-univalent functions, Bi-starlike and Bi-convex functions, Bi-Mocanu-convex functions.

1 Introduction

Let \mathcal{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disc $\mathbb{U}=\{z: z \in \mathbb{C}$ and $|z|<1\}$. Further, by \mathcal{S} we shall denote the class of all functions in \mathcal{A} which are univalent in \mathbb{U}.

For two functions f and g, analytic in \mathbb{U}, we say that the function $f(z)$ is subordinate to $g(z)$ in \mathbb{U}, and write

$$
f(z) \prec g(z) \quad(z \in \mathbb{U})
$$

if there exists a Schwarz function $w(z)$, analytic in \mathbb{U}, with

$$
w(0)=0 \quad \text { and } \quad|w(z)|<1 \quad(z \in \mathbb{U})
$$

such that

$$
f(z)=g(w(z)) \quad(z \in \mathbb{U})
$$

In particular, if the function g is univalent in \mathbb{U}, the above subordination is equivalent to

$$
f(0)=g(0) \quad \text { and } \quad f(\mathbb{U}) \subset g(\mathbb{U})
$$

Some of the important and well-investigated subclasses of the univalent function class \mathcal{S} includes (for example) the class $\mathcal{S}^{*}(\beta)$ of starlike functions of order $\beta(0 \leqq \beta<1)$ in \mathbb{U} and the class $\mathcal{S}^{*}(\alpha)$ of strongly starlike functions of order $\alpha(0<\alpha \leqq 1)$ in \mathbb{U}. For every $f \in \mathcal{S}$ there exists an inverse function f^{-1} which is defined in some neighborhood of the origin. According to the Koebe one-quarter theorem f^{-1} is defined in some disk containing the disk $|w|<1 / 4$. In some cases this inverse function can be extended to whole \mathbb{U}. Clearly, f^{-1} is also univalent.

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U}. We denote by Σ the class of all bi-univalent functions in \mathbb{U}. We observe that for $f \in \Sigma$ of the form (1) the inverse function f^{-1} has the Taylor-Maclaurin series expansion

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots \tag{2}
\end{equation*}
$$

Analogous to the function class \mathcal{S}, the bi-univalent function class Σ includes (for example) the class $\mathcal{S}_{\Sigma}^{*}(\beta)$ of bi-starlike functions of order $\beta(0 \leqq \beta<1)$ in \mathbb{U} and the class $\mathcal{S S}_{\Sigma}^{*}(\alpha)$ of bi-strongly starlike functions of order $\alpha(0<\alpha \leqq 1)$ in \mathbb{U}. For a brief history, interesting examples and other fascinating subclasses of the bi-univalent function class Σ see [1, 6, 12] and the related references therein.

In fact, the study of the coefficient problems involving bi-univalent functions was revived recently by Srivastava et al. [12]. Various subclasses of the bi-univalent function class Σ were introduced and non-sharp estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ of functions in these subclasses were found in several recent investigations (see, for example, [1, 2, [4] - [9] and [11] - [13]). The aforecited all these papers on the subject were motivated by the pioneering work of Srivastava et al. [12]. But the coefficient problem for each of the following Taylor-Maclaurin coefficients $\left|a_{n}\right|(n \in \mathbb{N} \backslash\{1,2\}$; $\mathbb{N}:=\{1,2,3, \cdots\})$ is still an open problem.

Motivated by the aforecited works (especially [4, 13]), we introduce the following subclass $\mathcal{M}_{\Sigma}^{\varphi, \psi}(\gamma ; \lambda)$ of the analytic function class \mathcal{A}.

Definition 1.1 Let $f \in \mathcal{A}$ and the functions $\varphi, \psi: \mathbb{U} \rightarrow \mathbb{C}$ be convex univalent functions such that

$$
\min \{\Re(\varphi(z)), \Re(\psi(z))\}>0 \quad(z \in \mathbb{U}) \quad \text { and } \quad \varphi(0)=\psi(0)=1
$$

Assume that $\gamma \in \mathbb{C} \backslash\{0\}, 0 \leqq \lambda \leqq 1$. We say that $f \in \Sigma$ is in the class $\mathcal{M}_{\Sigma}^{\varphi, \psi}(\gamma ; \lambda)$ if the following conditions are satisfied:

$$
\begin{equation*}
1+\frac{1}{\gamma}\left((1-\lambda) \frac{z f^{\prime}(z)}{f(z)}+\lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)-1\right) \in \varphi(\mathbb{U}) \text { for all } z \in \mathbb{U} \tag{3}
\end{equation*}
$$

and for $g=f^{-1}$ we have

$$
\begin{equation*}
1+\frac{1}{\gamma}\left((1-\lambda) \frac{w g^{\prime}(w)}{g(w)}+\lambda\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)-1\right) \in \psi(\mathbb{U}) \text { for all } w \in \mathbb{U} \tag{4}
\end{equation*}
$$

We note that, for the different choices of the functions φ and ψ, we get interesting known or new subclasses of the analytic function class Σ. For example, if we set

$$
\varphi(z)=\left(\frac{1+z}{1-z}\right)^{\alpha} \quad \text { and } \quad \psi(z)=\left(\frac{1-z}{1+z}\right)^{\alpha} \quad(0<\alpha \leqq 1 ; z \in \mathbb{U})
$$

then the class $\mathcal{M}_{\Sigma}^{\varphi, \psi}(\gamma ; \lambda)$ becomes the class $\mathcal{S S}_{\Sigma}^{*}(\alpha, \gamma ; \lambda)$ of bi-strongly Mocanuconvex functions of complex order $\gamma(\gamma \in \mathbb{C} \backslash\{0\})$. Also, $f \in \mathcal{S S}_{\Sigma}^{*}(\alpha, \gamma ; \lambda)$ if the following conditions are satisfied :

$$
\begin{aligned}
f \in \Sigma, \quad & \left|\arg \left(1+\frac{1}{\gamma}\left((1-\lambda) \frac{z f^{\prime}(z)}{f(z)}+\lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)-1\right)\right)\right|<\frac{\alpha \pi}{2} \\
& (0<\alpha \leqq 1 ; 0 \leqq \lambda \leqq 1 ; \gamma \in \mathbb{C} \backslash\{0\} ; z \in \mathbb{U})
\end{aligned}
$$

and for $g=f^{-1}$ we have

$$
\begin{aligned}
& \left|\arg \left(1+\frac{1}{\gamma}\left((1-\lambda) \frac{w g^{\prime}(w)}{g(w)}+\lambda\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)-1\right)\right)\right|<\frac{\alpha \pi}{2} \\
& \quad(0<\alpha \leqq 1 ; 0 \leqq \lambda \leqq 1 ; \gamma \in \mathbb{C} \backslash\{0\} ; w \in \mathbb{U}) .
\end{aligned}
$$

Similarly, if we let
$\varphi(z)=\frac{1+(1-2 \beta) z}{1-z} \quad$ and $\quad \psi(z)=\frac{1-(1-2 \beta) z}{1+z} \quad(0 \leqq \beta<1 ; z \in \mathbb{U})$,
in the class $\mathcal{M}_{\Sigma}^{\varphi, \psi}(\gamma ; \lambda)$ then we get $\mathcal{M}_{\Sigma}(\beta, \gamma ; \lambda)$ (which are now referred to as bi-Mocanu-convex functions of complex order $\gamma(\gamma \in \mathbb{C} \backslash\{0\}))$. Further, we say that $f \in \mathcal{M}_{\Sigma}(\beta, \gamma ; \lambda)$ if the following conditions are satisfied :

$$
\begin{array}{ll}
f \in \Sigma, \quad & \Re\left(1+\frac{1}{\gamma}\left((1-\lambda) \frac{z f^{\prime}(z)}{f(z)}+\lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)-1\right)\right)>\beta \\
& (0 \leqq \beta<1 ; 0 \leqq \lambda \leqq 1 ; \gamma \in \mathbb{C} \backslash\{0\} ; z \in \mathbb{U})
\end{array}
$$

and

$$
\begin{aligned}
& \Re\left(1+\frac{1}{\gamma}\left((1-\lambda) \frac{w g^{\prime}(w)}{g(w)}+\lambda\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)-1\right)\right)>\beta \\
& (0 \leqq \beta<1 ; 0 \leqq \lambda \leqq 1 ; \gamma \in \mathbb{C} \backslash\{0\} ; w \in \mathbb{U})
\end{aligned}
$$

where g is the extension of f^{-1} to \mathbb{U}.
In addition, we observe that,
$\mathcal{M}_{\Sigma}^{\varphi, \psi}(1 ; 0)=: \mathcal{B}_{\Sigma}^{\varphi, \psi}, \quad($ see Bulut [4] $)$, and
$\mathcal{S}_{\Sigma}^{*}(\alpha, 1 ; \lambda)=: \mathcal{S}_{\Sigma}^{*}(\alpha ; \lambda)$ and $\mathcal{M}_{\Sigma}(\beta, 1 ; \lambda)=: \mathcal{M}_{\Sigma}(\beta ; \lambda)$, (see Li and Wang [8]).

In order to derive our main result, we have to recall here the following lemma.

Lemma 1.2 [10] Let the function $\varphi(z)$ given by

$$
\varphi(z)=\sum_{n=1}^{\infty} \varphi_{n} z^{n} \quad(z \in \mathbb{U})
$$

be convex univalent in \mathbb{U}. Suppose also that the function $h(z)$ given by

$$
h(z)=\sum_{n=1}^{\infty} h_{n} z^{n} \quad(z \in \mathbb{U})
$$

is holomorphic in \mathbb{U}. If

$$
h(z) \prec \varphi(z) \quad(z \in \mathbb{U}),
$$

then

$$
\left|h_{n}\right| \leqq\left|\varphi_{1}\right| \quad(n \in \mathbb{N})
$$

In our investigation of the estimates for the Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in the above-defined general bi-univalent function class $\mathcal{M}_{\Sigma}^{\varphi, \psi}(\gamma ; \lambda)$, which indeed provides a bridge between the classes of biconvex functions in \mathbb{U} and bi-starlike functions in \mathbb{U}. Several related classes are also considered, and connection to earlier known results are made.

2 Main Result

In this section we state and prove our general results involving the bi-univalent function class $\mathcal{M}_{\Sigma}^{\varphi, \psi}(\gamma ; \lambda)$ given by Definition 1.1.

Theorem 2.1 Let $f(z)$ be of the form (1). If $f \in \mathcal{M}_{\Sigma}^{\varphi, \psi}(\gamma ; \lambda)$, then

$$
\begin{equation*}
\left|a_{2}\right| \leqq \min \left\{\frac{|\gamma|}{1+\lambda} \sqrt{\frac{\left|\varphi^{\prime}(0)\right|^{2}+\left|\psi^{\prime}(0)\right|^{2}}{2}}, \sqrt{\frac{|\gamma|\left[\left|\varphi^{\prime}(0)\right|+\left|\psi^{\prime}(0)\right|\right]}{2(1+\lambda)}}\right\} \tag{5}
\end{equation*}
$$

and

$$
\begin{array}{r}
\left|a_{3}\right| \leqq \min \left\{\frac{|\gamma|^{2}\left[\left|\varphi^{\prime}(0)\right|^{2}+\left|\psi^{\prime}(0)\right|^{2}\right]}{2(1+\lambda)^{2}}+\frac{|\gamma|\left[\left|\varphi^{\prime}(0)\right|+\left|\psi^{\prime}(0)\right|\right]}{4(1+2 \lambda)}\right. \\
\left.\frac{|\gamma|\left[(3+5 \lambda)\left|\varphi^{\prime}(0)\right|+(1+3 \lambda)\left|\psi^{\prime}(0)\right|\right]}{4(1+2 \lambda)(1+\lambda)}\right\} \tag{6}
\end{array}
$$

Proof: From Definition 1.1, we thus have

$$
1+\frac{1}{\gamma}\left((1-\lambda) \frac{z f^{\prime}(z)}{f(z)}+\lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)-1\right) \in \varphi(\mathbb{U}) \text { for all } z \in \mathbb{U}
$$

and for $g=f^{-1}$ we have

$$
1+\frac{1}{\gamma}\left((1-\lambda) \frac{w g^{\prime}(w)}{g(w)}+\lambda\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)-1\right) \in \psi(\mathbb{U}) \text { for all } w \in \mathbb{U}
$$

Setting

$$
\begin{equation*}
p(z)=1+\frac{1}{\gamma}\left((1-\lambda) \frac{z f^{\prime}(z)}{f(z)}+\lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)-1\right) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
q(w)=1+\frac{1}{\gamma}\left((1-\lambda) \frac{w g^{\prime}(w)}{g(w)}+\lambda\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)-1\right) \tag{8}
\end{equation*}
$$

We deduce so that

$$
p(0)=\varphi(0)=1, \quad p(z) \in \varphi(\mathbb{U}) \quad(z \in \mathbb{U})
$$

and

$$
q(0)=\psi(0)=1, \quad q(w) \in \psi(\mathbb{U}) \quad(w \in \mathbb{U})
$$

Therefore, from Definition 1.1, we have

$$
p(z) \prec \varphi(z) \quad(z \in \mathbb{U})
$$

and

$$
q(w) \prec \psi(z) \quad(w \in \mathbb{U}) .
$$

According to Lemma 1.2, we obtain

$$
\left|p_{m}\right|=\left|\frac{p^{(m)}(0)}{m!}\right| \leqq\left|\varphi^{\prime}(0)\right| \quad(m \in \mathbb{N})
$$

and

$$
\left|q_{m}\right|=\left|\frac{q^{(m)}(0)}{m!}\right| \leqq\left|\psi^{\prime}(0)\right| \quad(m \in \mathbb{N})
$$

On the other hand, we find from (7) and (8) that

$$
(1-\lambda) \frac{z f^{\prime}(z)}{f(z)}+\lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)=1+\gamma(p(z)-1) \quad(z \in \mathbb{U})
$$

and

$$
(1-\lambda) \frac{w g^{\prime}(w)}{g(w)}+\lambda\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)=1+\gamma(q(w)-1) \quad(w \in \mathbb{U})
$$

respectively.
Next, we suppose that

$$
p(z)=1+p_{1} z+p_{2} z^{2}+\ldots
$$

and

$$
q(w)=1+q_{1} w+q_{2} w^{2}+\ldots .
$$

Now, upon equating the coefficients of $(1-\lambda) z f^{\prime}(z) / f(z)+\lambda\left(1+z f^{\prime \prime}(z) / f^{\prime}(z)\right)$ with those of $1+\gamma(p(z)-1)$ and the coefficients of $(1-\lambda) w g^{\prime}(w) / g(w)+$ $\lambda\left(1+w g^{\prime \prime}(w) / g^{\prime}(w)\right)$ with those of $1+\gamma(q(w)-1)$, we get

$$
\begin{gather*}
\frac{1}{\gamma}(\lambda+1) a_{2}=p_{1} \tag{9}\\
\frac{1}{\gamma}\left[(2+4 \lambda) a_{3}-(1+3 \lambda) a_{2}^{2}\right]=p_{2} \tag{10}\\
-\frac{1}{\gamma}(\lambda+1) a_{2}=q_{1} \tag{11}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{1}{\gamma}\left[(3+5 \lambda) a_{2}^{2}-(2+4 \lambda) a_{3}\right]=q_{2} . \tag{12}
\end{equation*}
$$

From (9) and (11), we get

$$
\begin{equation*}
p_{1}=-q_{1} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{2(1+\lambda)^{2}}{\gamma^{2}} a_{2}^{2}=p_{1}^{2}+q_{1}^{2} \tag{14}
\end{equation*}
$$

From (10) and (12), we obtain

$$
\begin{equation*}
\frac{2(1+\lambda)}{\gamma} a_{2}^{2}=p_{2}+q_{2} \tag{15}
\end{equation*}
$$

Therefore, we find from (14) and (15) that

$$
\begin{equation*}
a_{2}^{2}=\frac{\gamma^{2}\left(p_{1}^{2}+q_{1}^{2}\right)}{2(1+\lambda)^{2}} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{2}^{2}=\frac{\gamma\left(p_{2}+q_{2}\right)}{2(1+\lambda)} . \tag{17}
\end{equation*}
$$

From (16) and (17) we have

$$
\left|a_{2}\right|^{2} \leqq \frac{|\gamma|^{2}\left[\left|\varphi^{\prime}(0)\right|^{2}+\left|\psi^{\prime}(0)\right|^{2}\right]}{2(1+\lambda)^{2}}
$$

and

$$
\left|a_{2}\right|^{2} \leqq \frac{|\gamma|\left[\left|\varphi^{\prime}(0)\right|+\left|\psi^{\prime}(0)\right|\right]}{2(1+\lambda)}
$$

respectively. So we get the desired estimate on $\left|a_{2}\right|$ as asserted in (5).
Next, in order to find the bound on $\left|a_{3}\right|$, by subtracting (12) from (10), we get

$$
\begin{equation*}
\frac{1}{\gamma}(4+8 \lambda) a_{3}-\frac{1}{\gamma}(4+8 \lambda) a_{2}^{2}=p_{2}-q_{2} . \tag{18}
\end{equation*}
$$

Upon substituting the values of a_{2}^{2} from (16) and (17) into (18), we have

$$
a_{3}=\frac{\gamma^{2}\left(p_{1}^{2}+q_{1}^{2}\right)}{2(1+\lambda)^{2}}+\frac{\gamma\left(p_{2}-q_{2}\right)}{4(1+2 \lambda)}
$$

and

$$
a_{3}=\frac{\gamma\left[(3+5 \lambda) p_{2}+(1+3 \lambda) q_{2}\right]}{(4+8 \lambda)(1+\lambda)}
$$

respectively. We thus find that

$$
\left|a_{3}\right| \leqq \frac{|\gamma|^{2}\left[\left|\varphi^{\prime}(0)\right|^{2}+\left|\psi^{\prime}(0)\right|^{2}\right]}{2(1+\lambda)^{2}}+\frac{|\gamma|\left[\left|\varphi^{\prime}(0)\right|+\left|\psi^{\prime}(0)\right|\right]}{4(1+2 \lambda)}
$$

and

$$
\left|a_{3}\right| \leqq \frac{|\gamma|\left[(3+5 \lambda)\left|\varphi^{\prime}(0)\right|+(1+3 \lambda)\left|\psi^{\prime}(0)\right|\right]}{4(1+2 \lambda)(1+\lambda)}
$$

This completes the proof of Theorem 2.1.
Remark 2.2 For $\gamma=1$ and $\lambda=0$ Theorem 2.1 becomes the results obtained in [4, Theorem 2.1].

If we choose

$$
\varphi(z)=\left(\frac{1+z}{1-z}\right)^{\alpha} \quad \text { and } \quad \psi(z)=\left(\frac{1-z}{1+z}\right)^{\alpha} \quad(0<\alpha \leqq 1, z \in \mathbb{U})
$$

in Theorem 2.1, we have the following corollary.
Corollary 2.3 Let $f(z)$ be of the form (1) and in the class $\mathcal{S S}_{\Sigma}^{*}(\alpha, \gamma ; \lambda)$, $\gamma \in \mathbb{C} \backslash\{0\}, 0<\alpha \leqq 1$ and $0 \leqq \lambda \leqq 1$. Then

$$
\left|a_{2}\right| \leqq \sqrt{\frac{2 \alpha|\gamma|}{1+\lambda}} \quad \text { and } \quad\left|a_{3}\right| \leqq \frac{2 \alpha|\gamma|}{1+\lambda}
$$

Taking $\gamma=1$ in Corollary 2.3, we get the following corollary for the class $\mathcal{S} \mathcal{S}_{\Sigma}^{*}(\alpha, 1 ; \lambda)=: \mathcal{S}_{\Sigma}^{*}(\alpha ; \lambda)$ of bi-strongly Mocanu-convex functions.

Corollary 2.4 Let $f(z)$ be of the form (1) and in the class $\mathcal{S} \mathcal{S}_{\Sigma}^{*}(\alpha ; \lambda), 0<$ $\alpha \leqq 1$ and $0 \leqq \lambda \leqq 1$. Then

$$
\left|a_{2}\right| \leqq \sqrt{\frac{2 \alpha}{1+\lambda}} \quad \text { and } \quad\left|a_{3}\right| \leqq \frac{2 \alpha}{1+\lambda}
$$

Remark 2.5 Corollary 2.4 is an improvement of [8, Theorem 2.2]. Further, for $\lambda=0$ (bi-strongly starlike function) Corollary 2.4, would obviously yields an improvement of [3, Theorem 2.1].

If we set
$\varphi(z)=\frac{1+(1-2 \beta) z}{1-z} \quad$ and $\quad \psi(z)=\frac{1-(1-2 \beta) z}{1+z} \quad(0 \leqq \beta<1, z \in \mathbb{U})$
in Theorem 2.1, we readily have the following corollary.

Corollary 2.6 Let $f(z)$ be of the form (11) and in the class $\mathcal{M}_{\Sigma}(\beta, \gamma ; \lambda)$, $0 \leqq \beta<1, \gamma \in \mathbb{C} \backslash\{0\}$ and $0 \leqq \lambda \leqq 1$. Then

$$
\left|a_{2}\right| \leqq \sqrt{\frac{2|\gamma|(1-\beta)}{1+\lambda}} \quad \text { and } \quad\left|a_{3}\right| \leqq \frac{2|\gamma|(1-\beta)}{1+\lambda}
$$

Taking $\gamma=1$ in Corollary 2.6, we get the following corollary for the class $\mathcal{M}_{\Sigma}(\beta, 1 ; \lambda)=: \mathcal{M}_{\Sigma}(\beta ; \lambda)$ of bi-Mocanu-convex functions.

Corollary 2.7 Let $f(z)$ be of the form (1) and in the class $\mathcal{M}_{\Sigma}(\beta ; \lambda), 0 \leqq$ $\beta<1$ and $0 \leqq \lambda \leqq 1$. Then

$$
\left|a_{2}\right| \leqq \sqrt{\frac{2(1-\beta)}{1+\lambda}} \quad \text { and } \quad\left|a_{3}\right| \leqq \frac{2(1-\beta)}{1+\lambda}
$$

Remark 2.8 Corollary 2.7 is an improvement of [8, Theorem 3.2]. Further, for $\lambda=0$ (bi-starlike function) Corollary 2.7, would obviously yields an improvement of [3, Theorem 4.1]. Similarly, various other interesting corollaries and consequences of our main result can be derived by choosing different φ and ψ. The details involved may be left to the reader.

References

[1] R.M. Ali, S.K. Lee, V. Ravichandran and S. Supramanian, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., 25(3) (2012), 344-351.
[2] D. Bansal and J. Sokół, Coefficient bound for a new class of analytic and bi-univalent functions, J. Frac. Cal. Appl., 5(1) (2014), 122-128.
[3] D.A. Brannan and T.S. Taha, On some classes of bi-univalent functions, Studia Univ. Babeş-Bolyai Math., 31(2) (1986), 70-77.
[4] S. Bulut, Coefficient estimates for a class of analytic and bi-univalent functions, Novi Sad J. Math., 43(2) (2013), 59-65.
[5] M. Çağlar, H. Orhan and N. Yağmur, Coefficient bounds for new subclasses of bi-univalent functions, Filomat, 27(7) (2013), 1165-1171.
[6] E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal., 2(2013), 49-60.
[7] B.A. Frasin and M.K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24(9) (2011), 1569-1573.
[8] X.F. Li and A.P. Wang, Two new subclasses of bi-univalent functions, Int. Math. Forum, 7(29-32) (2012), 1495-1504.
[9] G. Murugusundaramoorthy, N. Magesh and V. Prameela, Coefficient bounds for certain subclasses of bi-univalent function, Abstr. Appl. Anal., Art. ID 573017(2013), 3.
[10] W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc., 2(48) (1943), 48-82.
[11] H.M. Srivastava, S. Bulut, M. Çağlar and N. Yağmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27(5) (2013), 831-842.
[12] H.M. Srivastava, A.K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23(10) (2010), 11881192.
[13] Q.H. Xu, H.G. Xiao and H.M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput., 218(23) (2012), 11461-11465.

