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Abstract
The notion of ternary semigroups was introduced by Lehmer in 1932. Any

semigroup can be reduced to a ternary semigroup but a ternary semigroup does
not necessarily reduce to a semigroup. Our aim in this paper is to develop
a body of results on the minimality and maximality of ordered quasi-ideals in
ordered ternary semigroups, that can be used like the more classical results on
unordered structures which studied by Choosuwan and Chinram in 2012.
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1 Introduction and Preliminaries

The literature of ternary algebraic system was introduced by Lehmer [18] in
1932. He investigated certain ternary algebraic systems called triplexes which
turn out to be ternary groups. The notion of ternary semigroups was known
to Banach (cf. [20]). He showed by an example that a ternary semigroup does
not necessarily reduce to an ordinary semigroup. We can see that any semi-
group can be reduced to a ternary semigroup. The study of ordered ternary
semigroups began about 2000 by several authors, for example, Iampan [15],
Chinram [8], Yaqoob, Abdullah, Rehman and Naeem [26], and Akram and
Yaqoob [1]. The theory of different types of ideals in (ordered) semigroups
and in (ordered) ternary semigroups was studied by several researches such
as: In 1965, Sioson [23] studied ideal theory in ternary semigroups. He also
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introduced the notion of regular ternary semigroups and characterized them
by using the notion of quasi-ideals. In 1995, Dixit and Dewan [11] studied
the properties of quasi-ideals and bi-ideals in ternary semigroups. In 1998,
the concept and notion of ordered quasi-ideals in ordered semigroups was in-
troduced by Kehayopulu [17] as follows: Let S be an ordered semigroup. A
subsemigroup Q of S is called an ordered quasi-ideal of S if (SQ]∩ (QS] ⊆ Q,
and (Q] ⊆ Q. In 2000, Cao and Xu [4] characterized minimal and maximal
left ideals in ordered semigroups, and gave some characterizations of mini-
mal and maximal left ideals in ordered semigroups. In 2002, Arslanov and
Kehayopulu [2] gave some characterizations of minimal and maximal ideals
in ordered semigroups. In 2004, Iampan and Siripitukdet [16] characterized
(0-)minimal and maximal ordered left ideals in ordered Γ-semigroups, and
gave some characterizations of (0-)minimal and maximal ordered left ideals
in ordered Γ-semigroups. In 2007, Iampan [13] characterized (0-)minimal and
maximal lateral ideals in ternary semigroups. In 2008, Iampan [14] charac-
terized (0-)minimal and maximal ordered quasi-ideals in ordered semigroups,
and gave some characterizations of (0-)minimal and maximal ordered quasi-
ideals in ordered semigroups. Dutta, Kar and Maity [12] studied some in-
teresting properties of regular ternary semigroups, completely regular ternary
semigroups, intra-regular ternary semigroups and characterized them by using
various ideals of ternary semigroups. In 2009, Bashir and Shabir [3] intro-
duced the notions of pure ideals, weakly pure ideals in ternary semigroups.
They also defined purely prime ideals of a ternary semigroup and studied
some properties of these ideals. In 2010, Iampan [15] introduced the concept
of ordered ideal extensions in ordered ternary semigroups. In 2011, Saelee
and Chinram [21] studied rough, fuzzy and rough fuzzy bi-ideals in ternary
semigroups. In 2012, Changphas [5] studied minimal quasi-ideals in ternary
semigroups. Choosuwan and Chinram [9] gave some characterizations of min-
imal and maximal quasi-ideals in ternary semigroups. Chinram, Baupradist
and Saelee [7] characterized minimal and maximal bi-ideals in ordered ternary
semigroups. Daddi and Pawar introduced the concepts of ordered quasi-ideals,
ordered bi-ideals in ordered ternary semigroups, and studied their properties.
Lekkoksung and Lekkoksung [19] gave some characterizations of intra-regular
ordered ternary semigroups in terms of bi-ideals and quasi-ideals, bi-ideals
and left ideals, and bi-ideals and right ideals in ordered ternary semigroups.
Changphas [6] studied the properties of quasi-ideals and bi-ideals in ordered
ternary semigroups. In 2013, Sanborisoot and Changphas [22] introduced the
concepts of pure ideals, weakly pure ideals and purely prime ideals in ordered
ternary semigroups.

The notion of quasi-ideals in semigroups was first introduced by Steinfeld
[24] in 1956, and it has been widely studied. In 1956, Steinfeld [25] gave some
characterizations of 0-minimal quasi-ideals in semigroups. The concept of a
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(0-)minimal and a maximal one-sided ideal or ideal is the really interested and
important thing in the many algebraic structures. The main purpose of this
paper is to develop a body of results on the minimality and maximality of
ordered quasi-ideals in ordered ternary semigroups, that can be used like the
more classical results on unordered structures which studied by Choosuwan
and Chinram [9].

Before going to prove the main results we need the following definitions
that we use later.

Definition 1.1. A nonempty set T is called a ternary semigroup if there
exists a ternary operation [ ] : T×T×T → T , written as (x1, x2, x3) 7→ [x1x2x3],
satisfying the following identity for any x1, x2, x3, x4, x5 ∈ T ,

[x1x2[x3x4x5]] = [x1[x2x3x4]x5] = [[x1x2x3]x4x5].

For nonempty subsets A,B and C of a ternary semigroup T , let

[ABC] := {[abc] | a ∈ A, b ∈ B, and c ∈ C}.

If A = {a}, then we write [{a}BC] as [aBC] and similarly if B = {b} or
C = {c}, we write [AbC] and [ABc], respectively. For the sake of simplicity,
we write [x1x2x3] as x1x2x3 and [ABC] as ABC.

Definition 1.2. A nonempty subset S of a ternary semigroup T is called a
ternary subsemigroup of T if SSS ⊆ S.

For any positive integers m and n with m ≤ n and any elements x1, x2, ..., x2n

and x2n+1 of a ternary semigroup [23], we can write

[x1x2 . . . x2n+1] = [x1 . . . xmxm+1xm+2 . . . x2n+1]

= [x1 . . . [[xmxm+1xm+2]xm+3xm+4] . . . x2n+1].

Example 1.3. [11] Let T = {−i, 0, i}. Then T is a ternary semigroup
under the multiplication over complex number while T is not a semigroup under
complex number multiplication.

Example 1.4. [11] Let O = ( 0 0
0 0 ) , I = ( 1 0

0 1 ) , A1 = ( 1 0
0 0 ) , A2 = ( 0 1

0 0 ) , A3 =
( 0 0
1 0 ), and A4 = ( 0 0

0 1 ). Then T = {O, I, A1, A2, A3, A4} is a ternary semigroup
under matrix multiplication.

Definition 1.5. A partially ordered ternary semigroup T is called an or-
dered ternary semigroup if for any a, b, x, y ∈ T ,

a ≤ b⇒ axy ≤ bxy, xay ≤ xby, and xya ≤ xyb.
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For a subset H of an ordered ternary semigroup T , we denote

(H] := {t ∈ T | t ≤ h for some h ∈ H}.

If H = {a}, we also write ({a}] as (a].

Definition 1.6. An element z of an ordered ternary semigroup T is called
a zero element if

(1) zxy = xzy = xyz = z for all x, y ∈ T , and

(2) z ≤ x for all x ∈ T .

If z ∈ T is a zero element, it is denoted by 0.

Definition 1.7. A nonempty subset I of an ordered ternary semigroup T
is called an ordered left (resp., ordered lateral, ordered right) ideal of T if

(1) TTI ⊆ I (resp., TIT ⊆ I, ITT ⊆ I), and

(2) (I] ⊆ I.

A nonempty subset I of an ordered ternary semigroup T is called an ordered
ideal of T if I is an ordered left, an ordered right and an ordered lateral ideal
of T .

Definition 1.8. A nonempty subset Q of an ordered ternary semigroup T
is called an ordered quasi-ideal of T if

(1) (TTQ] ∩ (TQT ] ∩ (QTT ] ⊆ Q,

(2) (TTQ] ∩ (TTQTT ] ∩ (QTT ] ⊆ Q, and

(3) (Q] ⊆ Q.

We can easily prove that {0} is the smallest ordered quasi-ideal of an or-
dered ternary semigroup T with a zero element and it is called a zero ordered
quasi-ideal of T . Moreover, 0 ∈ Q for all ordered quasi-ideal Q of T .

Definition 1.9. A nonempty subset B of an ordered ternary semigroup T
is called an ordered bi-ideal of T if

(1) BTBTB ⊆ B, and

(2) (B] ⊆ B.

We have the following lemma.

Lemma 1.10. [10] For subsets A,B and C of an ordered ternary semigroup
T , the following statements hold.



46 Pachara Jailoka et al.

(1) A ⊆ (A].

(2) If A ⊆ B, then (A] ⊆ (B].

(3) ((A]] = (A].

(4) (A](B](C] ⊆ (ABC] and ((A](B](C]] ⊆ (ABC].

(5) (A ∪B] = (A] ∪ (B].

(6) (A ∩B] ⊆ (A] ∩ (B].

Lemma 1.11. Let T be an ordered ternary semigroup. Then the following
statements hold.

(1) Every ordered left, ordered lateral and ordered right ideal of T is an or-
dered quasi-ideal of T .

(2) The intersection of an ordered left, an ordered lateral and an ordered
right ideal of T is an ordered quasi-ideal of T .

(3) Every ordered quasi-ideal of T is an ordered bi-ideal of T .

Proof. Let L,R and M be an ordered left, an ordered right and an ordered
lateral ideal of T , respectively.
(1) We see that (L] = L, (R] = R and (M ] = M . Thus (TTL] ∩ (TLT ∪
TTLTT ]∩ (LTT ] ⊆ (TTL] ⊆ (L] = L, (TTR]∩ (TRT ∪ TTRTT ]∩ (RTT ] ⊆
(RTT ] ⊆ (R] = R, and (TTM ] ∩ (TMT ∪ TTMTT ] ∩ (TTM ] ⊆ (TMT ∪
T (TMT )T ] ⊆ (M ∪ TMT ] ⊆ (M ∪M ] = (M ] = M . Hence, L,R and M are
ordered quasi-ideals of T .
(2) Suppose that Q = L ∩M ∩ R and let l ∈ L,m ∈ M and r ∈ R. Then
rml ∈ RML ⊆ TTL∩TMT ∩RTT ⊆ L∩M ∩R = Q, so Q 6= ∅. We see that
(Q] = (L ∩M ∩R] ⊆ (L] ∩ (M ] ∩ (R] = L ∩M ∩R = Q. Thus

(TTQ] ∩ (TQT ∪ TTQTT ] ∩ (TTQ] ⊆ (TTL] ∩ (TMT ∪ TTMTT ] ∩ (RTT ]

⊆ (L] ∩ (M ] ∩ (R]

= L ∩M ∩R

= Q.

Hence, Q is an ordered quasi-ideal of T .
(3) Let B be an ordered quasi-ideal of T . Then BTBTB ⊆ (TTT )TB ⊆ TTB,
BTBTB ⊆ TTBTT ⊆ TBT ∪ TTBTT and BTBTB ⊆ BT (TTT ) ⊆ BTT .
Since B is an ordered quasi-ideal of T , we have

BTBTB ⊆ TTB ∩ (TBT ∪ TTBTT ) ∩BTT

⊆ (TTB] ∩ (TBT ∪ TTBTT ] ∩ (BTT ]

⊆ B
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and (B] = B. Hence, B is an ordered bi-ideal of T .

Theorem 1.12. Let A be a nonempty subset of an ordered ternary semi-
group T . Then the following statements hold.

(1) (TTA], (ATT ] and (TAT ∪TTATT ] are an ordered left, an ordered right
and an ordered lateral ideals of T , respectively.

(2) (TTA∪A], (ATT ∪A] and (TAT ∪ TTATT ∪A] are an ordered left, an
ordered right and an ordered lateral ideals of T containing A, respectively.

Proof. (1) Since A 6= ∅, we have (TTA] 6= ∅, (ATT ] 6= ∅ and (TAT∪TTATT ] 6=
∅. We see that ((TTA]] = (TTA], ((ATT ]] = (ATT ] and ((TAT ∪TTATT ]] =
(TAT ∪ TTATT ]. Thus TT (TTA] = (T ](T ](TTA] ⊆ ((TTT )TA] ⊆ (TTA],
(ATT ]TT = (ATT ](T ](T ] ⊆ (AT (TTT )] ⊆ (ATT ] and

T (TAT ∪ TTATT ]T = (T ](TAT ∪ TTATT ](T ]

⊆ (T (TAT ∪ TTATT )T ]

⊆ (T (TAT )T ∪ T (TTATT )T ]

= ((TTT )A(TTT ) ∪ TTATT ]

⊆ (TAT ∪ TTATT ].

Hence, (TTA], (ATT ] and (TAT ∪ TTATT ] are an ordered left, an ordered
right and an ordered lateral ideals of T , respectively.
(2) The proof is almost similar to the proof of (1).

Theorem 1.13. If Q is an ordered quasi-ideal of an ordered ternary semi-
group T , then it is the intersection of an ordered left, an ordered right and an
ordered lateral ideal of T .

Proof. Assume that Q is an ordered quasi-ideal of T and let L = (TTQ ∪
Q], R = (QTT ∪Q] and M = (TQT ∪TTQTT ∪Q]. By Theorem 1.12 (2), we
have L,R and M are an ordered left, an ordered right and an ordered lateral
ideals of T containing Q, respectively. Thus Q ⊆ L ∩M ∩ R. Since Q is an
ordered quasi-ideal of T , we have

L ∩M ∩R = (TTQ ∪Q] ∩ (TQT ∪ TTQTT ∪Q] ∩ (QTT ∪Q]

= ((TTQ] ∩ (TQT ∪ TTQTT ] ∩ (QTT ]) ∪ (Q]

⊆ Q ∪ (Q]

= Q.

Hence, Q = L ∩M ∩R, so Q is the intersection of an ordered left, an ordered
right and an ordered lateral ideal of T .
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Theorem 1.14. Let T be an ordered ternary semigroup. Then the intersec-
tion of arbitrary nonempty family of ordered quasi-ideals of T is either empty
or an ordered quasi-ideal of T .

Proof. Let {Qi | i ∈ I} be a nonempty family of ordered quasi-ideals of T and
let Q =

⋂
i∈I Qi 6= ∅. We claim that Q is an ordered quasi-ideal of T . Since Qi

is an ordered quasi-ideal of T for all i ∈ I, we have (TTQ]∩(TQT ∪TTQTT ]∩
(QTT ] ⊆ (TTQi] ∩ (TQiT ∪ TTQiTT ] ∩ (QiTT ] ⊆ Qi for all i ∈ I. Thus

(TTQ] ∩ (TQT ∪ TTQTT ] ∩ (QTT ] ⊆
⋂

i∈I Qi = Q

and (Q] = (
⋂

i∈I Qi] ⊆
⋂

i∈I(Qi] =
⋂

i∈I Qi = Q. Hence, Q is an ordered
quasi-ideal of T .

Definition 1.15. Let A be a nonempty subset of an ordered ternary semi-
group T . The intersection of all ordered quasi-ideals of T containing A is called
the ordered quasi-ideal of T generated by A and is denoted by Q(A). Moreover,
Q(A) is the smallest ordered quasi-ideal of T containing A. If A = {a}, we
also write Q({a}) as Q(a).

Theorem 1.16. Let A be a nonempty subset of an ordered ternary semi-
group T . Then Q(A) = (A]∪((TTA]∩(TAT∪TTATT ]∩(ATT ]). In particular,
Q(a) = (a] ∪ ((TTa] ∩ (TaT ∪ TTaTT ] ∩ (aTT ]) for all a ∈ T .

Proof. By Theorem 1.12 (2), we have (A∪ TTA], (A∪ATT ] and (A∪ TAT ∪
TTATT ] are an ordered left, an ordered right and an ordered lateral ideals of
T containing A, respectively. By Lemma 1.11 (2), we have (A ∪ TTA] ∩ (A ∪
TAT ∪TTATT ]∩(A∪ATT ] is an ordered quasi-ideal of T containing A. Thus

Q(A) ⊆ (A ∪ TTA] ∩ (A ∪ TAT ∪ TTATT ] ∩ (A ∪ ATT ]

= (A] ∪ ((TTA] ∩ (TAT ∪ TTATT ] ∩ (ATT ]).

By the proof of Theorem 1.13, we have

(A] ∪ ((TTA] ∩ (TAT ∪ TTATT ] ∩ (ATT ])

= (A ∪ TTA] ∩ (A ∪ TAT ∪ TTATT ] ∩ (A ∪ ATT ]

⊆ (Q(A) ∪ TT (Q(A))] ∩ (Q(A) ∪ T (Q(A))T ∪ TT (Q(A))TT ] ∩
(Q(A) ∪ (Q(A))TT ]

⊆ Q(A).

Hence, Q(A) = (A] ∪ ((TTA] ∩ (TAT ∪ TTATT ] ∩ (ATT ]).
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2 Minimality of Ordered Quasi-Ideals in Or-

dered Ternary Semigroups

In this section, we characterize the relationship between the minimality of
ordered quasi-ideals and a quasi-simple and a 0-quasi-simple ordered ternary
semigroups.

Definition 2.1. Let T be an ordered ternary semigroup without a zero ele-
ment. Then T is called quasi-simple if T has no proper ordered quasi-ideals.

Theorem 2.2. Let T be an ordered ternary semigroup without a zero ele-
ment. Then the following statements are equivalent.

(1) T is quasi-simple.

(2) (TTa] ∩ (TaT ∪ TTaTT ] ∩ (aTT ] = T for all a ∈ T .

(3) Q(a) = T for all a ∈ T .

Proof. (1)⇒(2) Assume that T is quasi-simple and let a ∈ T . By Theorem 1.12
(1), we have (TTa], (aTT ] and (TaT ∪TTaTT ] are an ordered left, an ordered
right and an ordered lateral ideals of T , respectively. By Lemma 1.11 (2), we
have (TTa]∩ (TaT ∪ TTaTT ]∩ (aTT ] is an ordered quasi-ideal of T . Since T
is quasi-simple, we have

(TTa] ∩ (TaT ∪ TTaTT ] ∩ (aTT ] = T .

(2)⇒(3) Assume that (TTa]∩ (TaT ∪TTaTT ]∩ (aTT ] = T for all a ∈ T . Let
a ∈ T . Then (TTa]∩ (TaT ∪TTaTT ]∩ (aTT ] = T . By Theorem 1.16, we get

T = (TTa] ∩ (TaT ∪ TTaTT ] ∩ (aTT ]

⊆ (a] ∪ ((TTa] ∩ (TaT ∪ TTaTT ] ∩ (aTT ])

= Q(a).

Hence, T = Q(a).
(3)⇒(1) Assume that Q(a) = T for all a ∈ T . Let Q be an ordered quasi-ideal
of T and let a ∈ Q. Then Q(a) = T , and so Q(a) ⊆ Q ⊆ T . Hence, T = Q.
Therefore, T is quasi-simple.

Definition 2.3. Let T be an ordered ternary semigroup with a zero element,
T 3 6= {0} and |T | > 1. Then T is called 0-quasi-simple if T has no nonzero
proper ordered quasi-ideals.

Theorem 2.4. Let T be an ordered ternary semigroup with a zero element,
T 3 6= {0} and |T | > 1. Then T is 0-quasi-simple if and only if Q(a) = T for
all a ∈ T \ {0}.
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Proof. Assume that T is 0-quasi-simple and let a ∈ T \{0}. Then Q(a) 6= {0}.
Since T is 0-quasi-simple, we have Q(a) = T .

Conversely, assume that Q(a) = T for all a ∈ T \ {0}. Let Q be a nonzero
ordered quasi-ideal of T and a ∈ Q \ {0}. Then Q(a) = T and Q(a) ⊆ Q ⊆ T .
This implies that T = Q. Hence, T is 0-quasi-simple.

Definition 2.5. An ordered quasi-ideal Q of an ordered ternary semigroup
T without a zero element is called a minimal ordered quasi-ideal of T if there
is no an ordered quasi-ideal A of T such that A ⊂ Q. Equivalently, if for any
ordered quasi-ideal A of T such that A ⊆ Q, we have A = Q.

We also define a minimal ordered left, a minimal ordered lateral and a
minimal ordered right ideal of an ordered ternary semigroup without a zero
element in the same way of a minimal ordered quasi-ideal.

Theorem 2.6. Let Q be an ordered quasi-ideal of an ordered ternary semi-
group T without a zero element. Then Q is a minimal ordered quasi-ideal of T
if and only if it is the intersection of a minimal ordered left, a minimal ordered
right and a minimal ordered lateral ideal of T .

Proof. Assume that Q is a minimal ordered quasi-ideal of T . Then

(TTQ] ∩ (TQT ∪ TTQTT ] ∩ (QTT ] ⊆ Q.

By Theorem 1.12 (1), (TTQ], (QTT ] and (TQT ∪TTQTT ] are an ordered left,
an ordered right and an ordered lateral ideal of T , respectively, By Lemma 1.11
(2), (TTQ] ∩ (TQT ∪ TTQTT ] ∩ (QTT ] is an ordered quasi-ideal of T . Since
Q is a minimal ordered quasi-ideal of T , we have

(TTQ] ∩ (TQT ∪ TTQTT ] ∩ (QTT ] = Q.

We claim that (TTQ] is a minimal ordered left ideal of T . Let L be an ordered
left ideal of T such that L ⊆ (TTQ]. Then (TTL] ⊆ (L] = L ⊆ (TTQ]. Thus

(TTL]∩(TQT ∪TTQTT ]∩(QTT ] ⊆ (TTQ]∩(TQT ∪TTQTT ]∩(QTT ] = Q.

Since (TTL]∩(TQT∪TTQTT ]∩(QTT ] is an ordered quasi-ideal of T and Q is a
minimal ordered quasi-ideal of T , we have (TTL]∩(TQT∪TTQTT ]∩(QTT ] =
Q. Thus Q ⊆ (TTL] and so (TTQ] ⊆ (TT (TTL]] ⊆ (TT (L]] = (TTL] ⊆ L.
Hence, L = (TTQ]. Therefore, (TTQ] is a minimal ordered left ideal of T . A
similar proof holds for the other two case, (QTT ] and (TQT ∪ TTQTT ] are
minimal ordered right and minimal ordered lateral ideal of T , respectively.

Conversely, let Q = L∩M∩R where L,R and M are a minimal ordered left,
a minimal ordered right and a minimal ordered lateral ideal of T , respectively.
By Lemma 1.11 (2), we have Q is an ordered quasi-ideal of T . Let A be an
ordered quasi-ideal of T such that A ⊆ Q. By Theorem 1.12 (1), we have
(TTA], (ATT ] and (TAT ∪ TTATT ] are an ordered left, an ordered right and
an ordered lateral ideal of T , respectively. Now,
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(TTA] ⊆ (TTQ] ⊆ (TTL) ⊆ (L] = L.

Since L is a minimal ordered left ideal of T , we have (TTA] = L. Similarly,
(ATT ] = R and (TAT ∪ TTATT ] = M . Since A is an ordered quasi-ideal of
T , we have

Q = L ∩M ∩R = (TTA] ∩ (TAT ∪ TTATT ] ∩ (ATT ] ⊆ A.

This implies that A = Q. Hence, Q is a minimal ordered quasi-ideal of T .

Definition 2.7. A nonzero ordered quasi-ideal Q of an ordered ternary
semigroup T with a zero element is called a 0-minimal ordered quasi-ideal
of T if there is no a nonzero ordered quasi-ideal A of T such that A ⊂ Q.
Equivalently, if for any nonzero ordered quasi-ideal A of T such that A ⊆ Q,
we have A = Q.

We also define a 0-minimal ordered left, a 0-minimal ordered lateral and
a 0-minimal ordered right ideal of an ordered ternary semigroup with a zero
element in the same way of a 0-minimal ordered quasi-ideal.

Theorem 2.8. Let T be an ordered ternary semigroup with a zero element.
Then the intersection of a 0-minimal ordered left, a 0-minimal ordered right
and a 0-minimal ordered lateral ideal of T is either {0} or a 0-minimal ordered
quasi-ideal of T .

Proof. Let Q = L ∩M ∩R 6= {0} where L,R and M are a 0-minimal ordered
left, a 0-minimal ordered right and a 0-minimal ordered lateral ideal of T ,
respectively. By Lemma 1.11 (2), we have Q is an ordered quasi-ideal of T .
Let A be a nonzero ordered quasi-ideal of T such that A ⊆ Q. By Theorem 1.12
(1), we have (TTA], (ATT ] and (TAT∪TTATT ] are an ordered left, an ordered
right and an ordered lateral ideal of T , respectively. Thus we have the following
two cases:
Case 1: (TTA] = {0}, (ATT ] = {0}, or (TAT ∪ TTATT ] = {0}.
If (TTA] = {0}, then (TTA] = {0} ⊆ A. Thus A is a nonzero ordered left
ideal of T . Since A ⊆ Q ⊆ L and L is a 0-minimal ordered left ideal of T ,
we have A = L. This implies that A = Q. Similarly, if (ATT ] = {0} or
(TAT ∪ TTATT ] = {0}, then A = Q.
Case 2: (TTA] 6= {0}, (ATT ] 6= {0}, and (TAT ∪ TTATT ] 6= {0}.
Now,

(TTA] ⊆ (TTQ] ⊆ (TTL) ⊆ (L] = L.

Since L is a 0-minimal ordered left ideal of T , we have (TTA] = L. Similarly,
(ATT ] = R and (TAT ∪ TTATT ] = M . Since A is an ordered quasi-ideal of
T , we have

Q = L ∩M ∩R = (TTA] ∩ (TAT ∪ TTATT ] ∩ (ATT ] ⊆ A.
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This implies that A = Q. Hence, Q is a 0-minimal ordered quasi-ideal of
T .

Theorem 2.9. Let Q be an ordered quasi-ideal of an ordered ternary semi-
group T without a zero element. If Q is quasi-simple, then Q is a minimal
ordered quasi-ideal of T .

Proof. Assume that Q is quasi-simple and let A be an ordered quasi-ideal of
T such that A ⊆ Q. Now,

(QQA]∩(QAQ∪QQAQQ]∩(AQQ] ⊆ (TTA]∩(TAT ∪TTATT ]∩(ATT ] ⊆ A

and (A] ∩ Q ⊆ (A] = A. Thus A is an ordered quasi-ideal of Q. Since Q is
quasi-simple, we have A = Q. Hence, Q is a minimal ordered quasi-ideal of
T .

Theorem 2.10. Let Q be a nonzero ordered quasi-ideal of an ordered ternary
semigroup T with a zero element. If Q is 0-quasi-simple, then Q is a 0-minimal
ordered quasi-ideal of T .

Proof. Assume that Q is 0-quasi-simple and let A be a nonzero ordered quasi-
ideal of T such that A ⊆ Q. Now,

(QQA]∩(QAQ∪QQAQQ]∩(AQQ] ⊆ (TTA]∩(TAT ∪TTATT ]∩(ATT ] ⊆ A

and (A]∩Q ⊆ (A] = A. Thus A is a nonzero ordered quasi-ideal of Q. Since Q
is 0-quasi-simple, we have A = Q. Hence, Q is a 0-minimal ordered quasi-ideal
of T .

Theorem 2.11. Let T be an ordered ternary semigroup without a zero ele-
ment having proper ordered quasi-ideals. Then every proper ordered quasi-ideal
of T is minimal if and only if the intersection of any two distinct proper ordered
quasi-ideals is empty.

Proof. Let Q1 and Q2 be two distinct proper ordered quasi-ideals of T . By
assumption, we have that Q1 and Q2 are minimal. If Q1 ∩ Q2 6= ∅, then by
Theorem 1.14, Q1∩Q2 is an ordered quasi-ideal of T . Since Q1∩Q2 ⊆ Q1 and
Q1 is minimal, we have Q1∩Q2 = Q1. Since Q1∩Q2 ⊆ Q2 and Q2 is minimal,
we have Q1 = Q1 ∩Q2 = Q2. That is a contradiction. Hence, Q1 ∩Q2 = ∅.

Conversely, let Q be a proper ordered quasi-ideal of T and let A be an
ordered quasi-ideal of T such that A ⊆ Q. Then A is a proper ordered quasi-
ideal of T . If A 6= Q, then by assumption, A = A ∩ Q = ∅. That is a
contradiction. Hence, A = Q. Therefore, Q is a minimal ordered quasi-ideal
of T .
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Theorem 2.12. Let T be an ordered ternary semigroup with a zero element
having nonzero proper ordered quasi-ideals. Then every nonzero proper ordered
quasi-ideal of T is 0-minimal if and only if the intersection of any two distinct
nonzero proper ordered quasi-ideals is {0}.

Proof. Let Q1 and Q2 be two distinct nonzero proper ordered quasi-ideals of
T . By assumption, we have that Q1 and Q2 are 0-minimal. If Q1 ∩Q2 6= {0},
then by Theorem 1.14, Q1 ∩ Q2 is a nonzero ordered quasi-ideal of T . Since
Q1∩Q2 ⊆ Q1 and Q1 is 0-minimal, we have Q1∩Q2 = Q1. Since Q1∩Q2 ⊆ Q2

and Q2 is 0-minimal, we have Q1 = Q1 ∩ Q2 = Q2. That is a contradiction.
Hence, Q1 ∩Q2 = {0}.

Conversely, let Q be a nonzero proper ordered quasi-ideal of T and let
A be a nonzero ordered quasi-ideal of T such that A ⊆ Q. Then A is a
nonzero proper ordered quasi-ideal of T . If A 6= Q, then by assumption,
A = A ∩Q = {0}. That is a contradiction. Hence, A = Q. Therefore, Q is a
0-minimal ordered quasi-ideal of T .

3 Maximality of Ordered Quasi-Ideals in Or-

dered Ternary Semigroups

In this section, we characterize the relationship between the maximality of
ordered quasi-ideals and the union U of all proper ordered quasi-ideals in
ordered ternary semigroups without a zero element and the union U0 of all
nonzero proper ordered quasi-ideals in ordered ternary semigroups with a zero
element.

Definition 3.1. A proper ordered quasi-ideal Q of an ordered ternary semi-
group T is called a maximal ordered quasi-ideal of T if there is no a proper
ordered quasi-ideal A of T such that Q ⊂ A. Equivalently, if for any proper
ordered quasi-ideal A of T such that Q ⊆ A, we have A = Q. Equivalently, if
for any ordered quasi-ideal A of T such that Q ⊂ A, we have A = T .

Theorem 3.2. Let Q be a proper ordered quasi-ideal of an ordered ternary
semigroup T . If either

(1) T \Q = {a} for some a ∈ T or

(2) T \Q ⊆ (TTb] ∩ (TbT ∪ TTbTT ] ∩ (bTT ] for all b ∈ T \Q,

then Q is a maximal ordered quasi-ideal of T .

Proof. Let A be an ordered quasi-ideal of T such that Q ⊂ A.
Case 1: T \Q = {a} for some a ∈ T .
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Since Q ⊂ A, we have ∅ 6= A \ Q ⊆ T \ Q = {a}. Thus A \ Q = {a}. Hence,
A = Q ∪ (A \Q) = Q ∪ {a} = Q ∪ (T \Q) = T .
Case 2: T \Q ⊆ (TTb] ∩ (TbT ∪ TTbTT ] ∩ (bTT ] for all b ∈ T \Q.
Let b ∈ A \Q ⊆ T \Q because A \Q 6= ∅. Thus

T \Q ⊆ (TTb] ∩ (TbT ∪ TTbTT ] ∩ (bTT ]

⊆ (TTA] ∩ (TAT ∪ TTATT ] ∩ (ATT ]

⊆ A.

Hence, T = Q ∪ (T \Q) ⊆ Q ∪ A = A. This implies that A = T .
Therefore, Q is a maximal ordered quasi-ideal of T .

Theorem 3.3. If Q is a maximal ordered quasi-ideal of an ordered ternary
semigroup T and Q ∪ Q(a) is an ordered quasi-ideal of T for all a ∈ T \ Q,
then either

(1) T \Q ⊆ (a] and a3 ∈ Q for some a ∈ T \Q, and (TTb]∩(TbT ∪TTbTT ]∩
(bTT ] ⊆ Q for all b ∈ T \Q or

(2) T \Q ⊆ Q(a) for all a ∈ T \Q.

Proof. Assume that Q is a maximal ordered quasi-ideal of an ordered ternary
semigroup T and Q ∪ Q(a) is an ordered quasi-ideal of T for all a ∈ T \ Q.
Then we consider the following two cases:
Case 1: (TTa] ∩ (TaT ∪ TTaTT ] ∩ (aTT ] ⊆ Q for some a ∈ T \Q.
Then a3 ∈ (TTa]∩(TaT ∪TTaTT ]∩(aTT ] ⊆ Q, so a3 ∈ Q. By Theorem 1.16,
we have

Q ∪ (a] = (Q ∪ ((TTa] ∩ (TaT ∪ TTaTT ] ∩ (aTT ])) ∪ (a]

= Q ∪ (((TTa] ∩ (TaT ∪ TTaTT ] ∩ (aTT ]) ∪ (a])

= Q ∪Q(a).

Thus Q∪(a] is an ordered quasi-ideal of T . Since a ∈ T\Q, we have Q ⊂ Q∪(a].
Since Q is a maximal ordered quasi-ideal of T , we have Q ∪ (a] = T . Thus
T \Q ⊆ (a]. Next, we let b ∈ T \Q. Then b ≤ a. Thus

(TTb] ∩ (TbT ∪ TTbTT ] ∩ (bTT ] ⊆ (TTa] ∩ (TaT ∪ TTaTT ] ∩ (aTT ] ⊆ Q.

Case 2: (TTa] ∩ (TaT ∪ TTaTT ] ∩ (aTT ] * Q for all a ∈ T \Q.
Let a ∈ T \Q. Then Q ⊂ Q ∪Q(a). Since Q ∪Q(a) is an ordered quasi-ideal
of T and Q is maximal, we have Q ∪Q(a) = T . Hence, T \Q ⊆ Q(a).

For an ordered ternary semigroup T without a zero element, the union of
all proper ordered quasi-ideals of T is denoted by U .
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Lemma 3.4. Let T be an ordered ternary semigroup without a zero element.
Then T = U if and only if Q(a) 6= T for all a ∈ T .

Proof. Assume that T = U and let a ∈ T . Then a ∈ U , so a ∈ Q for some
proper ordered quasi-ideal Q of T . Hence, Q(a) ⊆ Q 6= T , that is Q(a) 6= T .

Conversely, assume that Q(a) 6= T for all a ∈ T . Then Q(a) ⊆ U for all
a ∈ T , so a ∈ U for all a ∈ T . Hence, T = U .

Theorem 3.5. Let T be an ordered ternary semigroup without a zero ele-
ment. Then one and only one of the following four conditions is satisfied:

(1) U is not an ordered quasi-ideal of T .

(2) Q(a) 6= T for all a ∈ T .

(3) There exists a ∈ T such that Q(a) = T, (a] * (TTa]∩ (TaT ∪ TTaTT ]∩
(aTT ], and a3 ∈ U , T is not quasi-simple, T \ U = {x ∈ T | Q(x) = T},
and U is the unique maximal ordered quasi-ideal of T .

(4) T \ U ⊆ Q(a) for all a ∈ T \ U , T is not quasi-simple, T \ U = {x ∈ T |
Q(x) = T}, and U is the unique maximal ordered quasi-ideal of T .

Proof. Assume that U is an ordered quasi-ideal of T . We consider the following
two cases:

Case 1: U = T .

By Lemma 3.4, the condition (2) holds.

Case 2: U 6= T .

Then T is not quasi-simple. We claim that U is the unique maximal ordered
quasi-ideal of T . Let Q be an ordered quasi-ideal of T such that U ⊂ Q.
If Q 6= T , then Q ⊆ U . That is a contradiction. Thus Q = T , so U is a
maximal ordered quasi-ideal of T . Next, assume that A is a maximal ordered
quasi-ideal of T . Then A 6= T , so A ⊆ U ⊂ T . Since A is maximal, we have
A = U . Therefore, U is the unique maximal ordered quasi-ideal of T . Since
U 6= T , we have Q(a) = T for all a ∈ T \ U and Q(a) 6= T for all a ∈ U . Thus
T \ U = {x ∈ T | Q(x) = T} and so U ∪Q(x) = T is an ordered quasi-ideal of
T for all x ∈ T \ U . By Theorem 3.3, we have the following two cases:

(i) T \U ⊆ (a] and a3 ∈ U for some a ∈ T \U , and (TTb]∩(TbT ∪TTbTT ]∩
(bTT ] ⊆ U for all b ∈ T \ U or

(ii) T \ U ⊆ Q(a) for all a ∈ T \ U .
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Assume (i) holds. Then T = Q(a). If (a] ⊆ (TTa]∩(TaT∪TTaTT ]∩(aTT ],
then by Theorem 1.16, we have

T = Q(a)

= (a] ∪ ((TTa] ∩ (TaT ∪ TTaTT ] ∩ (aTT ])

= (TTa] ∩ (TaT ∪ TTaTT ] ∩ (aTT ]

⊆ U .

Thus U = T . That is a contradiction. Hence, (a] * (TTa]∩ (TaT ∪TTaTT ]∩
(aTT ], so the condition (3) holds.

Assume (ii) holds. Then the condition (4) holds.

For an ordered ternary semigroup T with a zero element, the union of all
nonzero proper ordered quasi-ideals of T is denoted by U0.

Lemma 3.6. Let T be an ordered ternary semigroup with a zero element.
Then T = U0 if and only if Q(a) 6= T for all a ∈ T .

Proof. The proof is almost similar to the proof of Lemma 3.4.

Theorem 3.7. Let T be an ordered ternary semigroup with a zero element.
Then one and only one of the following four conditions is satisfied:

(1) U0 is not an ordered quasi-ideal of T .

(2) Q(a) 6= T for all a ∈ T .

(3) There exists a ∈ T such that Q(a) = T, (a] * (TTa]∩ (TaT ∪ TTaTT ]∩
(aTT ], and a3 ∈ U0, T is not 0-quasi-simple, T \ U0 = {x ∈ T | Q(x) =
T}, and U0 is the unique maximal ordered quasi-ideal of T .

(4) T \ U0 ⊆ Q(a) for all a ∈ T \ U0, T is not 0-quasi-simple, T \ U0 = {x ∈
T | Q(x) = T}, and U0 is the unique maximal ordered quasi-ideal of T .

Proof. The proof is almost similar to the proof of Theorem 3.5.
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