

Gen. Math. Notes, Vol. 15, No. 2, April, 2013, pp.45-54 ISSN 2219-7184; Copyright ©ICSRS Publication, 2013 www.i-csrs.org Available free online at http://www.geman.in

Almost Contra θ gs-Continuous Functions

Md. Hanif Page

Department of Mathematics BVB College of Engineering and Technology Hubli-580031, Karnataka, India E-mail: hanif01@yahoo.com

(Received: 31-1-13 / Accepted: 2-3-13)

Abstract

The aim of this paper is to introduce and study of a new class of function called almost contra θ gs-continuous functions using θ gs-open set. **Keywords:** Almost contra θ gs-continuous, θ gs-closed set

1 Introduction

In 1996, Dontchev [6] introduced the notion of contra continuity and strong S-closedness in topological spaces. A new weaker form of this class of functions called contra semi continuous function is introduced and investigated by Dontchev and Noiri [7]. Recently in [10] the notion of of θ -generalized semi closed (briefly, θ gs-closed)set was introduced. The aim of this paper is to introduce and study new generalization of contra continuity called Almost contra θ gs-continuous functions utilising θ gs-open set.

2 Preliminaries

Throughout this paper (X, τ), (Y, σ)(or simply X, Y)denote topological spaces on which no separation axioms are assumed unless explicitly stated. For a subset A of a space X the closure and interior of A with respect to τ are denoted by Cl(A) and Int(A) respectively. **Definition 2.1** A subset A of a space X is called (1) a semi-open set [9] if $A \subset Cl(Int(A))$. (2) a semi-closed set [3] if $Int(Cl(Int(A))) \subset A$. (3) a regular open [23] if A = Int(Cl(Int(A)))

Definition 2.2 [4] A point $x \in X$ is called a semi- θ -cluster point of A if $sCl(U) \cap A \neq \phi$, for each semi-open set U containing x. The set of all semi- θ -cluster point of A is called semi- θ -closure of A and is denoted by $sCl_{\theta}(A)$. A subset A is called semi- θ -closed set if $sCl_{\theta}(A) = A$. The complement of semi- θ -closed set is semi- θ -open set.

Definition 2.3 [10] A subset A of X is θ generalized semi-closed(briefly, θ gsclosed)set if $sCl_{\theta}(A) \subset U$ whenever $A \subset U$ and U is open in X. The complement of θ gs-closed set is θ generalized-semi open (briefly, θ gs-open). The family of all θ gs-closed sets of X is denoted by $\theta GSC(X,\tau)$ and θ gs-open sets by $\theta GSO(X,\tau)$.

Definition 2.4 [16] A topological space X is called $T_{\theta gs}$ -space if every θgs closed set in it is closed set.

Definition 2.5 [13] A topological space X is said to be (i) θgs -T₁ space if for any pair of distinct points x and y, there exist θgs -open sets G and H such that $x \in G$, $y \notin G$ and $x \notin H$, $y \in H$. (ii) θgs -T₂ if for each pair of distinct points x and y of X, there exist disjoint θgs -open sets, one containing x and the other containing y.

Definition 2.6 A function $f: X \to Y$ is called: (i) θ -generalized semi-continuous (briefly, θ gs-continuous)[11] if $f^{-1}(F)$ is θ gs-

(i) θ -generalized semi-continuous (briefly, θ gs-continuous)[11] if f = (F) is θ gsclosed set in X for every closed set F of Y.

(ii) contra θ gs-continuous [19] if $f^{-1}(F)$ is θ gs-closed set in X for every open set F of Y.

Definition 2.7 [12] A function $f: X \to Y$ is said to be θgs -open (resp., θgs closed) if f(V) is θgs -open (resp., θgs -closed) in Y for every open set (resp., closed) V in X.

Definition 2.8 [23] (i)A topological space X is called Ultra Hausdroff space, if every pair of distinct points of x and y in X, there exist disjoint clopen sets U and V in X containing x and y respectively.

(ii)A topological space X is called Ultra normal if each pair of disjoint closed sets can be separated by disjoint clopen sets.

Definition 2.9 [19] A space X is called locally θgs -indiscrete if every θgs -open set is closed in X.

Definition 2.10 [17] A topological space X is said to be θgs -normal if each pair of disjoint closed sets can be separated by disjoint θgs -open sets.

Definition 2.11 [18] A topological space X is said to be

 $(i)\theta$ gs-connected if X cannot be written as union of two non empty disjoint θ gs-open sets.

(ii) θ gs-compact if every θ gs-open cover of X has a finite subcover.

Definition 2.12 [14] A function $f : X \to Y$ is said to be almost continuous if $f^{-1}(V)$ is open in X for each regular open set V of Y.

Definition 2.13 [8] A topological space X is said to be hyperconnected if every open set is dense.

Definition 2.14 [2] A function $f : X \to Y$ is said to be *R*-map if $f^{-1}(V)$ is regular open in X for each regular open set V of Y.

Definition 2.15 [15] A function $f : X \to Y$ is said to perfectly continuous if $f^{-1}(V)$ is clopen in X for each open set V of Y.

Definition 2.16 [21] A space X is said to be weakly Hausdorff if each element of X is an intersection of regular closed sets.

Definition 2.17 A space X is said to be

(i) Nearly compact [21] if every regular open cover of X has a finite subcover. (ii) Nearly countably compact [21] if every countable cover of X by regular open sets has a finite subcover.

(iii) Nearly Lindelöf [21] if every regular open cover of X has a countable subcover.

(iv) S-Lindelöf [8] if every cover of X by regular closed sets has a countable subcover.

(v) Countably S-closed [5] if every countable cover of X by regular closed sets has a finite subcover.

(vi) S-closed [1] if every regular closed cover of x has a finite subcover.

3 Almost Contra θ gs-Continuous Functions

In this section, new type of continuity called an almost contra θ gs-continuity, which is weaker than contra θ gs-continuity is introduced and studied some of their properties.

Definition 3.1 A function $f : X \to Y$ is said to be almost contra θ gscontinuous if $f^{-1}(V)$ is θ gs-closed in X for each regular open set V in Y. **Theorem 3.2** If X is $T_{\theta gs}$ -space and $f : X \to Y$ is almost contra θgs continuous, then it is contra almost continuous.

Proof. Let U be a regular open set in Y. Since f is almost contra θ gs-continuous $f^{-1}(U)$ is θ gs-closed set in X and X is $T_{\theta gs}$ -space, which implies $f^{-1}(U)$ is closed set in X. Therefore f is contra almost continuous.

Theorem 3.3 If a function $f : X \to Y$ is almost contra θ gs-continuous and X is locally θ gs-indiscrete space, then f is almost continuous.

Proof. Let U be a regular open set in Y. Since f is almost contra θ gs-continuous $f^{-1}(U)$ is θ gs-closed set in X and X is locally θ gs-indiscrete space, which implies $f^{-1}(U)$ is an open set in X. Therefore f is almost continuous.

Theorem 3.4 If $f : X \to Y$ is contra θ gs-continuous then it is almost contra θ gs-continuous.

Proof. Obvious, because every regular open set is open set.

Remark 3.5 Converse of the above theorem need not be true in general as seen from the following example.

Example 3.6 Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a, b\}\} \{b, c\}\}$ be topologies on X and Y respectively. We have θgs -closed sets in X are $\{X, \phi, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}$. Define a function $f : X \to Y$ by f(a) = a, f(b) = b and f(c) = c. Then f is almost contra θgs -continuous function but not contra θgs -continuous, because for the open set $\{a, b\}$ in Y, $f^{-1}(\{a, b\}) = \{a, b\}$ is not θgs -closed in X.

Theorem 3.7 If $f : X \to Y$ is almost contra θ gs-continuous and X is $T_{\theta gs}$ -space then f is contra almost continuous.

Proof. Let U be a regular open set in Y. Since f is almost contra θ gs-continuous $f^{-1}(U)$ is θ gs-closed set in X and X is $T_{\theta gs}$ -space, which implies $f^{-1}(U)$ is an closed set in X. Therefore f is contra almost continuous.

Theorem 3.8 For a function $f : X \to Y$ the followings are equivalent: (i) f is almost contra θ gs-continuous. (ii) for every regular closed set F of Y, $f^{-1}(F)$ is θ gs-open set of X.

Proof. $(i) \Rightarrow (ii)$ Let F be a regular closed set in Y, then Y - F is a regular open set in Y. By (i), $f^{-1}(Y - F) = X - f^{-1}(F)$ is θ gs-closed set in X. This implies $f^{-1}(F)$ is θ gs-open set in X. Therefore, (ii) holds.

 $(ii) \Rightarrow (i)$ Let G be a regular open set of Y. Then Y - G is a regular closed set in Y. By (ii), $f^{-1}(Y - G)$ is θ -open set in X. This implies $X - f^{-1}(G)$ is θ gs-open set in X, which implies $f^{-1}(G)$ is θ gs-closed set in X. Therefore, (i) holds.

Almost Contra θ gs-Continuous Functions

Theorem 3.9 For a function $f : X \to Y$ the followings are equivalent: (i) f is almost contra θ gs-continuous. (ii) $f^{-1}(Int(Cl(G)))$ is θ gs-closed set in X for every open subset G of Y.

(iii) $f^{-1}(Cl(Int(F)))$ is θ gs-open set in X for every closed subset F of Y.

Proof. $(i) \Rightarrow (ii)$ Let G be an open set in Y. Then Int(Cl(G)) is regular open set in Y. By (i), $f^{-1}(Int(Cl(G))) \in \theta GSC(X)$. $(ii) \Rightarrow (i)$ Proof is obvious. $(i) \Rightarrow (iii)$ Let F be a closed set in Y. Then Cl(Int(G)) is regular closed set in Y. By (i), $f^{-1}(Cl(Int(G))) \in \theta GSO(X)$. $(iii) \Rightarrow (i)$ Proof is obvious.

Theorem 3.10 If $f : X \to Y$ is an almost contra θ gs-continuous injection and Y is weakly Hausdorff, then X is θ gs-T₁.

Proof. Suppose Y is weakly Hausdorff. For any distinct points x and y in X, there exist V and W regular closed sets in Y such that $f(x) \in V$, $f(y) \notin V$, $f(y) \in W$ and $f(x) \notin W$. Since f is almost contra θ gs-continuous, $f^{-1}(V)$ and $f^{-1}(W)$ are θ gs-open subsets of X such that $x \in f^{-1}(V)$, $y \notin f^{-1}(V)$, $y \in f^{-1}(W)$ and $x \notin f^{-1}(W)$. This shows that X is θ gs-T₁.

Corollary 3.11 If $f : X \to Y$ is a contra θ gs-continuous injection and Y is weakly Hausdorff, then X is θ gs- T_1 .

Theorem 3.12 If $f : X \to Y$ is an almost contra θ gs-continuous injective function from space X into a Ultra Hausdroff space Y, then X is θ gs-T₂.

Proof. Let x and y be any two distinct points in X. Since f is an injective $f(x) \neq f(y)$ and Y is Ultra Hausdroff space, there exist disjoint clopen sets U and V of Y containing f(x) and f(y) respectively. Then $x \in f^{-1}(U)$ and $y \in f^{-1}(V)$, where $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint θ gs-open sets in X. Therefore X is θ gs-T₂.

Theorem 3.13 If $f : X \to Y$ is an almost contra θ gs-continuous closed injection and Y is ultra normal, then X is θ gs-normal.

Proof. Let E and F be disjoint closed subsets of X. Since f is closed and injective f(E) and f(F) are disjoint closed sets in Y. Since Y is ultra normal there exists disjoint clopen sets U and V in Y such that $f(E) \subset U$ and $f(F) \subset V$. This implies $E \subset f^{-1}(U)$ and $F \subset f^{-1}(V)$. Since f is an almost contra θ gs-continuous injection, $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint θ gs-open sets in X. This shows X is θ gs-normal.

Theorem 3.14 If $f : X \to Y$ is an almost contra θ gs-continuous surjection and X is θ gs-connected space, then Y is connected.

Proof. Let $f: X \to Y$ be an almost contra θ gs-continuous surjection and X is θ gs-connected space. Suppose Y is a not connected space. Then there exist disjoint open sets U and V such that $Y = U \cup V$. Therefore U and V are clopen in Y. Since f is almost contra θ gs-continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are θ gs-open sets in X. Moreover $f^{-1}(U)$ and $f^{-1}(V)$ are non empty disjoint and $X = f^{-1}(U) \cup f^{-1}(V)$. This is contradiction to the fact that X is θ gs-connected space. Therefore, Y is connected.

Theorem 3.15 For two functions $f : X \to Y$ and $g : Y \to Z$, let $g \circ f : X \to Z$ is a composition function. Then, the following properties hold

(i) If f is almost contra θ gs-continuous and g is an R-map, then $g \circ f$ is almost contra θ gs-continuous.

(ii) If f is almost contra θ gs-continuous and g is perfectly continuous, then $g \circ f$ is θ gs-continuous and contra θ gs-continuous.

(iii) If f is contra θ gs-continuous and g is almost continuous, then $g \circ f$ is almost contra θ gs-continuous.

Proof. (i) Let V be any regular open set in Z. Since g is an R-map, $g^{-1}(V)$ is regular open in Y. Since f is an almost contra θ gs-continuous $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is θ gs-closed set in X. Therefore, $g \circ f$ is almost contra θ gs-continuous.

(ii) Let V be any open set in Z. Since g is perfectly continuous, $g^{-1}(V)$ is clopen in Y. Since f is an almost contra θ gs-continuous $f^{-1}(g^{-1}(V))=(g \circ f)^{-1}(V)$ is θ gs-open and θ gs-closed set in X. Therefore, $g \circ f$ is θ gs-continuous and contra θ gs-continuous.

(iii) Let V be any regular open set in Z. Since g is almost continuous, $g^{-1}(V)$ is open in Y. Since f is contra θ gs-continuous $f^{-1}(g^{-1}(V))=(g \circ f)^{-1}(V)$ is θ gs-closed set in X. Therefore, $g \circ f$ is almost contra θ gs-continuous.

Theorem 3.16 Let $f : X \to Y$ is a contra θgs -continuous and $g : Y \to Z$ is θgs -continuous. If Y is $T_{\theta gs}$ -space, then $g \circ f : X \to Z$ is an almost contra θgs -continuous.

Proof. Let V be any regular open and hence open set in Z. Since g is θ gs-continuous $g^{-1}(V)$ is θ gs-open in Y and Y is $T_{\theta gs}$ -space implies $g^{-1}(V)$ open in Y. Since f is contra θ gs-continuous $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is θ gs-closed set in X. Therefore, $g \circ f$ is an almost contra θ gs-continuous.

Definition 3.17 A function $f : X \to Y$ is said to be strongly θ gs-open (resp. strongly θ gs-closed) if image of every θ gs-open (resp. θ gs-closed) set of X is θ gs-open (resp. θ gs-closed) set in Y.

Theorem 3.18 If $f : X \to Y$ is surjective strongly θ gs-open (or strongly θ gs-closed) and $g : Y \to Z$ is a function such that $g \circ f : X \to Z$ is an almost contra θ gs-continuous, then g is an almost contra θ gs-continuous.

Proof. Let V be any regular closed (resp. regular open) set in Z. Since $g \circ f$ is an almost contra θ gs-continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is θ gs-open (resp. θ gs-closed) in X. Since f is surjective and strongly θ gs-open (or strongly θ gs-closed), $f(f^{-1}(g^{-1}(V))) = g^{-1}(V)$ is θ gs-open(or θ gs-closed). Therefore g is an almost contra θ gs-continuous.

Definition 3.19 A topological space X is said to be θ gs-ultra-connected if every two non empty θ gs-closed subsets of X intersect.

Theorem 3.20 If X is θ gs-ultra-connected and $f : X \to Y$ is an almost contra θ gs-continuous surjection, then Y is hyperconnected.

Proof. Let X be a θ gs-ultra-connected and $f: X \to Y$ is an almost contra θ gs-continuous surjection. Suppose Y is not hyperconnected. Then there exists an open set V such that V is not dense in Y. Therefore, there exist nonempty regular open subsets $B_1 = Int(Cl(V))$ and $B_2 = Y - Cl(V)$ in Y. Since f is an almost contra θ gs-continuous surjection, $f^{-1}(B_1)$ and $f^{-1}(B_2)$ are disjoint θ gs-closed sets in X. This is contrary to the fact that X is θ gs-ultra-connected. Therefore, Y is hyperconnected.

Definition 3.21 A space X is said to be

(i) Countably θgs -compact if every countable cover of X by θgs -open sets has a finite subcover.

(ii) θ gs-Lindelöf if every θ gs-open cover of X has a countable subcover.

(iii) mildly θ gs-compact if every θ gs-clopen cover of X has a finite subcover.

(iv) mildly countably θ gs-compact if every countable cover of X by θ gs-clopen sets has a finite subcover.

(v) mildly θ gs-Lindelöf if every θ gs-clopen cover of X has a countable subcover.

Theorem 3.22 Let $f : X \to Y$ be an almost contra θ gs-continuous surjection. Then, the following properties hold.

(i) If X is θ gs-compact, then Y is S-closed.

(ii) If X is countably θ gs-closed, then Y is is countably S-closed.

(iii) If X is θ gs-Lindelöf, then Y is S-Lindelöf.

Proof.(i) Let $\{V_{\alpha} : \alpha \in I\}$ be any regular closed cover of Y. Since f is almost contra θ gs-continuous, $\{f^{-1}(V_{\alpha}) : \alpha \in I\}$ is θ gs-open cover of X. Since X is θ gs-compact, there exists a finite subset I_0 of I such that $X = \bigcup \{f^{-1}(V_{\alpha}) : \alpha \in I_0\}$. Since f is surjective, $Y = \bigcup \{V_{\alpha}\} : \alpha \in I_0\}$ is finite subcover for Y. Therefore, Y is S-closed.

(ii) Let $\{V_{\alpha} : \alpha \in I\}$ be any countable regular closed cover of Y. Since f is almost contra θ gs-continuous, $\{f^{-1}(V_{\alpha}) : \alpha \in I\}$ is countable θ gs-open cover of X. Since X is countably θ gs-compact, there exists a finite subset I_0 of I such that $X = \bigcup \{ f^{-1}(V_{\alpha}) : \alpha \in I_0 \}$. Since f is surjective, $Y = \bigcup \{V_{\alpha}\} : \alpha \in I_0 \}$ is finite subcover for Y. Therefore, Y is countably S-closed.

(iii) Let $\{V_{\alpha} : \alpha \in I\}$ be any regular closed cover of Y. Since f is almost contra θ gs-continuous, $\{f^{-1}(V_{\alpha}) : \alpha \in I\}$ is θ gs-open cover of X. Since X is θ gs-Lindelöf, there exists a countable subset I_0 of I such that $X = \bigcup \{f^{-1}(V_{\alpha}) : \alpha \in I_0\}$. Since f is surjective, $Y = \bigcup \{V_{\alpha}\} : \alpha \in I_0\}$ is finite subcover for Y. Therefore, Y is S-Lindelöf.

Definition 3.23 A function $f : X \to Y$ is said to be almost θ gs-continuous if $f^{-1}(V)$ is θ gs-open in X for each regular open set V of Y.

Theorem 3.24 Let $f : X \to Y$ be an almost contra θ gs-continuous and almost θ gs-continuous surjection. Then, the following properties hold. (i) If X is mildly θ gs-closed, then Y is nearly compact. (ii) If X is mildly countably θ gs-compact, then Y is nearly countably compact. (iii) If X is mildly θ gs-Lindelöf, then Y is nearly Lindelöf.

Proof.(i) Let $\{V_{\alpha} : \alpha \in I\}$ be any regular open cover of Y. Since f is almost contra θ gs-continuous and almost θ gs surjection, $\{f^{-1}(V_{\alpha}) : \alpha \in I\}$ is θ gs-clopen cover of X. Since X is mildly θ gs-compact, there exists a finite subset I_0 of I such that $X = \bigcup \{f^{-1}(V_{\alpha}) : \alpha \in I_0\}$. Since f is surjective, $Y = \bigcup \{V_{\alpha}\} : \alpha \in I_0\}$, which is finite subcover for Y. Therefore, Y is nearly compact.

(ii) Let $\{V_{\alpha} : \alpha \in I\}$ be any countable regular open cover of Y. Since f is almost contra θ gs-continuous and almost θ gs surjection, $\{f^{-1}(V_{\alpha}) : \alpha \in I\}$ is countable θ gs-closed cover of X. Since X is mildly countably θ gs-compact, there exists a finite subset I_0 of I such that $X = \bigcup \{f^{-1}(V_{\alpha}) : \alpha \in I_0\}$. Since f is surjective, $Y = \bigcup \{V_{\alpha}\} : \alpha \in I_0\}$ is finite subcover for Y. Therefore, Y is nearly countably compact.

(iii) Let $\{V_{\alpha} : \alpha \in I\}$ be any regular open cover of Y. Since f is almost contra θ gs-continuous and almost θ gs surjection,, $\{f^{-1}(V_{\alpha}) : \alpha \in I\}$ is θ gs-closed cover of X. Since X is mildly θ gs-Lindelof, there exists a countable subset I_0 of I such that $X = \bigcup \{f^{-1}(V_{\alpha}) : \alpha \in I_0\}$. Since f is surjective, $Y = \bigcup \{V_{\alpha}\} : \alpha \in I_0\}$ is finite subcover for Y. Therefore, Y is nearly Lindelöf.

References

- M.E.A. El-Monsef, S.N. El-Deeb and R.A. Mahmud, β-Open sets and β-continuous mappings, Bull. Fac. Sci. Assint Univ., 12(1983), 77-90.
- [2] D.A. Carnahan, Some properties related to compactness in topological spaces, *PhD Thesis*, University of Arkansas, (1973).

- [3] S.G. Crossley and S.K. Hildebrand, Semi-topological properties, Fund. Math., 74(1972), 233-254.
- [4] G.Di. Maio and T. Noiri, On s-closed spaces, Indian J. Pure and Appl.Math., 18(1987), 226-233.
- [5] K. Dlaska, N. Ergun and M. Ganster, Countably S-closed spaces, *Mathematica Slovaca*, 44(1994), 337-348.
- [6] J. Dontchev, Contra continuous functions and strongly S-closed mappings, Int. J. Math. Sci., 19(1996), 303-310.
- [7] J. Dontchev and T. Noiri, Contra semi continuous functions, *Mathematica Pannonica*, 10(2) (1999), 159-168.
- [8] E. Ekici, Almost contra precontinuous functions, Bull. Malays Math Sci. Soc., 27(2004), 53-65.
- [9] N. Levine, Semi-open sets and semi-continuity in topological spaces, Mer. Math. Monthly, 70(1963), 36-41.
- [10] G. Navavalgi and M.B. Page, On θgs-neighbourhoods, Indian Journal of Mathematics and Mathematical Sciences, 4(1) (June-2008), 21-31.
- [11] G. Navavalgi and M.B. Page, On θgs-continuity and θgs-irresoluteness, Internatonal Journal of Mathematics and Computer Sciences and Technology, 1(1) (Jan-June-2008), 95-101.
- [12] G. Navavalgi and M.B. Page, On θgs-Open and θgs-closed functions, Proyecciones Journal of Mathematics, 28(April) (2009), 111-123.
- [13] G. Navavalgi and M.B. Page, On some separation axioms via θ gs-open sets, Bulletin of Allahabad Mathematical Society, 25(1) (2010), 13-22.
- [14] T. Noiri, On almost continuous functions, Ind. J. of Pure and Appl. Maths., 20(1989), 571-576.
- [15] T. Noiri, On super continuity and some strong forms of continuity, Ind. J. of Pure and Appl. Maths., 15(1984), 241-250.
- [16] M.B. Page, On some more properties of θ gs-neighbourhodds, American Journal of Applied Mathematics and Mathematical Analysis, 2(1) (Jan-June-2013), 1-5.
- [17] M.B. Page, On θgs-regular and θgs-normal spaces, International Journal of Adavanced Science and Technology, 5(5) (Nov-2012), 149-155.

- [18] M.B. Page, On θgs-compact and θgs-connected spaces, International J. of Math. Sci. and Engg. Appls. (IJMSEA), 7(II) (March-2013), 241-247.
- [19] M.B. Page, On contra θ gs-continuous functions, (Communicated).
- [20] M.K. Singal, A.R. Singal and A. Mathur, On nearly compact spaces, Bol Unione Mat Ital, 2(1969), 702-710.
- [21] T. Soundararajan, Aweakly Hausdorff spaces and cardinality of topological spaces, General topology and its relations to modern analysis and algebra, *III Proc. Conf. Kanpur 1968*, Academia, Prague, 41(1971), 301-306.
- [22] R. Staum, The algebra of bounded continuous functions into a nonarchimedean field, *Pacific J. Math.*, 50(1974), 169-185.
- [23] M. Stone, Applications of the theory of boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 374-481.