Gen. Math. Notes, Vol. 18, No. 1, September, 2013, pp. 37-45
ISSN 2219-7184; Copyright © ICSRS Publication, 2013
www.i-csrs.org
Available free online at http://www.geman.in

A Fixed Point Theorem of Strict Generalized Type Weakly Contractive Maps in Orbitally Complete Metric Spaces When the Control Function is not Necessarily Continuous

K.P.R. Sastry ${ }^{1}$, Ch. Srinivasa Rao ${ }^{2}$, N. Appa Rao ${ }^{3}$ and S.S.A. Sastri ${ }^{4}$
${ }^{1}$ 8-28-8/1, Tamil Street, Chinna Waltair, Visakhapatnam- 530017, India
E-mail: kprsastry@hotmail.com
${ }^{2}$ Department of Mathematics, Mrs. A.V.N. College Visakhapatnam- 530001, India E-mail: drcsr41@yahoo.com
${ }^{3}$ Department of Basic Engineering, Chalapathi Institute of Engineering and
Technology, Lam, Guntur- 530026, India E-mail: nalluri.apparao@gmail.com
${ }^{4}$ Department of Mathematics, GVP College of Engineering Madhurawada, Visakhapatnam- 530048, India
E-mail: sambharasas@gvpce.ac.in

(Received: 7-1-13 / Accepted: 24-4-13)

Abstract

K.P.R. Sastry, Ch. Srinivasa Rao, N. Appa Rao [5] introduced the notation of a control function and proved a fixed point theorem for a strict generalized weakly contractive map of an orbitally complete metric space when the control

function is not assumed to be continuous. In this paper we introduce the notation of a generalized type weakly contractive map of an orbitally complete metric space and prove a fixed point theorem for such maps without assuming the continuity of the control function. Our result answers an open problem raised in Sastry et al. [5], in the affirmative.

Keywords: weakly contractive maps, generalized weakly contractive maps, fixed point, T-orbitally complete metric spaces, strict generalized weakly contractive map, control function, strict generalized type weakly contractive map.

1 Introduction

In 1997, Alber and Cuerre-Delabriere [1] introduced the concept of weakly contractive maps in a Hilbert space and proved the existence of fixed points. In 2001, Rhoades [4] extended this concept to Banach spaces and established the existence of fixed points.

Throughout this paper, (X, d) is a metric space, and $T: X \rightarrow X$ a self map of X. Let $\mathbb{R}^{+}=[0, \infty), \mathbb{N}$, the set of all natural numbers and \mathbb{R}, the set of all real numbers. We write
$\Psi=\{\psi:[0, \infty) \rightarrow[0, \infty) / \psi$ is strictly increasing and $\psi(0)=0\}$
Members of Ψ are called control functions.

$$
\begin{aligned}
& \Phi=\{\varphi:[0, \infty) \rightarrow[0, \infty) / \varphi \text { is continuous, non decreasing and } \varphi(t)= \\
& 0 \Leftrightarrow t=0\}
\end{aligned}
$$

Definition 1.1 (Rhoades, [4]): A self map $T: X \rightarrow X$ is said to be a weakly contractive map if there exists a $\varphi \in \Phi$ with $\lim _{t \rightarrow \infty} \varphi(t)=\infty$ such that

$$
d(T x, T y) \leq d(x, y)-\varphi(d(x, y)) \text { for all } x, y \in X \ldots \text { (1.1.1) }
$$

Here we observe that every contractive map T on X with contractive constant k is a weakly contractive map with $\varphi(t)=(1-k) t, t>0$. But its converse is not true.

Rhoades [4] proved the following theorem.
Theorem 1.2 (Rhoades [4], Theorem 1.1): Let (X, d) be a complete metric space and T a weakly contractive self map on X. Then T has a unique fixed point in X.

Babu and Alemayehu [2] introduced the notion of a generalized weakly contractive map.

Definition 1.3 (Babu and Alemayehu, [2]): A map $T: X \rightarrow X$ is said to be a generalized weakly contractive map if there exists a $\varphi \in \Phi$ such that
$d(T x, T y) \leq M(x, y)-\varphi(M(x, y))$ for all $x, y \in X$ where
$M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{1}{2}((d(x, T y)+d(y, T x))\}\right.$
Remark 1.4 (Babu and Alemayehu, [2]): Every weakly contractive map defined on a bounded metric space with a positive diameter is a generalized weakly contractive map, but its converse is not true.

Theorem 1.5 (Babu and Alemayehu [2], Theorem 1.3): Let (X, d) be a complete metric space and $T: X \rightarrow X$ be a self map. If T is a generalized weakly contractive map on X, then T has a unique fixed point in X.

If X is a complete bounded metric space, Theorem 1.2 follows as a corollary to
Theorem 1.5: In fact in this case, Theorem 1.5 is a generalization of Theorem 1.2 (Example 3.2 of Babu and Alemayehu [2]).

Definition 1.6: Let $T: X \rightarrow X$. For $x \in X, O(x)=O_{T}(x)=\left\{T^{n} x / n=0,1,2, \ldots.\right\}$ is called the orbit of x, where $T^{0}=I$, the identity map of X.

Let (X, d) be a complete metric space and $T: X \rightarrow X$. Then X is said to be Torbitally complete, if, for $x \in X$, every Cauchy sequence which is contained in $O(x)$ converges to a point of X. In other words, $\overline{O(x)}$ is a complete metric space.

Babu and Sailaja [3] proved the existence of fixed points of a generalized weakly contractive map T in T-orbitally complete metric spaces.

Theorem 1.7 (Babu and Sailaja [3], Theorem 2.1): Let (X, d) be a metric space and $T: X \rightarrow X$. Suppose X is a T-orbitally complete metric space. Assume that for some $x_{0} \in X$, there exists a $\varphi \in \Phi$ such that $d(T x, T y) \leq M(x, y)-$ $\varphi(M(x, y))$ for all $x, y \in \overline{O\left(x_{0}\right)} \ldots$

Where $M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{1}{2}((d(x, T y)+d(y, T x))\}\right.$
Then the sequence $\left\{T^{n} x_{0}\right\}$ is a Cauchy sequence in X. Let $\lim _{n \rightarrow \infty} T^{n} x_{0}=z, z \in$ X.

Then z is a fixed point of T.
Further, z is unique in the sense that $\overline{O\left(x_{0}\right)}$ contains one and only one fixed point of T.

Corollary 1.8 (Babu and Sailaja [3], Corollary2.2): Let (X, d) be a T-orbitally complete bounded metric space. Assume that for some $x_{0} \in X$, there exists $\varphi \in \Phi$ such that
$d(T x, T y) \leq d(x, y)-\varphi(d(x, y))$ for all $x, y \in \overline{O\left(x_{0}\right)} \quad \ldots$.
Then the sequence $\left\{T^{n} x_{0}\right\}$ is Cauchy in X. Let $\lim _{n \rightarrow \infty} T^{n} x_{0}=z, z \in X$.
Then z is a fixed point of T.
Further, z is unique in the sense that $\overline{O\left(x_{0}\right)}$ contains one and only one fixed point of T.

Definition 1.9: Let (X, d) be a metric space and $T: X \rightarrow X$. We say that T is a strict generalized weakly contractive map if there exists a control function $\psi \in \Psi$ such that
$d(T x, T y) \leq M(x, y)-\psi(M(x, y))$ for all $x, y \in X \quad \ldots$.
Where $M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{1}{2}((d(x, T y)+d(y, T x))\}\right.$
Using the above notion, Sastry et. al. [5] proved the following theorem.
Theorem 1.10: Let (X, d) be a metric space andT: $X \rightarrow X$. Let (X, d) be T orbitally complete. Assume that for some $x_{0} \in X$, there exists a control function $\psi \in \Psi$ such that
$d(T x, T y) \leq M(x, y)-\psi(M(x, y))$ for all $x, y \in \overline{O\left(x_{0}\right)} \ldots \ldots$
Where $M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{1}{2}((d(x, T y)+d(y, T x))\}\right.$
Then the sequence $\left\{T^{n} x_{0}\right\}$ is Cauchy in X. Let $\lim _{n \rightarrow \infty} T^{n} x_{0}=z, z \in X$, then z is a fixed point of T.

Further, z is unique in the sense that $\overline{O\left(x_{0}\right)}$ contains one and only one fixed point of T.

Further Sastry et. al. [5] raised the following open problem: Is Theorem 1.10 true if $M(x, y)$ is replaced by $\alpha(x, y)=\frac{1}{2}(d(x, T y)+d(y, T x))$?

In this paper we prove a fixed point theorem which answers the above open problem in the affirmative.

In proving our main result, we make use of the following well known result; a proof can be found in Babu and Saliaja [3].

Lemma 1.11: Suppose (X, d) is a metric space. Let $\left\{x_{n}\right\}$ be a sequence in X such that $d\left(x_{n}, x_{n-1}\right) \rightarrow 0$ as $n \rightarrow \infty$. If $\left\{x_{n}\right\}$ is not a Cauchy sequence then there exist
an $\varepsilon>0$ and sequences of positive integers $\{m(k)\}$ and $\{n(k)\}$ with $m(k)>$ $n(k)>k$ such that $d\left(x_{m(k)}, x_{n(k)}\right) \geq \varepsilon, d\left(x_{m(k)-1}, x_{n(k)}\right)<\varepsilon$ and
(i) $\lim _{k \rightarrow \infty} d\left(x_{m(k)-1}, x_{n(k)+1}\right)=\varepsilon$
(ii) $\lim _{k \rightarrow \infty} d\left(x_{m(k)}, x_{n(k)}\right)=\varepsilon$ and
(iii) $\lim _{k \rightarrow \infty} d\left(x_{m(k)-1}, x_{n(k)}\right)=\varepsilon$.

2 Main Results

Before we prove our main result, we first prove a lemma.
Lemma 2.1: Suppose $\psi:[0, \infty) \rightarrow[0, \infty)$ is strictly increasing and $\psi(0)=0$. If $\left\{y_{n}\right\}$ is a sequence in $[0, \infty)$, then $\psi\left(y_{n}\right) \rightarrow 0 \Rightarrow y_{n} \rightarrow 0$.

Proof: Suppose $\psi\left(y_{n}\right) \rightarrow 0$ and y_{n} does not tend to zero. Then $\exists \gamma>0$ and an infinite sequence n_{k} such that $\left\{y_{n_{k}}\right\} \geq \gamma$. Then $\psi\left(y_{n_{k}}\right) \geq \psi(\gamma)$.

Letting $k \rightarrow \infty$, we get $0 \geq \psi(\gamma)\left(\because \psi\left(y_{n_{k}}\right) \rightarrow 0\right.$ as $\left.k \rightarrow \infty\right)$
$\therefore \gamma=0$, a contradiction.
$\therefore y_{n} \rightarrow 0$.
Now we state and prove our main result which answers the open problem of Sastry et.al [5] in the affirmative.

Theorem 2.2: Let (X, d) be a complete metric space $T: X \rightarrow X$ and T is orbitally complete. Assume that for some $x_{0} \in X$, there exists a $\psi \in \Psi$ such that $d(T x, T y) \leq \alpha(x, y)-\psi(\alpha(x, y)) \quad \forall x, y \in \overline{O\left(x_{0}\right)} \ldots$.

Where $\alpha(x, y)=\frac{1}{2}[d(x, T y)+d(y, T x)]$
Then the sequence $\left\{T^{n} x_{0}\right\}$ is a Cauchy sequence in X. If $\lim _{n \rightarrow \infty} T^{n} x_{0}=z, z \in$ X, then z is a fixed point of T.

Further, z is unique in the sense that $\overline{O\left(x_{0}\right)}$ contains one and only one fixed point of T.

Proof: Let $y=T x$ in (2.2.1). Then

$$
\begin{align*}
d(T x, T T x) & \leq \frac{1}{2}[d(x, T T x)+d(T x, T x)]-\psi\left(\frac{1}{2}[d(x, T T x)+d(T x, T x)]\right) \\
& =\frac{1}{2}\{d(x, T T x)\}-\psi\left(\frac{1}{2}\{d(x, T T x)\}\right) \ldots \ldots \tag{2.2.2}
\end{align*}
$$

If R.H.S of (2.2.2) is 0 , then $d(T x, T T x)=0 \Rightarrow T T x=T x$
$\therefore T x$ is a fixed point of T.
Suppose $d(T x, T T x) \neq 0$.
Then $(2.2 .2) \Rightarrow \psi\left(\frac{1}{2}(d(x, T T x)) \leq \frac{1}{2} d(x, T T x)-d(T x, T T x) \ldots .\right.$.

$$
\begin{align*}
& \leq \frac{1}{2}(d(x, T x)+d(T x, T T x))-d(T x, T T x) \\
& =\frac{1}{2}(d(x, T x)-d(T x, T T x)) \ldots \tag{2.2.4}
\end{align*}
$$

Now $\psi\left(\frac{1}{2}(d(x, T T x))=0 \Rightarrow d(x, T T x)=0\right.$
$\Rightarrow d(T x, T T x)=0($ from (2.2.3)), contradicting our supposition.
$\therefore 0<\psi\left(\frac{1}{2}(d x, T T x)\right) \leq \frac{1}{2}\{d(x, T x)-d(T x, T T x)\} \quad($ from (2.2.4))
$\Rightarrow d(T x, T T x)<d(x, T x)$
$\therefore d(T x, T T x) \leq d(x, T x) \quad \ldots \ldots$
with equality $\Leftrightarrow x$ is a fixed point of T.
Let $x_{0} \in X$, write $T^{n} x_{0}=x_{n}, n=0,1,2, \ldots$
Write $\alpha_{n}=d\left(x_{n}, x_{n+1}\right)$. Then from (2.2.5),
$\alpha_{n+1}=d\left(x_{n+1}, x_{n+2}\right)=d\left(T x_{n}, T T x_{n}\right) \leq d\left(x_{n}, T x_{n}\right)=\alpha_{n}$.
$\therefore \quad \alpha_{n}$ is a decreasing sequence and hence tends to a limit, say, a.
$\therefore \psi\left(\alpha_{n}\right)$ is a decreasing sequence and hence tends to a limit ,say, b.
$\therefore \alpha_{n}>a \Rightarrow \psi\left(\alpha_{n}\right) \geq \psi(\alpha) \Rightarrow b \geq \psi(a)$
Now
$\alpha_{n+1}=d\left(x_{n+1}, x_{n+2}\right)=d\left(T x_{n}, T T x_{n}\right) \leq \frac{1}{2} d\left(x_{n}, T T x_{n}\right)-\psi\left(\frac{1}{2} d\left(x_{n}, T T x_{n}\right)\right)$
from (2.2.2)

$$
\begin{aligned}
\leq \frac{1}{2}\left(d\left(x_{n}, T x_{n}\right)+d\left(T x_{n}, T T x_{n}\right)\right)-\psi & \left(\frac{1}{2} d\left(x_{n}, T T x_{n}\right)\right) \\
& =\frac{1}{2}\left(\alpha_{n}+\alpha_{n+1}\right)-\psi\left(\frac{1}{2} d\left(T x_{n}, T T x_{n}\right)\right)
\end{aligned}
$$

$\Rightarrow \psi\left(\frac{1}{2} d\left(T x_{n}, T T x_{n}\right)\right) \leq \frac{1}{2}\left(\alpha_{n}+\alpha_{n+1}\right)-\alpha_{n+1}$
$=\frac{1}{2}\left(\alpha_{n}-\alpha_{n+1}\right) \rightarrow 0$ as $n \rightarrow \infty$
$\therefore \psi\left(\frac{1}{2} d\left(T x_{n}, T T x_{n}\right)\right) \rightarrow 0$ as $n \rightarrow \infty \ldots \ldots$
$\therefore d\left(T x_{n}, T T x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$
$(\because \psi$ is strictly increasing and $\psi(0)=0$, bt Lemma 2.1)
Now from (2.2.6), (2.2.7) and (2.2.8), we get
$a \leq \alpha_{n+1} \leq \frac{1}{2} d\left(x_{n}, T T x_{n}\right)-\psi\left(\frac{1}{2} d\left(x_{n}, T T x_{n}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$
$\therefore a=0$
Now $\psi\left(\alpha_{n}\right) \geq b \Rightarrow \alpha_{n} \geq \psi^{-1}(b)$
Letting $n \rightarrow \infty$, we get $0 \geq \psi^{-1}(b)$
$\therefore \psi^{-1}(b)=0$ i.e $b=0$
$\therefore d\left(x_{n}, x_{n+1}\right) \rightarrow 0$ as $n \rightarrow \infty$ and $\psi\left(d\left(x_{n}, x_{n+1}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$
We now show that the sequence $\left\{x_{n}\right\} \subset O\left(x_{0}\right)$ is Cauchy.
Otherwise, by Lemma 1.11, there exists an $\varepsilon>0$ and sequences of positive integers $\{m(k)\}$ and $\{n(k)\}$ with $m(k)>n(k)>k$ such that
$d\left(x_{m(k)}, x_{n(k)}\right) \geq \varepsilon, d\left(x_{m(k)-1}, x_{n(k)}\right)<\varepsilon$ and

$$
\begin{align*}
& \lim _{k \rightarrow \infty} d\left(x_{m(k)-1}, x_{n(k)+1}\right)=\varepsilon, \lim _{k \rightarrow \infty} d\left(x_{m(k)-1}, x_{n(k)}\right)=\varepsilon \text { and } \\
& \lim _{k \rightarrow \infty} d\left(x_{m(k)-1}, x_{n(k)+1}\right)=\varepsilon \quad \ldots . \tag{2.2.9}
\end{align*}
$$

Hence $\varepsilon<d\left(x_{m(k)}, x_{n(k)}\right) \leq d\left(x_{m(k)}, x_{n(k)+1}\right)+d\left(x_{n(k)+1}, x_{n(k)}\right)$

$$
\begin{aligned}
& =d\left(T x_{m(k)-1}, T x_{n(k)}\right)+d\left(x_{n(k)+1}, x_{n(k)}\right) \\
& \leq \alpha\left(x_{n(k)-1}, x_{n(k)}\right)-\psi\left(\alpha\left(x_{n(k)-1}, x_{n(k)}\right)\right)+d\left(x_{n(k)+1}, x_{n(k)}\right) \\
& =\frac{1}{2}\left[d\left(x_{m(k)-1}, x_{n(k)+1}\right)+d\left(x_{n(k)}, x_{m(k)}\right)\right] \\
& \quad-\psi\left(\frac{1}{2}\left[d\left(x_{m(k)-1}, x_{n(k)+1}\right)+d\left(x_{n(k)}, x_{m(k)}\right)\right]\right) \\
& \quad+d\left(x_{n(k)+1}, x_{n(k)}\right)
\end{aligned}
$$

$$
\begin{equation*}
=M(k)-\psi(M(k))+d\left(x_{n(k)+1}, x_{n(k)}\right) \tag{2.2.10}
\end{equation*}
$$

Where $M(k)=\frac{1}{2}\left[d\left(x_{m(k)-1}, x_{n(k)+1}\right)+d\left(x_{n(k)}, x_{m(k)}\right)\right]$

From (2.2.9), $M(k) \rightarrow \varepsilon$ as $k \rightarrow \infty$
Consequently, $M(k) \leq \varepsilon+\psi\left(\frac{\varepsilon}{2}\right)$ and $M(k) \geq \frac{3 \varepsilon}{4}$, for large k.
$\therefore(2.2 .8) \leq \varepsilon+\psi\left(\frac{\varepsilon}{2}\right)-\psi\left(\frac{3 \varepsilon}{4}\right)+d\left(x_{n(k)+1}, x_{n(k)}\right)$ for large k

$$
=\varepsilon-\left(\psi\left(\frac{3 \varepsilon}{4}\right)-\psi\left(\frac{\varepsilon}{2}\right)\right)+d\left(x_{n(k)+1}, x_{n(k)}\right) \text { for large } k
$$

$<\varepsilon$ since $d\left(x_{n(k)+1}, x_{n(k)}\right) \rightarrow 0$ as $k \rightarrow \infty$ and ψ is strictly increasing, which is a contradiction

Therefore $\left\{x_{n}\right\}$ is a Cauchy sequence.
Suppose $x_{n} \rightarrow z \in \overline{O\left(x_{0}\right)}$ and $T z \neq z$. Then

$$
\begin{aligned}
& d\left(x_{n+1}, T z\right)=d\left(T x_{n}, T z\right) \leq \alpha\left(x_{n}, z\right)-\psi\left(\alpha\left(x_{n}, z\right)\right) \\
& =\frac{1}{2}\left(d\left(x_{n+1}, T z\right)+d\left(z, T x_{n}\right)\right)-\psi\left(\frac{1}{2} d\left(x_{n+1}, T z\right)+d\left(z, T x_{n}\right)\right) \\
& \quad \leq \frac{1}{2}\left(d\left(x_{n}, T z\right)+d\left(z, T x_{n}\right)\right)=\left(\frac{1}{2} d\left(x_{n}, T z\right)+d\left(z, T x_{n+1}\right)\right)
\end{aligned}
$$

On letting $n \rightarrow \infty$, we get $z(z, T z) \leq \frac{1}{2}(d(z, T z)+d(z, z))=\frac{1}{2} d(z, T z)$
$\therefore d(z, T z)=0$ and hence $T z=x$.
Therefore z is a fixed point of T.
Uniqueness: Let x, y be fixed points of T in $\overline{O\left(x_{0}\right)}$.
Then from (2.2 .1), we have

$$
\begin{aligned}
d(x, y)=d(T x, T y) & \leq \alpha(x, y)-\psi(\alpha(x, y)) \\
& =\frac{1}{2}(d(x, T y)+d(y, T x))-\psi\left(\frac{1}{2}(d(x, T y)+d(y, T x))\right) \\
& =d(x, y)-\psi(d(x, y))<d(x, y), \text { if } x \neq y, \mathrm{a}
\end{aligned}
$$

contradiction
$\therefore x=y$
Note: On similar lines, the following theorem, which is parallel to Theorem1.2 (Rhodes [4], Theorem1.1) can also proved.

Theorem 2.3: Let (X, d) be a complete metric space $T: X \rightarrow X$ and T is orbitally complete. Assume that for some $x_{0} \in X$, there exists a $\psi \in \Psi$ such that

$$
d(T x, T y) \leq d(x, y)-\psi(d(x, y)) \quad \forall x, y \in \overline{O\left(x_{0}\right)}
$$

Then the sequence $\left\{T^{n} x_{0}\right\}$ is a Cauchy sequence in X.

If $\lim _{n \rightarrow \infty} T^{n} x_{0}=z, z \in X$, then z is a fixed point of T.

References

[1] Ya. I. Alber and S. Guerre-Delabriere, Principles of weakly contractive maps in Hilbert spaces, In: I. Gohberg and Yu. Lyubich (Eds), New results in operator theory, In: Advances and Appl., Birkhauser, Basel, 98(1997), 7-22.
[2] G.V.R. Babu and G.N. Alemayehu, Point of coincidence and common fixed points of a pair of generalized weakly contractive maps, Journal of Advanced Research in Pure Mathematics, 2(2010), 89-106.
[3] G.V.R. Babu and P.D. Sailaja, A fixed point theorem of generalized weakly contractive maps in orbitally complete metric spaces, Thai Journal of Mathematics, 9(1) (2011), 1-10.
[4] B.E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Analysis, 47(2001), 2683-2693.
[5] K.P.R. Sastry, Ch. S. Rao and N.A. Rao, A fixed point theorem of generalized weakly contractive maps in orbitally complete metric spaces when the control function is not necessarily continuous, Communicated.

