Gen. Math. Notes, Vol. 14, No. 2, February 2013, pp. 37-52
ISSN 2219-7184; Copyright © ICSRS Publication, 2013
www.i-csrs.org
Available free online at http://www.geman.in

Subordination and Superordination

Properties of p-Valent Functions Involving
 Certain Fractional Calculus Operator

Jamal M. Shenan
Department of mathematics, Alazhar University-Gaza
P. O. Box 1277, Gaza, Palestine
E-mail: shenanjm @ yahoo.com

(Received: 14-12-12/ Accepted: 23-1-13)

Abstract

In this paper, we study different applications of the differential subordination and superordination of analytic functions in the open unit disc associated with the fractional differintegral operator $U_{0, z}^{\alpha, \beta, \gamma}$. Sandwich-type result involving this operator is also derived.

Keywords: Analytic function, p-valent function, fractional differintegral operator, differential subordination and superordination.

1 Introduction

Let $H(U)$ be the class of functions analytic in $U=\{z: z \in C$ and $|z|<1\}$ and $H[a, k]$ be the subclass of $H(U)$ consisting of functions of the form

$$
f(z)=a+a_{p} z^{k}+a_{p+1} z^{p+1}+\ldots \quad(a \in \mathbb{C}, p \in \mathbb{N}=\{1,2, \ldots\})
$$

Let A_{p} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k}(p \in \mathbb{N}, z \in U) \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk U, and set $A \equiv A_{1}$.
Let f and F be members of $H(U)$, the function $f(z)$ is said to be subordinate to $F(z)$, or $F(z)$ is said to be superordinate to $f(z)$, if there exists a function $w(z)$ analytic in U with $w(0)=0$ and $|w(z)|<1(z \in U)$, such that $f(z)=F(w(z))$. In such a case we write $f(z) \prec F(z)$. In particular, if F is univalent, then $f(z) \prec F(z)$ if and only if $f(0)=F(0)$ and $f(U) \subset F(U)$ (see [2]).

Suppose that p and h are two functions in U, let

$$
\phi(r, s, t ; z): C^{3} \times U \rightarrow C .
$$

If p and $\phi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right)$ are univalent in U. If p is analytic in U and satisfies the first order differential superordination

$$
\begin{equation*}
h(z) \prec \phi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right)(z \in U), \tag{1.2}
\end{equation*}
$$

then p is called a solution of the differential superordination (1.2).
The univalent function q is called a subordinant solutions of (1.2) if $q \prec p$ for all p satisfying (1.2). A subordinant \tilde{q} that satisfies $q \prec \tilde{q}$ for all subordinant q of (1.2) is said to be the best subordinant. (see the monograph by Miller and Mocanu [10], and [11]).

Recently, Miller and Mocanu [11] obtained sufficient conditions on the functions h, q and ϕ for which the following implication holds:

$$
h(z) \prec \phi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right) \rightarrow q(z) \prec p(z)
$$

Using these results, the second author considered certain classes of first-order differential superordinations [6], as well as superordination-preserving integral operators [5]. Ali et al. [1], using the results from [6], obtained sufficient conditions for certain normalized analytic functions f to satisfy

$$
\begin{equation*}
q_{1}(z) \prec \frac{z f^{\prime}(z)}{f(z)} \prec q_{2}(z), \tag{1.3}
\end{equation*}
$$

where q_{1} and q_{2} are given univalent normalized functions in U.

Very recently, Shanmugam et al. [22-24] obtained the such called sandwich results for certain classes of analytic functions. Further subordination results can be found in [13, 21, 27 and 28].
we recall the definitions of the fractional derivative and integral operators introduced and studied by Saigo (cf. [17] and [19], see also [20]).

Definition1 let $\alpha>0$ and $\beta, \gamma \in R$, then the generalized fractional integral operator $\mathrm{I}_{0, z}^{\alpha, \beta, \gamma}$ of order α of a function $f(z)$ is defined by

$$
\begin{equation*}
\mathrm{I}_{0, z}^{\alpha, \beta, \gamma} f(z)=\frac{z^{-\alpha-\beta,}}{\Gamma(\alpha)} \int_{0}^{z}(z-t)_{2}^{\alpha-1} F_{1}\left(\alpha+\beta,-\gamma ; \alpha ; 1-\frac{t}{z}\right) f(t) d t \tag{1.4}
\end{equation*}
$$

where the function $f(z)$ is analytic in a simply-connected region of the z-plane containing the origin and the multiplicity of $(z-t)^{\alpha-1}$ is removed by requiring $\log (z-t)$ to be real when $(z-t)>0$ provided further that

$$
\begin{equation*}
f(z)=\mathrm{O}\left(|z|^{\varepsilon}\right), z \rightarrow 0 \text { for } \varepsilon>\max (0, \beta-\gamma)-1 \tag{1.5}
\end{equation*}
$$

Definition 2 let $0 \leq \alpha<1$ and $\beta, \gamma \in R$, then the generalized fractional derivative operator $J_{0, z}^{\alpha, \beta, \gamma}$ of order α of a function $f(z)$ defined by

$$
\begin{align*}
J_{0, z}^{\alpha, \beta, \gamma} f(z) & =\frac{1}{\Gamma(1-\alpha)} \frac{d}{d z}\left[z^{\alpha-\beta} \int_{0}^{z}(z-t)^{-\alpha} F_{1}\left(\beta-\alpha, 1-\gamma, 1-\alpha ; 1-\frac{t}{z}\right) f(t) d t\right] \tag{1.6}\\
& =\frac{d^{n}}{d z^{n}} J_{0, z}^{\alpha-n, \beta, \gamma} f(z) \quad(n \leq \alpha<n+1 ; n \in N),
\end{align*}
$$

where the function $f(z)$ is analytic in a simply-connected region of the z-plane containing the origin, with the order as given in (1.5) and multiplicity of $(z-t)^{\alpha}$ is removed by requiring $\log (z-t)$ to be real when $(z-t)>0$.
Not that

$$
\begin{align*}
& I_{0, z}^{\alpha,-\alpha, \gamma} f(z)=D_{z}^{-\alpha} f(z),(\alpha>0) \tag{1.7}\\
& J_{0, z}^{\alpha, \alpha, \gamma} f(z)=D_{z}^{\alpha} f(z),(0 \leq \alpha<1) \tag{1.8}
\end{align*}
$$

where $D_{z}^{-\alpha} f(z)$ and $D_{z}^{\alpha} f(z)$ are respectively the well known RiemannLiouvill fractional integral and derivative operators (cf. [14] and [15], see also [25]).

Definition 3 For real number $\alpha(-\infty<\alpha<1)$ and $\beta(-\infty<\beta<1)$ and a positive real
number γ, the fractional operator $U_{0, z}^{\alpha, \beta, \gamma}: A_{p} \rightarrow A_{p}$ for the function $f(z)$ given by (1.1) is defined in terms of $J_{0, z}^{\alpha, \beta, \gamma}$ and $\mathrm{I}_{0, z}^{\alpha, \beta, \gamma}$ by (see [12] and [9])

$$
\begin{equation*}
U_{0, z}^{\alpha, \beta, \gamma} f(z)=z^{p}+\sum_{k=p+1}^{\infty} \frac{(1+p)_{k-p}(1+p+\gamma-\beta)_{k-p}}{(1+p-\beta)_{k-p}(1+p+\gamma-\alpha)_{k-p}} a_{k} z^{k}, \tag{1.9}
\end{equation*}
$$

which for $f(z) \neq 0$ may be written as
$U_{0, z}^{\alpha, \beta, \gamma} f(z)=\left\{\begin{array}{lc}\frac{\Gamma(1+p-\beta) \Gamma(1+p+\gamma-\alpha)}{\Gamma(1+p) \Gamma(1+p+\gamma-\beta)} z^{\beta} J_{0, z}^{\alpha, \beta, \gamma} f(z) ; & 0 \leq \alpha \leq 1 \\ \frac{\Gamma(1+p-\beta) \Gamma(1+p+\gamma-\alpha)}{\Gamma(1+p) \Gamma(1+p+\gamma-\beta)} z^{\beta} \mathrm{I}_{0, z}^{-\alpha, \beta, \gamma} f(z) ; & -\infty \leq \alpha<0\end{array}\right.$
where $J_{0, z}^{\alpha, \beta, \gamma} f(z)$ and $\mathrm{I}_{0, z}^{-\alpha, \beta, \gamma} f(z)$ are, respectively the fractional derivative of f of order $\quad \alpha$ if $0 \leq \alpha<1$ and the fractional integral of f of order $-\alpha$ if $-\infty \leq \alpha<0$.

It is easily verified (see Choi [8]) from (1.9) that

$$
\begin{equation*}
(p-\beta) U_{0, z}^{\alpha+1, \beta+1, \gamma+1} f(z)+\beta U_{0, z}^{\alpha, \beta, \gamma} f(z)=z\left(U_{0, z}^{\alpha, \beta, \gamma} f(z)\right)^{\prime} . \tag{1.11}
\end{equation*}
$$

Note that

$$
\begin{equation*}
U_{0, z}^{\alpha, \alpha, \gamma} f(z)=\Omega_{z}^{(\alpha, p)} f(z)(-\infty<\alpha<1), \tag{1.12}
\end{equation*}
$$

The fractional differintegral operator $\Omega_{z}^{(\alpha, p)} f(z)$ for $(-\infty<\alpha<p+1)$ is studied by Patel and Mishra [16], and the fractional differential operator $\Omega_{z}^{(\alpha, p)}$ with $0 \leq \alpha<1$ was investigated by Srivastava and Aouf [26]. We, further observe that $\Omega_{z}^{(\alpha, 1)}=\Omega_{z}^{\alpha}$ is the operator introduced and studied by Owa and Srivastava [15]. It is interesting to observe that

$$
\begin{align*}
& U_{0, z}^{0,0, \gamma} f(z)=f(z) \tag{1.13}\\
& U_{0, z}^{1,1, \gamma} f(z)=\frac{z}{p} f^{\prime}(z) \tag{1.14}
\end{align*}
$$

To prove our results, we need the following definitions and lemmas.
Definition 4([10]) Denote by Q the set of all functions $q(z)$ that are analytic and injective on $\bar{U} / E(q)$ where $E(q)=\left\{\zeta \in \partial U: \lim _{z \rightarrow \zeta} q(z)=\infty\right\}$,
and are such that $q^{\prime}(\zeta) \neq 0$ for $\zeta \in \partial U / E(q)$. Further let the subclass of Q for which $q(0)=a$ be denoted by $Q(a), Q(0) \equiv Q_{0}$ and $Q(1) \equiv Q_{1}$.

Lemma 1([10]) Let $q(z)$ be univalent function in the unit disc U and let θ and ϕ be analytic in a domain D containing $q(U)$ with $\phi(w) \neq 0$ when $w \in q(U)$. Set $q(z)=z q^{\prime}(z) \varphi(q(z)), h(z)=\theta(q(z))+Q(z)$ and suppose that
i) Q is a starlike function in U,
ii) $\operatorname{Re} z h^{\prime}(z) / Q(z)>0, z \in U$.

If p is analytic in U with $p(0)=q(0), p(U) \subseteq D$ and

$$
\begin{equation*}
\theta(p(z))+z p^{\prime}(z) \varphi(p(z)) \prec \theta(q(z))+z q^{\prime}(z) \varphi(q(z)) \tag{1.15}
\end{equation*}
$$

then $p(z) \prec q(z)$, and q is the best dominant of (1.15).

Lemma 2([23]) Let $q(z)$ be a convex univalent function in U and let $\alpha \in \mathbb{C}, \eta \in \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$ with

$$
\mathfrak{R}\left\{1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right\}>\max \left\{0,-\mathfrak{R}\left(\frac{\sigma}{\eta}\right)\right\}
$$

If the function $g(z)$ is analytic in U and

$$
\sigma g(z)+\eta z g^{\prime}(z) \prec \sigma q^{\prime}(z)+\eta z q^{\prime}(z)
$$

then $g(z) \prec q(z)$ and $q(z)$ is the best dominant.
Lemma 3([7]) Let $q(z)$ be univalent function in the unit disc U and let θ and ϕ be analytic in a domain D containing $q(U)$. Suppose that
i) $\operatorname{Re} \theta(q(z)) / \phi(q(z))>0 \quad z \in U$,
ii) $h(z)=z q^{\prime}(z) \varphi(q(z))$ is starlike in U.

If $p \in H[q(0), 1] \cap Q$ with $p(U) \subseteq D, \theta(p(z))+z p^{\prime}(z) \varphi(p(z))$ is univalent U, and

$$
\begin{equation*}
\theta(q(z))+z q^{\prime}(z) \varphi(q(z)) \prec \theta(p(z))+z p^{\prime}(z) \varphi(p(z)), \tag{1.16}
\end{equation*}
$$

then $q(z) \prec p(z)$, and q is the best dominant of (1.16).
Lemma 4([11]) Let $q(z)$ be convex function in U and let $\gamma \in \mathbb{C}$, with $\operatorname{Re} \gamma>0$. If $p \in H[q(0), 1] \cap Q$ and $p(z)+\gamma z p^{\prime}(z)$ is univalent in U, then

$$
\begin{equation*}
q(z)+\gamma z q^{\prime}(z) \prec p(z)+\gamma z p^{\prime}(z), \tag{1.17}
\end{equation*}
$$

Implies $q(z) \prec p(z)$, and q is the best dominant of (1.17).
Lemma 5 ([18]) The function $q(z)=(1-z)^{-2 a b}$ is univalent in U if and only if $|2 a b-1| \leq 1$ or $|2 a b+1| \leq 1$.

2 Subordination Results for Analytic Functions

Theorem 1 Let $q(z)$ be a univalent function in U, with $q(0)=1$, and suppose that

$$
\begin{equation*}
\mathfrak{R}\left\{1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right\}>\max \left\{0 ;-p(p-\beta) \operatorname{Re} \frac{1}{\lambda}\right\}, z \in U \tag{2.1}
\end{equation*}
$$

Where $-\infty<\alpha<1 ;-\infty<\beta<1 ; \gamma \in \mathbb{R}^{+} ; \lambda \in \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$ and $p \in \mathbb{N}$.
If $f \in A_{p}$ satisfies the subordination

$$
\begin{equation*}
\frac{\lambda}{p}\left(\frac{U_{0, z}^{\alpha+1, \beta+1, \gamma+1} f(z)}{z^{p}}\right)+\frac{p-\lambda}{p}\left(\frac{U_{0, z}^{\alpha, \beta, \gamma} f(z)}{z^{p}}\right) \prec q(z)+\frac{\lambda z q^{\prime}(z)}{p(p-\beta)}, \tag{2.2}
\end{equation*}
$$

then

$$
\frac{U_{0, z}^{\alpha, \beta, \gamma} f(z)}{z^{p}} \prec q(z)
$$

and the function q is the best dominant of (2.2).
Proof. If we consider the analytic function

$$
h(z)=\frac{U_{0, z}^{\alpha, \beta, \gamma} f(z)}{z^{p}},
$$

by differentiating logarithmically with respect to z, we deduce that

$$
\begin{equation*}
\frac{z h^{\prime}(z)}{h(z)}=\frac{z\left(U_{0, z}^{\alpha, \beta, \gamma} f(z)\right)^{\prime}}{U_{0, z}^{\alpha, \beta, \gamma} f(z)}-p . \tag{2.3}
\end{equation*}
$$

From (2.3), by using the identity (1.11), a simple computation shows that

$$
\frac{\lambda}{p}\left(\frac{U_{0, z}^{\alpha+1, \beta+1, \gamma+1} f(z)}{z^{p}}\right)+\frac{p-\lambda}{p}\left(\frac{U_{0, z}^{\alpha, \beta, \gamma} f(z)}{z^{p}}\right)=h(z)+\frac{\lambda z h^{\prime}(z)}{p(p-\beta)},
$$

hence the subordination (2.2) is equivalent to

$$
h(z)+\frac{\lambda z h^{\prime}(z)}{p(p-\beta)} \prec q(z)+\frac{\lambda z q^{\prime}(z)}{p(p-\beta)} .
$$

Combining the last relation together with Lemma 2 for the special case $\eta=\lambda / p(p-\beta)$ and $\sigma=1$, we obtain our result.
Taking $q(z)=\frac{1+A z}{1+B z}$ in Theorem 1, where $-1 \leq B<A \leq 1$, the condition (2.1) becomes

$$
\begin{equation*}
\mathfrak{R}\left\{\frac{1-B z}{1+B z}\right\}>\max \left\{0 ;-p(p-\beta) \operatorname{Re} \frac{1}{\lambda}\right\}, z \in U \tag{2.4}
\end{equation*}
$$

It is easy to check that the function $\phi(\zeta)=\frac{1-\zeta}{1+\zeta},|\zeta|<|B|$, is convex in U and since
$\phi(\bar{\zeta})=\overline{\phi(\zeta)}$ for all $|\zeta|<|B|$, it follows that the image $\varphi(U)$ is a convex domain symmetric with respect to the real axis, hence

$$
\begin{equation*}
\inf \left\{\Re \frac{1-B z}{1+B z} ; z \in U\right\}=\frac{1-|B|}{1+|B|}>0 . \tag{2.5}
\end{equation*}
$$

Then, the inequality (2.4) is equivalent to

$$
p(p-\beta) \operatorname{Re} \frac{1}{\lambda} \geq \frac{1-|B|}{1+|B|},
$$

hence we obtain the following result:
Corollary 1 Let $-\infty<\alpha<1 ;-\infty<\beta<1 ; \gamma \in \mathbb{R}^{+} ; \lambda \in \mathbb{C}^{*} ; p \in \mathbb{N}$ and $-1 \leq B<A \leq 1$ with

$$
\max \left\{0 ;-p(p-\beta) \operatorname{Re} \frac{1}{\lambda}\right\} \leq \frac{1-|B|}{1+|B|} .
$$

If $f \in A_{p}$ satisfies the subordination

$$
\begin{equation*}
\frac{\lambda}{p}\left(\frac{U_{0, z}^{\alpha+1, \beta+1, \gamma+1} f(z)}{z^{p}}\right)+\frac{p-\lambda}{p}\left(\frac{U_{0, z}^{\alpha, \beta, \gamma} f(z)}{z^{p}}\right) \prec \frac{1+A z}{1+B z}+\frac{\lambda(A-B) z}{p(p-\beta)(1+B z)^{2}}, \tag{2.6}
\end{equation*}
$$

then

$$
\frac{U_{0, z}^{\alpha, \beta, \gamma} f(z)}{z^{p}} \prec \frac{1+A z}{1+B z},
$$

and the function $1+A z / 1+B z$ is the best dominant of (2.6).

For $p=1, A=1$ and $B=-1$, the above corollary reduces to:
Corollary 2 Let $-\infty<\alpha<1 ;-\infty<\beta<1 ; \gamma \in \mathbb{R}^{+} ; \lambda \in \mathbb{C}^{*}$ with

$$
(1-\beta) \operatorname{Re} \frac{1}{\lambda} \geq 0 .
$$

If $f \in A_{p}$ satisfies the subordination

$$
\begin{equation*}
\lambda\left(\frac{U_{0, z}^{\alpha+1, \beta+1, \gamma+1} f(z)}{z}\right)+(1-\lambda)\left(\frac{U_{0, z}^{\alpha, \beta, \gamma} f(z)}{z}\right) \prec \frac{1+z}{1-z}+\frac{2 \lambda z}{(1-\beta)(1+z)^{2}}, \tag{2.7}
\end{equation*}
$$

then

$$
\frac{U_{0, z}^{\alpha, \beta, \gamma} f(z)}{z^{p}} \prec \frac{1+z}{1-z},
$$

and the function $1+z / 1-z$ is the best dominant of (2.7).

Theorem 2 Let $q(z)$ be a univalent function in U, with $q(0)=1$ and $q(z) \neq 0$ for all $z \in U$. Let $\delta, \mu \in \mathbb{C}^{*}$ and $v, \eta \in \mathbb{C}$ with $v+\eta \neq 0$. Let $f \in A_{p}$ and suppose that f and q satisfy the conditions:

$$
\frac{\nu U_{0, z}^{\alpha+1, \beta+1, \gamma+1} f(z)+\eta U_{0, z}^{\alpha, \beta, \gamma} f(z)}{(v+\eta) z^{p}} \neq 0, \quad z \in U
$$

$\left(-\infty<\alpha<1 ;-\infty<\beta<1 ; \gamma \in \mathbb{R}^{+} ; p \in \mathbb{N}\right)$, (2.8)
and

$$
\begin{equation*}
\mathfrak{R}\left\{1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}-\frac{z q^{\prime}(z)}{q(z)}\right\}>0, z \in U \tag{2.9}
\end{equation*}
$$

If

$$
\begin{equation*}
1+\delta \mu\left[\frac{v z\left(U_{0, z}^{\alpha+1, \beta+1, \gamma+1} f(z)\right)^{\prime}+\eta z\left(U_{0, z}^{\alpha, \beta, \gamma} f(z)\right)^{\prime}}{v U_{0, z}^{\alpha+1, \beta+1, \gamma+1} f(z)+\eta U_{0, z}^{\alpha, \beta, \gamma} f(z)}-p\right] \prec 1+\delta \frac{z q^{\prime}(z)}{q(z)} \tag{2.10}
\end{equation*}
$$

then

$$
\left[\frac{v U_{0, z}^{\alpha+1, \beta+1, \gamma+1} f(z)+\eta U_{0, z}^{\alpha, \beta, \gamma} f(z)}{(v+\eta) z^{p}}\right]^{\mu} \prec q(z),
$$

and the function q is the best dominant of (2.10) . (the power is the principal one).

Proof. Let

$$
\begin{equation*}
h(z)=\left[\frac{v U_{0, z}^{\alpha+1, \beta+1, \gamma+1} f(z)+\eta U_{0, z}^{\alpha, \beta, \gamma} f(z)}{(v+\eta) z^{p}}\right]^{\mu}, z \in U \tag{2.11}
\end{equation*}
$$

According to (2.8) the function h is analytic in U. and differentiating (2.11) logarithmically with respect to z we get

$$
\begin{equation*}
\frac{z h^{\prime}(z)}{h(z)}=\mu\left[\frac{v z\left(U_{0, z}^{\alpha+1, \beta+1, \gamma+1} f(z)\right)^{\prime}+\eta z\left(U_{0, z}^{\alpha, \beta, \gamma} f(z)\right)^{\prime}}{v U_{0, z}^{\alpha+1, \beta+1, \gamma+1} f(z)+\eta U_{0, z}^{\alpha, \beta, \gamma} f(z)}-p\right] . \tag{2.12}
\end{equation*}
$$

In order to prove our result we will use Lemma 1. Considering in this lemma

$$
\theta(w)=1 \text { and } \phi(w)=\frac{\delta}{w},
$$

Then θ is analytic in \mathbb{C} and $\phi(w) \neq 0$ is analytic in \mathbb{C}^{*}. Also, if we let

$$
Q(z)=z q^{\prime}(z)=\varphi(q(z))=\delta \frac{z q^{\prime}(z)}{q(z)}
$$

and

$$
g(z)=\theta(q(z))+Q(z)=1+\delta \frac{z q^{\prime}(z)}{q(z)},
$$

then, since $Q(0)=1$ and $Q^{\prime}(o) \neq 0$, the assumption (2.9) yields that Q is a starlike function in U. From (2.9) we also have

$$
\mathfrak{R} \frac{z q^{\prime}(z)}{Q(z)}=\mathfrak{R}\left\{1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}-\frac{z q^{\prime}(z)}{q(z)}\right\}>0, z \in U
$$

and then, by using Lemma 1 we deduce that the subordination (2.10) implies $h(z) \prec q(z)$ and the function q is the best dominant of (2.10).
Taking $v=0, \eta=\delta=1$ and $q(z)=\frac{1+A z}{1+B z}$ in Theorem 2 , it is easy to check that the assumption (2.9) holds whenever $-1 \leq A<B \leq 1$, hence we obtain the next results.

Corollary 3 Let $-\infty<\alpha<1 ;-\infty<\beta<1 ; \gamma \in \mathbb{R}^{+} ; \mu \in \mathbb{C}^{*} ; p \in \mathbb{N}$ and $-1 \leq A<B \leq 1$. Let $f \in A_{p}$ and suppose that

$$
\frac{U_{0, z}^{\alpha, \beta, \gamma} f(z)}{z^{p}} \neq 0, \quad z \in U
$$

If

$$
\begin{equation*}
1+\mu\left[\frac{z\left(U_{0, z}^{\alpha, \beta, \gamma} f(z)\right)^{\prime}}{U_{0, z}^{\alpha, \beta, \gamma} f(z)}-p\right] \prec 1+\frac{(A-B) z}{(1+A z)(1+B z)} \tag{2.13}
\end{equation*}
$$

then

$$
\left[\frac{U_{0, z}^{\alpha, \beta, \gamma} f(z)}{z^{p}}\right]^{\mu} \prec \frac{1+A z}{1+B z}
$$

and the function $1+A z / 1+B z$ is the best dominant of (2.13). (the power is the principal one).

Remarks

1) Putting $\quad v=0, \eta=p=1, \quad \alpha=\beta=0, \quad \delta=1 / a b\left(a, b \in \mathbb{C}^{*}\right), \mu=a$, and $q(z)=(1-z)^{-2 a b}$ in Theorem 2, then combining this together with Lemma 5 we obtain the corresponding result due to Obradović et al. [13, Theorem 1], see also Aouf and Bulboacă [3, Corollary 3.3].
2) For $\quad v=0, \eta=p=1, \quad \alpha=\beta=0, \quad \delta=1 / b\left(b \in \mathbb{C}^{*}\right), \mu=1, \quad$ and $q(z)=(1-z)^{-2 a b}$, Theorem 2 reduces to the recent result of Srivastava and Lashin [27].
3) Putting $\quad v=0, \eta=p=\delta=1, \quad \alpha=\beta=0, \quad$ and $\quad q(z)=(1+B z)^{\mu(A-B) / B}$ $(-1 \leq B<A \leq 1, B \neq 0)$ in Theorem 2, and using Lemma 5 we get the corresponding result due to Aouf and Bulboacă [3, Corollary 3.4].
4) Putting $v=0, \eta=p=1, \alpha=\beta=0$,
$\delta=e^{i \lambda} / a b \cos \lambda\left(a, b \in \mathbb{C}^{*} ;|\lambda|<\pi / 2\right), \mu=a \quad$ and $\quad q(z)=(1-z)^{-2 a \cos \lambda e^{-i \lambda}}$ in
Theorem 2, we obtain the corresponding result due to Aouf et al. [4, Theorem 1], see also Aouf and Bulboacă [3, Corollary 3.5].

Theorem 3 Let $q(z)$ be a univalent function in U, with $q(0)=1$. Let $\lambda, \mu \in \mathbb{C}^{*}$ and $v, \eta, \delta, \Omega \in \mathbb{C}$ with $v+\eta \neq 0$. Let $f \in A_{p}$ and suppose that f and q satisfy the conditions:
$\frac{\nu U_{0, z}^{\alpha+1, \beta+1, \gamma+1} f(z)+\eta U_{0, z}^{\alpha, \beta, \gamma} f(z)}{(v+\eta) z^{p}} \neq 0, \quad z \in U$
$\left(-\infty<\alpha<1 ;-\infty<\beta<1 ; \gamma \in \mathbb{R}^{+} ; p \in \mathbb{N}\right)(2.14)$
and

$$
\begin{equation*}
\mathfrak{R}\left\{1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right\}>\max \left\{0 ;-\operatorname{Re} \frac{\delta}{\lambda}\right\}, z \in U \tag{2.15}
\end{equation*}
$$

If

$$
\begin{gather*}
\psi(z)=\left[\frac{v U_{0, z}^{\alpha+1, \beta+1, \gamma+1} f(z)+\eta U_{0, z}^{\alpha, \beta, \gamma} f(z)}{(v+\eta) z^{p}}\right]^{\mu} \\
\times\left[\delta+\mu \lambda\left(\frac{v z\left(U_{0, z}^{\alpha+1, \beta+1, \gamma+1} f(z)\right)^{\prime}+\eta z\left(U_{0, z}^{\alpha, \beta, \gamma} f(z)\right)^{\prime}}{v U_{0, z}^{\alpha+1, \beta+1, \gamma+1} f(z)+\eta U_{0, z}^{\alpha, \beta, \gamma} f(z)}-p\right)\right]+\Omega, \tag{2.16}
\end{gather*}
$$

and

$$
\begin{equation*}
\psi(z) \prec \delta q(z)+\lambda z q^{\prime}(z)+\Omega, \tag{2.17}
\end{equation*}
$$

then

$$
\left[\frac{v U_{0, z}^{\alpha+1, \beta+1, \gamma+1} f(z)+\eta U_{0, z}^{\alpha, \beta, \gamma} f(z)}{(v+\eta) z^{p}}\right]^{\mu} \prec q(z),
$$

and the function q is the best dominant of (2.17) (all the power are the principal ones).

Proof. Let $h(z)$ be defined by (2.11), the we have from (2.12)

$$
z h^{\prime}(z)=\mu h(z)\left[\frac{v z\left(U_{0, z}^{\alpha+1, \beta+1, \gamma+1} f(z)\right)^{\prime}+\eta z\left(U_{0, z}^{\alpha, \beta, \gamma} f(z)\right)^{\prime}}{v U_{0, z}^{\alpha+1, \beta+1, \gamma+1} f(z)+\eta U_{0, z}^{\alpha, \beta \gamma} f(z)}-p\right] .
$$

Let us consider the following functions:

$$
\theta(w)=\delta w+\Omega, \text { and } \phi(w)=\lambda, w \in \mathbb{C},
$$

$$
Q(z)=z q^{\prime}(z)=\varphi(q(z))=\lambda \frac{z q^{\prime}(z)}{q(z)}, z \in U
$$

and

$$
g(z)=\theta(q(z))+Q(z)=\delta q(z)+\lambda z q^{\prime}(z)+\Omega, z \in U .,
$$

From the assumption (3.15) we see that Q is starlike in U and, that

$$
\mathfrak{R} \frac{z q^{\prime}(z)}{Q(z)}=\mathfrak{R}\left\{\frac{\delta}{\lambda}+1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right\}>0, z \in U,
$$

thus, by applying Lemma 1 the proof is completed.
Taking $q(z)=\frac{1+A z}{1+B z}$ in Theorem 3, where $-1 \leq B<A \leq 1$, and according to (2.5),
the condition (2.15) becomes

$$
\max \left\{0 ;-\operatorname{Re} \frac{\delta}{\lambda}\right\} \leq \frac{1-|B|}{1+|B|} .
$$

Hence, for the special case $v=\lambda=0, \eta=0$, we obtain the following result:
Corollary 4 Let $-1 \leq B<A \leq 1, \mu \in \mathbb{C}^{*}$ and $\delta \in \mathbb{C}$ with

$$
\max \{0 ;-\operatorname{Re} \delta\} \leq \frac{1-|B|}{1+|B|}
$$

Let $f \in A_{p}$ and suppose that
$\frac{U_{0, z}^{\alpha, \beta, \gamma} f(z)}{z^{p}} \neq 0, \quad z \in U\left(-\infty<\alpha<1 ;-\infty<\beta<1 ; \gamma \in \mathbb{R}^{+} ; p \in \mathbb{N}\right)$,
$\left(\frac{U_{0, z}^{\alpha+1, \beta+1, \gamma+1} f(z)}{z^{p}}\right)^{\mu}\left[\delta+\mu\left(\frac{z\left(U_{0, z}^{\alpha, \beta, \gamma} f(z)\right)^{\prime}}{U_{0, z}^{\alpha, \beta, \gamma} f(z)}-p\right)\right]+\Omega \prec \delta \frac{1+A z}{1+B z}+\Omega+\frac{(A-B) z}{(1+B z)^{2}}$,
then

$$
\left[\frac{U_{0, z}^{\alpha, \beta, \gamma} f(z)}{z^{p}}\right]^{\mu} \prec \frac{1+A z}{1+B z},
$$

and the function $1+A z / 1+B z$ is the best dominant of (2.18) (all the powers are the principal ones).
Remark Taking $v=0, \eta=\lambda=p=1, \alpha=\beta=0$ and $q(z)=\frac{1+z}{1-z}$ in Theorem 3 we obtain the corresponding result due to Aouf and Bulboacă [3, Corollary 3.7].

3 Superordination and Sandwich Results

Theorem 4 Let $q(z)$ be convex function in U, with $q(0)=1$. Let $-\infty<\alpha<1$, $-\infty<\beta<1, \quad \gamma \in \mathbb{R}^{+}, p \in \mathbb{N}$ and $\lambda \in \mathbb{C}^{*}$ with $(p-\beta) \operatorname{Re} \lambda>0$. Let $f \in A_{p}$ and suppose that $U_{0, z}^{\alpha, \beta, \gamma} f(z) / z^{p} \in H[q(0), 1] \cap Q$. If the function

$$
\frac{\lambda}{p}\left(\frac{U_{0, z}^{\alpha+1, \beta+1, \gamma+1} f(z)}{z^{p}}\right)+\frac{p-\lambda}{p}\left(\frac{U_{0, z}^{\alpha, \beta, \gamma} f(z)}{z^{p}}\right),
$$

is univalent in U, and

$$
\begin{equation*}
q(z)+\frac{\lambda z q^{\prime}(z)}{p(p-\beta)} \prec \frac{\lambda}{p}\left(\frac{U_{0, z}^{\alpha+1, \beta+1, \gamma+1} f(z)}{z^{p}}\right)+\frac{p-\lambda}{p}\left(\frac{U_{0, z}^{\alpha, \beta, \gamma} f(z)}{z^{p}}\right), \tag{3.1}
\end{equation*}
$$

then

$$
q(z) \prec \frac{U_{0, z}^{\alpha, \beta, \gamma} f(z)}{z^{p}}
$$

and q is the best subordinate of (3.1).
Proof. Let us define the function g by

$$
g(z)=\frac{U_{0, z}^{\alpha, \beta, \gamma} f(z)}{z^{p}}, \quad z \in U .
$$

From the assumption of the theorem, the function g is analytic in U, by differentiating logarithmically with respect to z the function g, we deduce that

$$
\begin{equation*}
\frac{z g^{\prime}(z)}{g(z)}=\frac{z\left(U_{0, z}^{\alpha, \beta, \gamma} f(z)\right)^{\prime}}{U_{0, z}^{\alpha, \beta, \gamma} f(z)}-p \tag{3.2}
\end{equation*}
$$

After some computations, and using the identity (1.11), from (3.2) we get

$$
g(z)+\frac{\lambda z g^{\prime}(z)}{p(p-\beta)}=\frac{\lambda}{p}\left(\frac{U_{0, z}^{\alpha+1, \beta+1, \gamma+1} f(z)}{z^{p}}\right)+\frac{p-\lambda}{p}\left(\frac{U_{0, z}^{\alpha, \beta, \gamma} f(z)}{z^{p}}\right)
$$

and now, by using Lemma 4 we get the desired result.
Taking $q(z)=\frac{1+A z}{1+B z}$ in Theorem 4 , where $-1 \leq B<A \leq 1$, hence we obtain the next results.

Corollary 5 Let $q(z)$ be convex function in U, with $q(0)=1$. Let $-\infty<\alpha<1$, $-\infty<\beta<1, \gamma \in \mathbb{R}^{+}, p \in \mathbb{N}$ and $\lambda \in \mathbb{C}^{*}$ with $(p-\beta) \operatorname{Re} \lambda>0$. Let $f \in A_{p}$ and suppose that $U_{0, z}^{\alpha, \beta, \gamma} f(z) / z^{p} \in H[q(0), 1]$. If the function

$$
\frac{\lambda}{p}\left(\frac{U_{0, z}^{\alpha+1, \beta+1, \gamma+1} f(z)}{z^{p}}\right)+\frac{p-\lambda}{p}\left(\frac{U_{0, z}^{\alpha, \beta, \gamma} f(z)}{z^{p}}\right)
$$

is univalent in U, and

$$
\begin{equation*}
\frac{1+A z}{1+B z}+\frac{\lambda(A-B) z}{p(p-\beta)(1+B z)^{2}} \prec \frac{\lambda}{p}\left(\frac{U_{0, z}^{\alpha+1, \beta+1, \gamma+1} f(z)}{z^{p}}\right)+\frac{p-\lambda}{p}\left(\frac{U_{0, z}^{\alpha, \beta, \gamma} f(z)}{z^{p}}\right) \tag{3.3}
\end{equation*}
$$

then

$$
\frac{1+A z}{1+B z} \prec \frac{U_{0, z}^{\alpha, \beta, \gamma} f(z)}{z^{p}}
$$

and $1+A z / 1+B z$ is the best subordinate of (3.3).
Using arguments similar to those of the proof of Theorem 3, and then by applying Lemma 3 we obtain the following result.

Theorem 5 Let $q(z)$ be convex function in U, with $q(0)=1$. Let $\lambda, \mu \in \mathbb{C}^{*}$ and $v, \eta, \delta, \Omega \in \mathbb{C}$ with $v+\eta \neq 0 \operatorname{Re}(\delta / \lambda)>0$. Let $f \in A_{p}$ and suppose that f satisfies the conditions:
$\frac{v U_{0, z}^{\alpha+1, \beta+1, \gamma+1} f(z)+\eta U_{0, z}^{\alpha, \beta, \gamma} f(z)}{(v+\eta) z^{p}} \neq 0, \quad z \in U$
$\left(-\infty<\alpha<1 ;-\infty<\beta<1 ; \gamma \in \mathbb{R}^{+} ; p \in \mathbb{N}\right)$,
and

$$
\left[\frac{\nu U_{0, z}^{\alpha+1, \beta+1, \gamma+1} f(z)+\eta U_{0, z}^{\alpha, \beta, \gamma} f(z)}{(v+\eta) z^{p}}\right]^{\mu} \in H[q(0), 1] \cap Q
$$

If the function ψ given by (2.16) is univalent in U, and

$$
\begin{equation*}
\delta q(z)+\lambda z q^{\prime}(z)+\Omega \prec \psi(z), \tag{3.4}
\end{equation*}
$$

then

$$
q(z) \prec\left[\frac{v U_{0, z}^{\alpha+1, \beta+1, \gamma+1} f(z)+\eta U_{0, z}^{\alpha, \beta, \gamma} f(z)}{(v+\eta) z^{p}}\right]^{\mu},
$$

and the function q is the best subordinate of (3.4). (all the power are the principal ones).

Combining Theorem 1 with Theorem 4 and Theorem 3 with Theorem 5, we obtain, respectively, the following two sandwich results:

Theorem 6 Let q_{1} and q_{2} be two convex function in U, with $q_{1}(0)=q_{2}(0)=1$. Let $-\infty<\alpha<1,-\infty<\beta<1, \gamma \in \mathbb{R}^{+}, p \in \mathbb{N}$ and $\lambda \in \mathbb{C}^{*}$ with $(p-\beta) \operatorname{Re} \lambda>0$. Let $f \in A_{p}$ and suppose that $U_{0, z}^{\alpha, \beta, \gamma} f(z) / z^{p} \in H[q(0), 1] \cap Q$. If the function

$$
\frac{\lambda}{p}\left(\frac{U_{0, z}^{\alpha+1, \beta+1, \gamma+1} f(z)}{z^{p}}\right)+\frac{p-\lambda}{p}\left(\frac{U_{0, z}^{\alpha, \beta, \gamma} f(z)}{z^{p}}\right)
$$

is univalent in U, and

$$
\begin{equation*}
q_{1}(z)+\frac{\lambda z q_{1}^{\prime}(z)}{p(p-\beta)} \prec \frac{\lambda}{p}\left(\frac{U_{0, z}^{\alpha+1, \beta+1, \gamma+1} f(z)}{z^{p}}\right)+\frac{p-\lambda}{p}\left(\frac{U_{0, z}^{\alpha, \beta, \gamma} f(z)}{z^{p}}\right) \prec q_{2}(z)+\frac{\lambda z q_{2}^{\prime}(z)}{p(p-\beta)}, \tag{3.5}
\end{equation*}
$$

then

$$
q_{1}(z) \prec \frac{U_{0, z}^{\alpha, \beta, \gamma} f(z)}{z^{p}} \prec q_{2}(z),
$$

and q_{1} and q_{2} are, respectively, the best subordinate and the best dominant of (3.5).

Theorem 7 Let q_{1} and q_{2} be two convex function in U, with $q_{1}(0)=q_{2}(0)=1$. Let $\lambda, \mu \in \mathbb{C}^{*}$ and $v, \eta, \delta, \Omega \in \mathbb{C}$ with $v+\eta \neq 0 \operatorname{Re}(\delta / \lambda)>0$. Let $f \in A_{p}$ and suppose that f satisfies the conditions:
$\frac{v U_{0, z}^{\alpha+1, \beta+1, \gamma+1} f(z)+\eta U_{0, z}^{\alpha, \beta, \gamma} f(z)}{(v+\eta) z^{p}} \neq 0, \quad z \in U$
$\left(-\infty<\alpha<1 ;-\infty<\beta<1 ; \gamma \in \mathbb{R}^{+} ; p \in \mathbb{N}\right)$,
and

$$
\left[\frac{v U_{0, z}^{\alpha+1, \beta+1, \gamma+1} f(z)+\eta U_{0, z}^{\alpha, \beta, \gamma} f(z)}{(v+\eta) z^{p}}\right]^{\mu} \in H[q(0), 1] \cap Q
$$

If the function ψ given by (2.16) is univalent in U, and

$$
\begin{equation*}
\delta q_{1}(z)+\lambda z q_{1}^{\prime}(z)+\Omega \prec \psi(z) \prec \delta q_{2}(z)+\lambda z q_{2}^{\prime}(z)+\Omega, \tag{3.6}
\end{equation*}
$$

then

$$
q_{1}(z) \prec\left[\frac{\nu U_{0, z}^{\alpha+1, \beta+1, \gamma+1} f(z)+\eta U_{0, z}^{\alpha, \beta, \gamma} f(z)}{(v+\eta) z^{p}}\right]^{\mu} \prec q_{2}(z),
$$

and q_{1} and q_{2} are, respectively, the best subordinate and the best dominant of (3.6).
(all the power are the principal ones).

References

[1] R.M. Ali, V. Ravichandran, M.H. Khan and K.G. Subramaniam, Differential sandwich theorems for certain analytic functions, Far East J. Math. Sci., 15(1) (2004), 87-94.
[2] R. Aghalary, R.M. Ali, S.B. Joshi and V. Ravichandran, Inequalities for
analytic functions defined by certain liner operator, Internat. J. Math. Sci, 4(2005), 267-274.
[3] M.K. Aouf and T. Bulboacă, Subordination and superordination properties of multivalent functions defined by certain integral operator, J. Franklin Inst., 347(2010), 641-653.
[4] M.K. Aouf, F.M. Al-Oboudi and M.M. Haidan, On some results for λ spirallike and λ-Robertson functions of complex order, Publ. Inst. Math., Belgrade, 77(91) (2005), 93-98.
[5] T. Bulboacă, A class of superordination preserving integral operators, Indag-Math. (New Ser.), 13(3) (2002), 301-311.
[6] T. Bulboacă, Classes of first-order differential subordinations, Demonstratio Math., 35(2) (2002), 287-392.
[7] T. Bulboacă, Differential Subordinations and Superordinations: Recent Results, House of Scientific Book Publ, Cluj-Napoca, (2005).
[8] J.H. Choi, On differential subordinations of multivalent functions involving a certain fractional derivative operator, Int. J. Math. Math. Sci., doi: 10.1155/2010/952036.
[9] S.M. Khainar and M. More, A subclass of uniformly convex functions associated with certain fractional calculus operator, IAENG International Journal of Applied Mathematics, 39(3) (2009), IJAM-39-07.
[10] S.S. Miller and P.T. Mocanu, Differential Subordinations: Theory and Applications, in: Monographs and Textbooks in Pure and Applied Mathematics, (Vol. 225), Marcel Dekker, New York, Basel, (2000).
[11] S.S. Miller and P.T. Mocanu, Subordinants of differential superordinations, Complex Var. Theory Appl., 48(10) (2003), 815-826.
[12] G. Murugusundaramoorthy, T. Rosy and M. Darus, A subclass of uniformly convex functions associated with certain fractional calculus operators, J. Inequal. Pure and Appl. Math., 6(3) (2005), Article 86, [online:http:
 jipam.vu.edu.au].
[13] M. Obradović, M.K. Aouf and S. Owa, On some results for star like functions of complex order, Publ. Inst. Math. Belgrade, 46(60) (1989), 7985.
[14] S. Owa, On the distortion theorems I, Kyungpook Math. J., 18(1978), 5359.
[15] S. Owa and H.M. Srivastava, Univalent and starlike generalized hypergeometric function, Canad. J. Math., 39(1987), 1057-1077.
[16] J. Patel and A.K. Mishra, On certain subclasses of multivalent functions associated with an extended fractional differintegral operator, J. Math. Anal. Appl., 332(2007), 109-122.
[17] D.A. Patil and N.K. Thakare, On convex hulls and extreme points of pvalent starlike and convex classes with applications, Bull. Math. Soc. R. S. Roumania, 27(75) (1983), 145-160.
[18] W.C. Royster, On the univalence of a certain integral, Michigan Math. J., 12 (1965), 385-387.
[19] M. Saigo, A certain boundary value problem for the Euler-Darboux equation, Math. Apon., 25 (1979), 377-385.
[20] M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Math. Rep. Kyushu Univ., 11(1978), 135-143.
[21] V. Singh, On some criteria for univalence and starlikeness, Indian J. Pure Appl. Math., 34(4) (2003) 569-577.
[22] T.N. Shanmugam, V. Ravichandran, S. Sivasubramanian, Differential sandwich theorems for some subclasses of analytic functions, Austral. J. Math. Anal. Appl., 3(1) (2006), (e-journal), article 8.
[23] T.N. Shanmugam, S. Sivasubramanian and H. Silverman, On sandwich theorems for some classes of analytic functions, Int. J. Math. Sci., (2006), Article ID 29684, 1-13.
[24] T.N. Shanmugam, C. Ramachandran, M. Darus and S. Sivasubbramanian, Differential sandwich theorems for some subclasses of analytic functions involving a linear operator, Acta Math. Univ. Comenianae, 74(2) (2007), 287-294.
[25] H.M. Srivastava and S. Owa, (Eds.), Univalent Functions, Fractional Calculus and Their Applications, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, (1989).
[26] H.M. Srivastava and M.K. Aouf, A certain fractional derivative operator and its applications to a new class of analytic and multivalent functions with negative coefficients I, J. Math. Anal. Appl., 171(1992), 1-13.
[27] H.M. Srivastava and A.Y. Lashin, Some applications of the BriotBouquet differential subordination, J. Inequalities Pure Appl. Math., Article 41, 6(2) (2005), 1-7.
[28] Z. Wang, C. Gao and M. Liao, On certain generalized class of nonBazilević functions, Acta Math. Acad. Paed. Nyireg. New Ser., 21(2) (2005), 147-154.

