

Gen. Math. Notes, Vol. 15, No. 1, March, 2013, pp.44-55 ISSN 2219-7184; Copyright ©ICSRS Publication, 2013 www.i-csrs.org Available free online at http://www.geman.in

Strong Lacunary Statistical Limit and Cluster Points on Probabilistic Normed Spaces

Meenakshi¹, M.S. Saroa² and Vijay Kumar³

¹Department of Mathematics, Maharishi Markandeshwar University, Mullana Ambala, Haryana, India E-mail: chawlameenakshi7@gmail.com ²Department of Mathematics, Maharishi Markandeshwar University, Mullana Ambala, Haryana, India E-mail: mssaroa@yahoo.com ³Department of Mathematics, Haryana College of Technology and Management Kaithal, Haryana, India E-mail: vjy_kaushik@yahoo.com

(Received: 18-12-12 / Accepted: 21-1-13)

Abstract

For any lacunary sequence $\theta = (k_r)$, the aim of the present work is to introduce strong θ -statistical limit and strong θ -statistical cluster points of sequences on probabilistic normed spaces (briefly PN-spaces). Some relations among the sets of ordinary limit points, strong θ -statistical limit and strong θ -statistical cluster points of sequences on PN-spaces are obtained.

Keywords: Lacunary sequence, PN-space, statistical convergence, statistical limit and cluster point.

1 Introduction

The idea of statistical convergence of a number sequence was introduced by Fast [5], later developed in [3], [6], [16], [17] and many others. Fridy [7] used statistical convergence to introduce the set Λ_x of all statistical limit points and the set Γ_x of all statistical cluster points of a sequence $x = (x_k)$ of real numbers and discussed some interesting relations. These issues have been

further explored in different directions by many authors (see [14], [2], [8] and [4]).

Menger [13] introduced probabilistic metric space (PM-space) to resolve the interpretative issue of quantum mechanics. He replaced the distance between points p and q by a distribution function F_{pq} whose value $F_{pq}(x)$ at the real number x is interpreted as the probability that the distance between pand q is less than x.

An important family of PM-spaces are PN-spaces. PN-spaces were first introduced by Šerstnev [19] by means of a definition that was closely molded to the definition of normed space. In 1993, Alsina *et al.* [1] presented a new definition of a PN-space which includes the definition of Šerstnev as a special case. In recent years, statistical convergence and related notions are found useful to handle many convergence problems arising on PN-spaces. For instance [8], [9], [10], [11], [12], [15] and [18].

In this paper, we use lacunary sequence $\theta = (k_r)$ to define strong θ statistical limit and strong θ -statistical cluster points of sequences on PNspaces. For the sake of convenience we recall some definitions. Let \mathbb{N} denotes the set of positive integers, \mathbb{R} the set of reals, $\mathbb{R}^+ = [0, \infty]$ and $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$.

Definition 1.1 A distribution function is a non decreasing function F defined on $\overline{\mathbb{R}}$ with $F(-\infty) = 0$ and $F(\infty) = 1$.

Let Δ denotes the set of all distribution functions that are left continuous on $(-\infty, \infty)$. The elements of Δ are partially ordered via $F \leq G$ if and only if $F(x) \leq G(x) \quad \forall x \in \mathbb{R}$. For any $a \in \mathbb{R}$, ε_a , the unit step at a, is the function in Δ given by

$$\epsilon_a(x) = \begin{cases} 0, & \text{if } -\infty \le x \le a, \\ 1, & \text{if } a \le x \le \infty \end{cases}$$

and

$$\epsilon_{\infty}(x) = \begin{cases} 0, & \text{if } -\infty \le x \le \infty, \\ 1, & \text{if } x = \infty \end{cases}$$

The distance $d_L(F,G)$ between two functions $F, G \in \Delta$ is defined as the infimum of all numbers $h \in (0, 1]$ such that the inequalities

$$F(x-h) - h \le G(x) \le F(x+h) + h, G(x-h) - h \le F(x) \le G(x+h) + h$$

hold for every $x \in (-\frac{1}{h}, \frac{1}{h})$. It is known that d_L is a metric on Δ .

Definition 1.2 A distance distribution function is a non decreasing function F defined on $\mathbb{R}^+ = [0, \infty]$ that satisfies F(0) = 0 and $F(\infty) = 1$, and is left continuous on $(0, \infty)$.

Let Δ^+ denotes the set of all distance distribution functions.

Definition 1.3 A triangular norm, briefly, a t-norm is a function $T : [0,1] \times [0,1] \longrightarrow [0,1]$ that satisfies the following conditions:

- (i) T is commutative, *i.e.*, T(s,t) = T(t,s) for all s and t in [0,1];
- (*ii*) T is associative, *i.e.*, T(T(s,t), u) = T(s, T(t, u)) for all s, t and u in [0, 1];
- (*iii*) T is nondecreasing, *i.e.*, T(s,t) < T(s',t) for all $t, s, s' \in [0,1]$ whenever s < s';
- (iv) T satisfies the boundary condition T(1,t) = t for every $t \in [0,1]$.

The most important t-norms are M and \prod respectively given by $M(x, y) = \min\{x, y\}$ and $\prod (x, y) = xy$. Given a t-norm T, its t-conorm T^* is defined on $[0, 1] \times [0, 1]$ by $T^*(x, y) = 1 - T(1 - s, 1 - t)$.

Definition 1.4 A triangle function is a binary operation on \triangle^+ namely a function $\tau : \triangle^+ \times \triangle^+ \to \triangle^+$ such that for all F, G and H in \triangle^+ , we have (i) $\tau (\tau (F, G), H) = \tau (F, \tau (G, H));$ (ii) $\tau (F, G) = \tau (G, F);$ (iii) $F \leq G \Rightarrow \tau (F, H) \leq \tau (G, H)$ and (iv) $\tau (F, \varepsilon_0) = \tau (\varepsilon_0, F) = F.$

Definition 1.5 A PN-space is a quadruple $(V, \vartheta, \tau, \tau^*)$, where V is a real linear space, τ and τ^* are continuous triangle functions with $\tau \leq \tau^*$ and ϑ is a mapping (the probabilistic norm) from V into Δ^+ such that for all p, q in V, the following conditions hold:

(PN1) $\vartheta_p = \epsilon_0$ if and only if, $p = \theta$ (θ is the null vector in V);

$$(PN2) \vartheta_{-p} = \vartheta_p;$$

 $(PN3) \ \vartheta_{p+q} \geq \tau(\vartheta_p, \vartheta_q)$ and

 $(PN4) \vartheta_p \leq \tau^*(\vartheta_{\lambda p}, \vartheta_{(1-\lambda)p}) \text{ for every } \lambda \in [0, 1].$

A *PN*-space is called a Serstnev space if it satisfies (*PN*1), (*PN*3) and the following condition: For all $p \in V$, $\alpha \in \mathbb{R} - \{0\}$ and x > 0 one has

$$\vartheta_{\alpha p}\left(x\right) = \vartheta_{p}\left(\frac{x}{\left|\alpha\right|}\right).$$

which clearly implies (PN2) and also (PN4) in the strengthened form for all $\lambda \in [0, 1]$, $\vartheta_p = \tau_M \left(\vartheta_{\lambda p}, \vartheta_{(1-\lambda)p} \right)$.

A *PN*-space in which $\tau = \tau_T$ and $\tau^* = \tau_{T^*}$ for a suitable continuous *t*-norm T and its *t*-conorm T^* , is called a Menger *PN*-space where $\tau_T(F,G)(x) = \sup_{s+t=x} T(F(s), G(t))$ and $\tau_{T^*}(F,G)(x) = \inf_{s+t=x} T^*(F(s), G(t))$.

Definition 1.6 Let $(V, \vartheta, \tau, \tau^*)$ be a PN-space. For $p \in V$ and t > 0, the strong t-neighborhood of p is the set

$$N_p(t) = \left\{ q \in V : \vartheta_{q-p}(t) > 1 - t \right\},\$$

and the strong neighborhood system for V is the union $\bigcup_{p \in V} N_p$ where $N_p = \{N_p(t) : t > 0\}$.

There is a natural topology define on a PN-space $(V, \vartheta, \tau, \tau^*)$ called the strong topology in terms of strong neighborhood system. In the sequel, when we consider a PN-space $(V, \vartheta, \tau, \tau^*)$ we mean it is endowed with the strong topology.

Definition 1.7 A sequence $p = (p_k)$ in a PN-space $(V, \vartheta, \tau, \tau^*)$ is said to be strongly convergent to a point p_0 in V, symbolically, $\lim_k p_k = p_0$, if for any t > 0 there exists a positive integer m such that p_k is in $N_{p_0}(t)$ whenever $k \ge m$.

For any set $K \subseteq \mathbb{N}$, let K_n denotes the set $\{k \in K : k \leq n\}$ and $|K_n|$ denotes the number of elements in K_n . The natural density $\delta(K)$ of K is defined by $\delta(K) = \lim_n n^{-1} |K_n|$. The natural density may not exist for each set K. But the upper density $\overline{\delta}$ defined by $\overline{\delta}(K) = \limsup_n n^{-1} |K_n|$ always exists for any set $K \subseteq \mathbb{N}$. Also $\delta(K)$ different from zero we mean $\overline{\delta}(K) > 0$. Moreover, $\delta(K^C) = 1 - \delta(K)$; and for $A \subseteq B$ then $\overline{\delta}(A) \leq \overline{\delta}(B)$. Using natural density, statistical convergence on a PN-space is defined as follows.

Definition 1.8 Let $(V, \vartheta, \tau, \tau^*)$ be a PN-space. A sequence $p = (p_k)$ in V is said to be strongly statistically convergent to a point p_0 in V provided that

$$\lim_{n} \frac{1}{n} |\{k \le n : p_k \notin N_{p_0}(t)\}| = 0;$$

i.e., $\delta(\{k \in \mathbb{N} : p_k \notin N_{p_0}(t)\}) = 0$. In this case, p_0 is called the strong statistical limit of the sequence $p = (p_k)$ and we write $S - \lim_k p_k = p_0$.

Definition 1.9 Let $(V, \vartheta, \tau, \tau^*)$ be a PN-space and $p = (p_k)$ be any sequence in V. If $(p_{k(j)})$ be a subsequence of (p_k) and $K = \{k(j) : j \in \mathbb{N}\}$, then we denote $(p_{k(j)})$ by $(p)_K$. If $\lim_n \frac{1}{n} |\{k(j) : j \in \mathbb{N}\}| = 0$, then we say that $(p_{k(j)})$ is a thin subsequence of (p_k) . On the other hand, K is non-thin provided that $\limsup_n \frac{1}{n} |\{k(j) : j \in \mathbb{N}\}| > 0$.

Definition 1.10 Let $(V, \vartheta, \tau, \tau^*)$ be a PN-space and $p = (p_k)$ be any sequence in V. Then an element $q \in V$ is a strong statistical limit point of (p_k) provided that there exists a non-thin subsequence of (p_k) that strongly converges to q. We denote the set of all strong statistical limit points of (p_k) by $\Lambda(S, p)$.

Definition 1.11 Let $(V, \vartheta, \tau, \tau^*)$ be a PN-space and $p = (p_k)$ be any sequence in V. Then an element $r \in V$ is a strong statistical cluster point of (p_k) provided that for every t > 0, we have $\limsup_n \frac{1}{n} |\{k \in \mathbb{N} : p_k \in N_r(t)\}| > 0$. We denote the set of all strong statistical cluster points of (p_k) by $\Gamma(S, p)$. By a lacunary sequence, we mean an increasing sequence $\theta = (k_r)$ of positive integers such that $k_0 = 0$ and $h_r = k_r - k_{r-1} \to \infty$ as $r \to \infty$. The intervals determined by θ will be denoted by $I_r = (k_{r-1}, k_r]$ and the ratio k_r/k_{r-1} is denoted by q_r .

Definition 1.12 Let $\theta = (k_r)$ be a lacunary sequence and $(V, \vartheta, \tau, \tau^*)$ be a PN-space. A sequence $p = (p_k)$ in V is said to be strongly lacunary statistically convergent to a point p_0 in V if

$$\lim_{r} \frac{1}{h_{r}} |\{k \in I_{r} : p_{k} \notin N_{p_{0}}(t)\}| = 0$$

In this case, p_0 is called the strong lacunary statistical limit of the sequence $p = (p_k)$ and we write $S_{\theta} - \lim_k p_k = p_0$.

We now consider the quite natural definitions of strong lacunary statistical limit and strong lacunary statistical cluster points of sequences on a PN-space.

2 Main Results

Let $\theta = (k_r)$ be a lacunary sequence. For a *PN*-space $(V, \vartheta, \tau, \tau^*)$, let $p = (p_k)$ be a sequence in *V*. Let $(p_{k(j)})$ be a subsequence of *p* and $K = \{k(j) : j \in \mathbb{N}\}$, then we denote $(p_{k(j)})$ by $(p)_K$. If

$$\lim_{r \to \infty} \frac{1}{h_r} \left| \left\{ k\left(j\right) \in I_r : j \in \mathbb{N} \right\} \right| = 0;$$

then $(p)_K$ is called θ -thin subsequence. On the other hand $(p)_K$ is a θ -nonthin subsequence of p provided that

$$\limsup_{r \to \infty} \frac{1}{h_r} |\{k(j) \in I_r : j \in \mathbb{N}\}| > 0.$$

Definition 2.1 Let $\theta = (k_r)$ be a lacunary sequence and $(V, \vartheta, \tau, \tau^*)$ be a PNspace. An element $\mu \in V$ is called a strong lacunary statistical limit point (briefly strong S_{θ} -limit point) of a sequence $p = (p_k)$ in V provided that there is a θ -nonthin subsequence of p that is strongly convergent to μ .

Let $\Lambda(S_{\theta}, p)$ denotes the set of all strong S_{θ} -limit points of the sequence $p = (p_k)$.

Definition 2.2 Let $\theta = (k_r)$ be a lacunary sequence and $(V, \vartheta, \tau, \tau^*)$ be a PNspace. A point $\gamma \in V$ is said to be a strong lacunary statistical cluster point (briefly strong S_{θ} -cluster point) of a sequence $p = (p_k)$ in V provided that for all t > 0,

$$\limsup_{r \to \infty} \frac{1}{h_r} \left| \left\{ k \in I_r : p_k \in N_\gamma(t) \right\} \right| > 0.$$

Let $\Gamma(S_{\theta}, p)$ denotes the set of all strong S_{θ} -cluster points of the sequence $p = (p_k)$.

Theorem 2.1 Let $\theta = (k_r)$ be a lacunary sequence and $(V, \vartheta, \tau, \tau^*)$ be a PN-space. For any sequence $p = (p_k)$ in V, $\Lambda(S_{\theta}, p) \subseteq \Gamma(S_{\theta}, p)$.

Proof. For $\mu \in \Lambda((S_{\theta}, p))$, there is a θ -nonthin subsequence $(p_{k(j)})$ of p that strongly converges to μ . Since $(p_{k(j)})$ is a θ -nonthin subsequence so we have

$$\limsup_{r \to \infty} \frac{1}{h_r} \left| \left\{ k \in I_r : p_k \in N_\mu(t) \right\} \right| > 0.$$
(1)

Now for every t > 0, the containment $\{k \in I_r : p_k \in N_\mu(t)\} \supseteq \{k(j) \in I_r : p_{k(j)} \in N_\mu(t)\}$ gives

$$\{k \in I_r : p_k \in N_\mu(t)\} \supseteq \{k(j) I_r : j \in \mathbb{N}\} - \{k(j) \in I_r : p_{k(j)} \notin N_\mu(t)\};\$$

which immediately implies

$$\limsup_{r \to \infty} \frac{1}{h_r} \left| \left\{ k \in I_r : p_k \in N_\mu(t) \right\} \right| \ge \limsup_{r \to \infty} \frac{1}{h_r} \left| \left\{ k\left(j\right) I_r : j \in \mathbb{N} \right\} \right|$$
$$-\limsup_{r \to \infty} \frac{1}{h_r} \left| \left\{ k\left(j\right) \in I_r : p_{k(j)} \notin N_\mu(t) \right\} \right|.$$
(2)

Further, the strong convergence of $(p_{k(j)})$ to μ gives for t > 0, the set $\left\{k\left(j\right) \in I_r : (p_{k(j)} \notin N_{\mu}\left(t\right)\right\}$ is finite for which we have

$$\limsup_{r \to \infty} \frac{1}{h_r} \left| \left\{ k\left(j\right) \in I_r : \left(p_{k(j)} \notin N_{\mu}\left(t\right) \right\} \right| = 0 .$$
(3)

Using (1) and (3) in (2), we get

$$\limsup_{r \to \infty} \frac{1}{h_r} \left| \left\{ k \in I_r : p_k \in N_\mu(t) \right\} \right| \ge d > 0.$$

This shows that $\mu \in \Gamma(S_{\theta}, p)$ and therefore we have the containment $\Lambda(S_{\theta}, p) \subseteq \Gamma(S_{\theta}, p)$.

Theorem 2.2 Let $\theta = (k_r)$ be a lacunary sequence and $(V, \vartheta, \tau, \tau^*)$ be a PNspace. For any sequence $p = (p_k)$ in V, $\Gamma(S_{\theta}, p) \subseteq L(p)$, where L(p) denotes the set of all strong limit points of $p = (p_k)$.

Proof. Assume that $\gamma \in \Gamma(S_{\theta}, p)$, then for all t > 0, we have

$$\limsup_{r \to \infty} \frac{1}{h_r} \left| \left\{ k \in I_r : p_k \in N_\gamma(t) \right\} \right| > 0.$$
(4)

For t > 0, if we denote $K = \{k \in I_r : p_k \in N_{\gamma}(t)\}$, then the set $K = \{k_1 < k_2 < \cdots\}$ is an infinite set as otherwise i.e. if K is finite set then left side of (4) becomes zero and we obtain a contradiction. This shows that we have a subsequence $(p)_K$ of the sequence $p = (p_k)$ that is strongly convergent to γ . Hence γ is a strong limit point of (p_k) and therefore we have the containment $\Gamma(S_{\theta}, p) \subseteq L(p)$.

Theorem 2.3 For any lacunary sequence $\theta = (k_r)$ and any sequence $p = (p_k)$ in a PN-space $(V, \vartheta, \tau, \tau^*)$, $\Gamma(S_{\theta}, p)$ is a closed set.

Proof. To prove the theorem it is sufficient to prove that $cl(\Gamma(S_{\theta}, p)) \subseteq \Gamma(S_{\theta}, p)$ where cl(A) denotes the strong closure of any set A. Let $\mu \in cl(\Gamma(S_{\theta}, p))$, then for any t > 0, $\Gamma(S_{\theta}, p)$ contains some point $\gamma \in N_{\mu}(t)$. Choose t' such that $N_{\gamma}(t') \subseteq N_{\mu}(t)$. Since $\gamma \in \Gamma(S_{\theta}, p)$, therefore

$$\limsup_{r \to \infty} \frac{1}{h_r} \left| \left\{ k \in I_r : p_k \in N_{\gamma}(t') \right\} \right| > 0;$$

which immediately gives

$$\limsup_{r \to \infty} \frac{1}{h_r} \left| \left\{ k \in I_r : p_k \in N_\mu(t) \right\} \right| > 0.$$

This shows that $\mu \in \Gamma(S_{\theta}, p)$ and therefore we have $cl(\Gamma(S_{\theta}, p)) \subseteq \Gamma(S_{\theta}, p)$.

Theorem 2.4 Let $\theta = (k_r)$ be a lacunary sequence. For any sequence $p = (p_k)$ in a PN-space $(V, \vartheta, \tau, \tau^*)$, if $S_{\theta} - \lim_{k \to \infty} p_k = p_0$, then $\Lambda(S_{\theta}, p) = \Gamma(S_{\theta}, p) = p_0$.

Proof. We first show that $\Lambda(S_{\theta}, p) = \{p_0\}$. Let t > 0 and assume $\Lambda(S_{\theta}, p) = \{p_0, q_0\}$ such that $p_0 \neq_0$. By definition there exist two θ -nonthin subsequences $(p_{k(i)})$ and $(p_{l(j)})$ of the sequence $p = (p_k)$ which are respectively strongly convergent to p_0 and q_0 . Since $(p_{l(j)})$ strongly converges to q_0 , therefore for any t > 0, there is a positive integer m such that p_k is in $N_{q_0}(t)$ whenever $k \geq m$. This shows that for any t > 0 we have

$$\lim_{r} \frac{1}{h_{r}} \left| \left\{ l\left(j\right) \in I_{r} : p_{l(j)} \in N_{q_{0}}(t) \right\} \right| = 0 .$$
(5)

Moreover, for any t > 0 one can write

$$\{l(j) \in I_r : j \in \mathbb{N}\} = \{l(j) \in I_r : p_{l(j)} \in N_{q_0}(t)\} \cup \{l(j) \in I_r : p_{l(j)} \notin N_{q_0}(t)\};\$$

which implies

$$\limsup_{r} \frac{1}{h_{r}} \left| \{ l(j) \in I_{r} : j \in \mathbb{N} \} \right| = \limsup_{r} \frac{1}{h_{r}} \left| \{ l(j) \in I_{r} : p_{l(j)} \in N_{q_{0}}(t) \} \right|$$

+
$$\limsup_{r} \frac{1}{h_{r}} \left| \left\{ l(j) \in I_{r} : p_{l(j)} \in N_{q_{0}}(t) \right\} \right|.$$
 (6)

Since (l(j)) is θ -nonthin subsequence so we have together with (5),

$$\limsup_{r} \frac{1}{h_{r}} \left| \left\{ l\left(j\right) \in I_{r} : p_{l(j)} \in N_{q_{0}}(t) \right\} \right| > 0.$$
(7)

Also using the fact $S_{\theta} - \lim_{k} p_k = p_0$, we have

$$\lim_{r} \frac{1}{h_{r}} \left| \{ k \in I_{r} : p_{k} \notin N_{p_{0}}(t) \} \right| = 0,$$
(8)

which gives for any t > 0

$$\limsup_{r} \frac{1}{h_r} |\{k \in I_r : p_k \in N_{p_0}(t)\}| > 0.$$
(9)

Also for $p_0 \neq q_0$, $\{l(j) \in I_r : p_{l(j)} \in N_{q_0}(t)\} \cap \{k \in I_r : p_k \in N_{p_0}(t)\} = \emptyset$. So we have,

$$\{l(j) \in I_r : p_{l(j)} \in N_{q_0}(t)\} \subseteq \{k \in I_r : p_k \in N_{p_0}(t)\},\$$

which immediately with use of (8)

$$\limsup_{r} \frac{1}{h_{r}} \left| \left\{ l\left(j\right) \in I_{r} : p_{l(j)} \in N_{q_{0}}(t) \right\} \right| \leq \limsup_{r} \frac{1}{h_{r}} \left| \left\{ k \in I_{r} : p_{k} \notin N_{p_{0}}(t) \right\} \right| = 0;$$

which contradict (7). Hence $\Lambda(S_{\theta}, p) = \{p_0\}$. Similarly, we can show that $\Gamma(S_{\theta}, p) = \{p_0\}$.

Theorem 2.5 Let $\theta = (k_r)$ be a lacunary sequence. If $p = (p_k)$ and $q = (q_k)$ are two sequences in $(V, \vartheta, \tau, \tau^*)$ such that $\lim_r \frac{1}{h_r} |\{k \in I_r : p_k \neq q_k\}| = 0$, then $\Lambda(S_{\theta}, p) = \Lambda(S_{\theta}, q)$ and $\Gamma(S_{\theta}, p) = \Gamma(S_{\theta}, q)$.

Proof. Assume $\gamma \in \Lambda(S_{\theta}, p)$, then there exists a θ -nonthin subsequence $(p)_{K}$ of the sequence $p = (p_{k})$ that converges to γ . Since, $\lim_{r} \frac{1}{h_{r}} |\{k \in I_{r} : k \in K, p_{k} \neq q_{k}\}| = 0$, it follows that

$$\limsup_{r} \frac{1}{h_r} |\{k \in I_r : k \in K, p_k = q_k\}| > 0$$
(10)

Therefore, there exists a θ -nonthin subsequence $(q)_K$ of the sequence $q = (q_k)$ that converges to γ . This shows that $\gamma \in \Lambda(S_{\theta}, q)$ and therefore $\Lambda(S_{\theta}, p) \subseteq \Lambda(S_{\theta}, q)$. By symmetry we have $\Lambda(S_{\theta}, q) \subseteq \Lambda(S_{\theta}, p)$. Hence we have $\Lambda(S_{\theta}, p) = \Lambda(S_{\theta}, q)$. Similarly we can prove $\Gamma(S_{\theta}, p) = \Gamma(S_{\theta}, q)$.

Theorem 2.6 Let $\theta = (k_r)$ be a lacunary sequence and $p = (p_k)$ be a sequence in $(V, \vartheta, \tau, \tau^*)$, then we have (i) If $\liminf_r q_r > 1$ then $\Lambda(S_{\theta}, p) \subseteq \Lambda(S, p)$; (ii) If $\limsup_r q_r < \infty$ then $\Lambda(S, p) \subseteq \Lambda(S_{\theta}, p)$ and (iii) If $1 < \liminf_r q_r \le \limsup_r q_r < \infty$ then $\Lambda(S, p) = \Lambda(S_{\theta}, p)$.

Proof. (i) Let $\liminf_r q_r > 1$, then there exists a $\delta > 0$ such that $q_r > 1 + \delta$ for sufficiently large r which implies that $\frac{k_r}{h_r} \leq \frac{\delta+1}{\delta}$. Let $\mu \in \Lambda(S_\theta, p)$, then by definition, there exists a set $K = \{k(j) : j \in \mathbb{N}\}$ such that $\lim_{j\to\infty} p_{k(j)} = \mu$ and

$$\limsup_{r \to \infty} \frac{1}{h_r} \left| \{ k(j) \in I_r : j \in \mathbb{N} \} \right| > 0 \tag{11}$$

Since,

$$\begin{aligned} \frac{1}{k_r} \left| \{k(j) \le k_r : j \in \mathbb{N}\} \right| \ge \frac{1}{k_r} \left| \{k(j) \in I_r : j \in \mathbb{N}\} \right| \\ &= \left(\frac{h_r}{k_r}\right) \frac{1}{h_r} \left| \{k(j) \in I_r : j \in \mathbb{N}\} \right| \\ &\ge \left(\frac{\delta}{\delta + 1}\right) \frac{1}{h_r} \left| \{k(j) \in I_r : j \in \mathbb{N}\} \right|; \end{aligned}$$

it follows by (11) that

$$\limsup_{r \to \infty} \frac{1}{k_r} \left| \{ k(j) \le k_r : j \in \mathbb{N} \} \right| > 0.$$

Since $(p_{k(j)})$ is already strongly convergent to μ , it follows that $\mu \in \Lambda(S, p)$. Hence we have $\Lambda(S_{\theta}, p) \subseteq \Lambda(S, p)$.

(*ii*) If $\limsup_r q_r < \infty$, then there exists a real number H such that $q_r < H$ for all r. Without loss of generality, we can assume H > 1. Now for all r,

$$\frac{h_r}{k_{r-1}} = \frac{k_r - k_{r-1}}{k_{r-1}} = q_r - 1 \le H - 1.$$

Now, Let $\mu \in \Lambda(S, p)$, then by definition there is a set $K = \{k(j) : j \in \mathbb{N}\}$ with $\delta(K) > 0$ and $\lim_{j\to\infty} p_{k(j)} = \mu$. Let $N_r = |\{k \in I_r : k \in K\}| = |K \cap I_r|$

and $t_r = \frac{N_r}{h_r}$. For any integer *n* satisfying $k_{r-1} < n \le k_r$, we can write

$$\begin{aligned} \frac{1}{n} \left| \{k \le n : k \in K\} \right| &\le \frac{1}{k_{r-1}} \left| \{k \le k_r : k \in K\} \right| \\ &= \frac{1}{k_{r-1}} \{N_1 + N_2 + N_3 + \dots + N_r\} \\ &= \frac{1}{k_{r-1}} \{t_1 h_1 + t_2 h_2 + t_3 h_3 + \dots + t_r h_r\} \\ &= \frac{1}{\sum_{i=1}^{r-1} h_i} \sum_{i=1}^{r-1} h_i t_i + \frac{h_r}{k_{r-1}} t_r \\ &\le \frac{1}{\sum_{i=1}^{r-1} h_i} \sum_{i=1}^{r-1} h_i t_i + (H-1) t_r. \end{aligned}$$

Suppose $t_r \to 0$ as $r \to \infty$. Since θ is a lacunary sequence and the first part on the right side of above expression is a regular weighted mean transform of the sequence $t = (t_r)$, therefore it too tends to zero as $r \to \infty$. Since $n \to \infty$ as $r \to \infty$, it follows that $\delta(K) = 0$ which is a contradiction as $\delta(K) \neq 0$. Thus we have $\lim_{r\to\infty} t_r \neq 0$ and therefore by definition $\delta_{\theta}(K) \neq 0$. This shows that $\mu \in \Lambda(S_{\theta}, p)$. Hence $\Lambda(S, p) \subseteq \Lambda(S_{\theta}, p)$.

(iii) This is an immediate consequence of (i) and (ii).

Theorem 2.7 Let $\theta = (k_r)$ be a lacunary sequence and $p = (p_k)$ be a sequence in $(V, \vartheta, \tau, \tau^*)$, then we have,

(i) If $\liminf_{r} q_r > 1$ then $\Gamma(S_{\theta}, p) \subseteq \Gamma(S, p)$;

(*ii*) If $\limsup_{r} q_r < \infty$ then $\Gamma(S, p) \subseteq \Gamma(S_{\theta}, p)$ and

(*iii*) If $1 < \liminf_{r} q_r \le \limsup_{r} q_r < \infty$ then $\Gamma(S, p) = \Gamma(S_{\theta}, p)$.

Proof for the theorem, goes on the similar lines as for Theorem 2.6, so is omitted here.

References

- [1] C. Alsina, B. Schweizer and A. Sklar, On the definition of probabilistic normed space, *Aequationes Math.*, 46(1993), 91-98.
- [2] S. Aytar, Statistical limit points of sequences of fuzzy numbers, *Info. Sc.*, 165(2004), 129-138.
- [3] R.C. Buck, Generalized asymptotic density, American Journal of Mathematics, 75(1953), 335-346.

- [4] A. Esi, Lacunary strongly almost generalized convergence with respect to Orlicz function, *Gen. Math. Notes*, 9(1) (2012), 44-51.
- [5] H. Fast, Surla convergence statistique, Colloquium Mathematicum, 2(1951), 241-244.
- [6] J.A. Fridy, On statistical convergence, Analysis, 5(1985), 301-313.
- [7] J.A. Fridy, Statistical limit points, Proceeding of American Mathematical Society, 118(1993), 1187-1192.
- [8] S. Karakus, Statistical convergence on probabilistic normed spaces, *Math. Comm.*, 12(2007), 11-23.
- [9] V. Kumar and K. Kumar, Some inclusion relations between Lacunary methods on probabilistic normed spaces, *Mathematical Sciences*, 3(3)(2009), 301-312.
- [10] V. Kumar, On λ -statistical limit points in probabilistic normed spaces, Atti Della Fondazione Giorgio Ronchi, LXV 2(2010), 1-10.
- [11] V. Kumar, B.L. Guillen, On ideal convergence of double sequences in probabilistic normed spaces, Acta Mathematica Sinica, 28(2012), 1689-1700.
- [12] B.L. Guillen, J.A.R. Lallena and C. Sempi, A study of boundedness in probabilistic normed spaces, J. Math. Anal. Appl., 232(1999), 183-196.
- [13] K. Menger, Statistical metrics, Proceedings of the National Academy of Sciences of U.S.A., 28(1942), 535-537.
- [14] M. Mursaleen, λ -statistical convergence, *Mathematica Slovaca*, 50(1) (2000), 111-115.
- [15] M.R.S. Rahmat, Lacunary statistical convergence on probabilistic normed spaces, Int. J. Open Problems in Computer Science and Mathematics, 2(2) (2009), 285-292.
- [16] T. Salát, On statistically convergent sequences of real numbers, Mathematica Slovaca, 30(2) (1980), 139-150.
- [17] I.J. Schoenberg, The integrability of certain functions and related summability methods, The American Mathematical Monthly, 5(1959), 361-375.
- [18] C. Sencimen and S. Pehlivan, Strong statistical convergence in probabilistic metric spaces, Stoch. Anal. Appl., 26(2008), 651-664.

[19] A.N. Šerstnev, On the notion of a random normed space, Dokl. Akad. Nauk, SSSR, 149(1963), 280-283.