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Abstract

For any lacunary sequence θ = (kr), the aim of the present work is to intro-
duce strong θ-statistical limit and strong θ-statistical cluster points of sequences
on probabilistic normed spaces (briefly PN-spaces). Some relations among the
sets of ordinary limit points, strong θ-statistical limit and strong θ-statistical
cluster points of sequences on PN-spaces are obtained.

Keywords: Lacunary sequence, PN-space, statistical convergence, statis-
tical limit and cluster point.

1 Introduction

The idea of statistical convergence of a number sequence was introduced by
Fast [5], later developed in [3], [6], [16], [17] and many others. Fridy [7] used
statistical convergence to introduce the set Λx of all statistical limit points
and the set Γx of all statistical cluster points of a sequence x = (xk) of real
numbers and discussed some interesting relations. These issues have been
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further explored in different directions by many authors (see [14], [2], [8] and
[4]).

Menger [13] introduced probabilistic metric space (PM -space) to resolve
the interpretative issue of quantum mechanics. He replaced the distance be-
tween points p and q by a distribution function Fpq whose value Fpq (x) at the
real number x is interpreted as the probability that the distance between p
and q is less than x.

An important family of PM -spaces are PN -spaces. PN -spaces were first
introduced by Šerstnev [19] by means of a definition that was closely molded
to the definition of normed space. In 1993, Alsina et al. [1] presented a
new definition of a PN -space which includes the definition of Šerstnev as a
special case. In recent years, statistical convergence and related notions are
found useful to handle many convergence problems arising on PN -spaces. For
instance [8], [9], [10], [11], [12], [15] and [18].

In this paper, we use lacunary sequence θ = (kr) to define strong θ-
statistical limit and strong θ-statistical cluster points of sequences on PN -
spaces. For the sake of convenience we recall some definitions. Let N de-
notes the set of positive integers, R the set of reals, R+ = [0,∞] and R =
R ∪ {−∞, ∞}.

Definition 1.1 A distribution function is a non decreasing function F defined
on R with F (−∞) = 0 and F (∞) = 1.

Let ∆ denotes the set of all distribution functions that are left continuous
on (−∞,∞). The elements of ∆ are partially ordered via F ≤ G if and only
if F (x) ≤ G (x) ∀x ∈ R. For any a ∈ R, εa, the unit step at a, is the function
in ∆ given by

εa(x) =

{
0, if −∞ ≤ x ≤ a,
1, if a ≤ x ≤ ∞

and

ε∞(x) =

{
0, if −∞ ≤ x ≤ ∞,
1, if x =∞

The distance dL (F,G) between two functions F,G ∈ ∆ is defined as the infi-
mum of all numbers h ∈ (0, 1] such that the inequalities

F (x− h)− h ≤ G (x) ≤ F (x+ h) + h,G (x− h)− h ≤ F (x) ≤ G (x+ h) + h

hold for every x ∈ (− 1
h
, 1
h
). It is known that dL is a metric on ∆.

Definition 1.2 A distance distribution function is a non decreasing function
F defined on R+ = [0,∞] that satisfies F (0) = 0 and F (∞) = 1, and is left
continuous on (0,∞).

Let 4+ denotes the set of all distance distribution functions.
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Definition 1.3 A triangular norm, briefly, a t-norm is a function T : [0, 1]×
[0, 1] −→ [0, 1] that satisfies the following conditions:
(i) T is commutative, i.e., T (s, t) = T (t, s) for all s and t in [0, 1] ;
(ii) T is associative, i.e., T (T (s, t) , u) = T (s, T (t, u)) for all s, t and u in

[0, 1] ;
(iii) T is nondecreasing, i.e., T (s, t) < T (s

′
, t) for all t, s, s

′ ∈ [0, 1]
whenever s < s

′
;

(iv) T satisfies the boundary condition T (1, t) = t for every t ∈ [0, 1].
The most important t−norms are M and

∏
respectively given by M (x, y) =

min{x, y} and
∏

(x, y) = xy. Given a t-norm T , its t-conorm T ∗ is defined
on [0, 1]× [0, 1] by T ∗ (x, y) = 1− T (1− s, 1− t).

Definition 1.4 A triangle function is a binary operation on 4+ namely a
function τ : 4+ ×4+ →4+ such that for all F,G and H in 4+, we have
(i) τ (τ (F,G) , H) = τ (F, τ(G,H)) ;
(ii) τ (F,G) = τ (G,F ) ;
(iii) F ≤ G⇒ τ (F,H) ≤ τ (G,H) and
(iv) τ (F, ε0) = τ (ε0, F ) = F.

Definition 1.5 A PN-space is a quadruple (V, ϑ, τ, τ ∗), where V is a real
linear space, τ and τ ∗ are continuous triangle functions with τ ≤ τ ∗ and ϑ is
a mapping (the probabilistic norm) from V into 4+ such that for all p, q in V ,
the following conditions hold:
(PN1) ϑp = ε0 if and only if, p = θ (θ is the null vector in V );
(PN2) ϑ−p = ϑp;
(PN3) ϑp+q ≥ τ(ϑp, ϑq) and
(PN4) ϑp ≤ τ ∗(ϑλp, ϑ(1−λ)p) for every λ ∈ [0, 1] .

A PN -space is called a Šerstnev space if it satisfies (PN1), (PN3) and the
following condition: For all p ∈ V , α ∈ R−{0} and x > 0 one has

ϑαp (x) = ϑp

(
x

|α|

)
.

which clearly implies (PN2) and also (PN4) in the strengthened form for all
λ ∈ [0, 1] , ϑp = τM

(
ϑλp, ϑ(1−λ)p

)
.

A PN -space in which τ = τT and τ ∗ = τT ∗ for a suitable continuous t-norm
T and its t-conorm T ∗, is called a Menger PN -space where
τT (F,G) (x) = sups+t=xT (F (s), G(t)) and τT ∗ (F,G) (x) = infs+t=x T

∗ (F (s) , G (t)) .

Definition 1.6 Let (V, ϑ, τ, τ ∗) be a PN-space. For p ∈ V and t > 0, the
strong t-neighborhood of p is the set

Np (t) = {q ∈ V : ϑq−p (t) > 1− t} ,
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and the strong neighborhood system for V is the union ∪p∈VNp where Np =
{Np (t) : t > 0} .

There is a natural topology define on a PN -space (V, ϑ, τ, τ ∗) called the
strong topology in terms of strong neighborhood system. In the sequel, when
we consider a PN -space (V, ϑ, τ, τ ∗) we mean it is endowed with the strong
topology.

Definition 1.7 A sequence p = (pk) in a PN-space (V, ϑ, τ, τ ∗) is said to be
strongly convergent to a point p0 in V , symbolically, limk pk = p0, if for any t >
0 there exists a positive integer m such that pk is in Np0 (t) whenever k ≥ m.

For any setK ⊆ N, letKn denotes the set {k ∈ K : k ≤ n} and |Kn| denotes
the number of elements in Kn. The natural density δ (K) of K is defined by
δ (K) = limnn

−1 |Kn| . The natural density may not exist for each set K. But
the upper density δ defined by δ (K) = lim supn n

−1 |Kn| always exists for any
set K ⊆ N. Also δ (K) different from zero we mean δ (K) > 0. Moreover,
δ
(
KC
)

= 1− δ (K); and for A ⊆ B then δ (A) ≤ δ (B). Using natural density,
statistical convergence on a PN -space is defined as follows.

Definition 1.8 Let (V, ϑ, τ, τ ∗) be a PN-space. A sequence p = (pk) in V is
said to be strongly statistically convergent to a point p0 in V provided that

lim
n

1

n
|{k ≤ n : pk /∈ Np0(t)}| = 0;

i.e., δ({k ∈ N : pk /∈ Np0(t)}) = 0. In this case, p0 is called the strong statistical
limit of the sequence p = (pk) and we write S − limk pk = p0.

Definition 1.9 Let (V, ϑ, τ, τ ∗) be a PN-space and p = (pk) be any sequence
in V . If

(
pk(j)

)
be a subsequence of (pk) and K = {k (j) : j ∈ N}, then we

denote
(
pk(j)

)
by (p)K. If limn

1
n
|{k (j) : j ∈ N}| = 0, then we say that

(
pk(j)

)
is a thin subsequence of (pk). On the other hand, K is non-thin provided that
lim supn

1
n
|{k (j) : j ∈ N}| > 0 .

Definition 1.10 Let (V, ϑ, τ, τ ∗) be a PN-space and p = (pk) be any sequence
in V . Then an element q ∈ V is a strong statistical limit point of (pk) provided
that there exists a non-thin subsequence of (pk) that strongly converges to q.
We denote the set of all strong statistical limit points of (pk) by Λ (S, p).

Definition 1.11 Let (V, ϑ, τ, τ ∗) be a PN-space and p = (pk) be any sequence
in V . Then an element r ∈ V is a strong statistical cluster point of (pk)
provided that for every t > 0, we have lim supn

1
n
|{k ∈ N : pk ∈ Nr (t)}| > 0.

We denote the set of all strong statistical cluster points of (pk) by Γ (S, p) .
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By a lacunary sequence, we mean an increasing sequence θ = (kr) of pos-
itive integers such that k0 = 0 and hr = kr − kr−1 → ∞ as r → ∞. The
intervals determined by θ will be denoted by Ir = (kr−1, kr] and the ratio
kr/kr−1 is denoted by qr.

Definition 1.12 Let θ = (kr) be a lacunary sequence and (V, ϑ, τ, τ ∗) be a PN-
space. A sequence p = (pk) in V is said to be strongly lacunary statistically
convergent to a point p0 in V if

lim
r

1

hr
|{k ∈ Ir : pk /∈ Np0(t)}| = 0 .

In this case, p0 is called the strong lacunary statistical limit of the sequence
p = (pk) and we write Sθ − limk pk = p0.

We now consider the quite natural definitions of strong lacunary statistical
limit and strong lacunary statistical cluster points of sequences on a PN -space.

2 Main Results

Let θ = (kr) be a lacunary sequence. For a PN -space (V, ϑ, τ, τ ∗), let p = (pk)
be a sequence in V . Let (pk(j)) be a subsequence of p and K = {k (j) : j ∈ N},
then we denote (pk(j)) by (p)K . If

lim
r→∞

1

hr
|{k (j) ∈ Ir : j ∈ N}| = 0;

then (p)K is called θ-thin subsequence. On the other hand (p)K is a θ-nonthin
subsequence of p provided that

lim sup
r→∞

1

hr
|{k (j) ∈ Ir : j ∈ N}| > 0.

Definition 2.1 Let θ = (kr) be a lacunary sequence and (V, ϑ, τ, τ ∗) be a PN-
space. An element µ ∈ V is called a strong lacunary statistical limit point
(briefly strong Sθ−limit point) of a sequence p = (pk) in V provided that there
is a θ-nonthin subsequence of p that is strongly convergent to µ.

Let Λ(Sθ, p) denotes the set of all strong Sθ-limit points of the sequence p =
(pk).

Definition 2.2 Let θ = (kr) be a lacunary sequence and (V, ϑ, τ, τ ∗) be a PN-
space. A point γ ∈ V is said to be a strong lacunary statistical cluster point
(briefly strong Sθ−cluster point) of a sequence p = (pk) in V provided that for
all t > 0,

lim sup
r→∞

1

hr
|{k ∈ Ir : pk ∈ Nγ (t)}| > 0.
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Let Γ(Sθ, p) denotes the set of all strong Sθ-cluster points of the sequence p =
(pk).

Theorem 2.1 Let θ = (kr) be a lacunary sequence and (V, ϑ, τ, τ ∗) be a PN-
space. For any sequence p = (pk) in V , Λ (Sθ, p) ⊆ Γ (Sθ, p) .

Proof. For µ ∈ Λ ((Sθ, p), there is a θ-nonthin subsequence (pk(j)) of p that
strongly converges to µ. Since (pk(j)) is a θ-nonthin subsequence so we have

lim sup
r→∞

1

hr
|{k ∈ Ir : pk ∈ Nµ (t)}| > 0. (1)

Now for every t > 0, the containment {k ∈ Ir : pk ∈ Nµ (t)} ⊇ {k(j) ∈ Ir :
pk(j) ∈ Nµ (t)} gives

{k ∈ Ir : pk ∈ Nµ (t)} ⊇ {k (j) Ir : j ∈ N} −
{
k (j) ∈ Ir : pk(j) /∈ Nµ (t)

}
;

which immediately implies

lim sup
r→∞

1

hr
|{k ∈ Ir : pk ∈ Nµ (t)}| ≥ lim sup

r→∞

1

hr
|{k (j) Ir : j ∈ N}|

−lim sup
r→∞

1

hr

∣∣{k (j) ∈ Ir : pk(j) /∈ Nµ (t)
}∣∣ . (2)

Further, the strong convergence of (pk(j)) to µ gives for t > 0, the set{
k (j) ∈ Ir : (pk(j) /∈ Nµ (t)

}
is finite for which we have

lim sup
r→∞

1

hr

∣∣∣{k (j) ∈ Ir : (pk(j) /∈ Nµ (t)
}∣∣∣ = 0 . (3)

Using (1) and (3) in (2), we get

lim sup
r→∞

1

hr
|{k ∈ Ir : pk ∈ Nµ (t)}| ≥ d > 0.

This shows that µ ∈ Γ (Sθ, p) and therefore we have the containment Λ (Sθ, p) ⊆
Γ (Sθ, p). �

Theorem 2.2 Let θ = (kr) be a lacunary sequence and (V, ϑ, τ, τ ∗) be a PN-
space. For any sequence p = (pk) in V , Γ (Sθ, p) ⊆ L(p), where L(p) denotes
the set of all strong limit points of p = (pk).

Proof. Assume that γ ∈ Γ (Sθ, p), then for all t > 0, we have

lim sup
r→∞

1

hr
|{k ∈ Ir : pk ∈ Nγ (t)}| > 0. (4)
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For t > 0, if we denote K = {k ∈ Ir : pk ∈ Nγ (t)}, then the set K =
{k1 < k2 < · · · } is an infinite set as otherwise i.e. if K is finite set then left
side of (4) becomes zero and we obtain a contradiction. This shows that we
have a subsequence (p)K of the sequence p = (pk) that is strongly conver-
gent to γ. Hence γ is a strong limit point of (pk) and therefore we have the
containmentΓ (Sθ, p) ⊆ L (p). �

Theorem 2.3 For any lacunary sequence θ = (kr) and any sequence p = (pk)
in a PN-space (V, ϑ, τ, τ ∗), Γ (Sθ, p) is a closed set.

Proof. To prove the theorem it is sufficient to prove that cl (Γ (Sθ, p)) ⊆
Γ (Sθ, p) where cl(A) denotes the strong closure of any setA. Let µ ∈ cl (Γ (Sθ, p)),
then for any t > 0, Γ (Sθ, p) contains some point γ ∈ Nµ (t). Choose t

′
such

that Nγ(t
′
) ⊆ Nµ (t). Since γ ∈ Γ (Sθ, p), therefore

lim sup
r→∞

1

hr

∣∣∣{k ∈ Ir : pk ∈ Nγ(t
′
)}
∣∣∣ > 0;

which immediately gives

lim sup
r→∞

1

hr
|{k ∈ Ir : pk ∈ Nµ (t)}| > 0.

This shows that µ ∈ Γ (Sθ, p) and therefore we have cl (Γ (Sθ, p)) ⊆ Γ (Sθ, p).
�

Theorem 2.4 Let θ = (kr) be a lacunary sequence. For any sequence p = (pk)
in a PN-space (V, ϑ, τ, τ ∗), if Sθ−limk pk = p0, then Λ (Sθ, p) = Γ (Sθ, p) = p0.

Proof. We first show that Λ (Sθ, p) = {p0}. Let t > 0 and assume Λ (Sθ, p) =
{p0, q0} such that p0 6=0. By definition there exist two θ-nonthin subsequences(
pk(i)

)
and

(
pl(j)

)
of the sequence p = (pk) which are respectively strongly

convergent to p0 and q0. Since
(
pl(j)

)
strongly converges to q0 , therefore for

any t > 0, there is a positive integer m such that pk is in Nq0(t) whenever k ≥
m. This shows that for any t > 0 we have

lim
r

1

hr

∣∣{l (j) ∈ Ir : pl(j) ∈ Nq0(t)
}∣∣ = 0 . (5)

Moreover, for any t > 0 one can write

{l (j) ∈ Ir : j ∈ N} =
{
l (j) ∈ Ir : pl(j) ∈ Nq0(t)

}
∪
{
l (j) ∈ Ir : pl(j) /∈ Nq0(t)

}
;

which implies

lim sup
r

1

hr
|{l (j) ∈ Ir : j ∈ N}| = lim sup

r

1

hr

∣∣{l (j) ∈ Ir : pl(j) ∈ Nq0(t)
}∣∣
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+lim sup
r

1

hr

∣∣{l (j) ∈ Ir : pl(j) ∈ Nq0(t)
}∣∣. (6)

Since (l(j)) is θ-nonthin subsequence so we have together with (5),

lim sup
r

1

hr

∣∣{l (j) ∈ Ir : pl(j) ∈ Nq0(t)
}∣∣ > 0. (7)

Also using the fact Sθ − limk pk = p0, we have

lim
r

1

hr
|{k ∈ Ir : pk /∈ Np0 (t)}| = 0, (8)

which gives for any t > 0

lim sup
r

1

hr
|{k ∈ Ir : pk ∈ Np0(t)}| > 0. (9)

Also for p0 6= q0,
{
l (j) ∈ Ir : pl(j) ∈ Nq0(t)

}
∩ {k ∈ Ir : pk ∈ Np0(t)} = ∅. So

we have, {
l (j) ∈ Ir : pl(j) ∈ Nq0(t)

}
⊆ {k ∈ Ir : pk ∈ Np0(t)},

which immediately with use of (8)

lim sup
r

1

hr

∣∣{l (j) ∈ Ir : pl(j) ∈ Nq0(t)
}∣∣ ≤lim sup

r

1

hr
|{k ∈ Ir : pk /∈ Np0(t)}| = 0;

which contradict (7). Hence Λ (Sθ, p) = {p0}. Similarly, we can show that
Γ (Sθ, p) = {p0}. �

Theorem 2.5 Let θ = (kr) be a lacunary sequence. If p = (pk) and q = (qk)
are two sequences in (V, ϑ, τ, τ ∗) such that limr

1
hr
|{k ∈ Ir : pk 6= qk}| = 0,

then Λ (Sθ, p) = Λ (Sθ, q) and Γ (Sθ, p) = Γ (Sθ, q).

Proof. Assume γ ∈ Λ (Sθ, p), then there exists a θ-nonthin subsequence (p)K
of the sequence p = (pk) that converges to γ.
Since, limr

1
hr
|{k ∈ Ir : k ∈ K, pk 6= qk}| = 0, it follows that

lim sup
r

1

hr
|{k ∈ Ir : k ∈ K, pk = qk}| > 0 (10)

Therefore, there exists a θ-nonthin subsequence (q)K of the sequence q = (qk)
that converges to γ. This shows that γ ∈ Λ (Sθ, q) and therefore Λ (Sθ, p) ⊆
Λ (Sθ, q). By symmetry we have Λ (Sθ, q) ⊆ Λ (Sθ, p). Hence we have
Λ (Sθ, p) = Λ (Sθ, q). Similarly we can prove Γ (Sθ, p) = Γ (Sθ, q). �
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Theorem 2.6 Let θ = (kr) be a lacunary sequence and p = (pk) be a sequence
in (V, ϑ, τ, τ ∗), then we have
(i) If lim infr qr > 1 then Λ (Sθ, p) ⊆ Λ(S, p);
(ii) If lim supr qr <∞ then Λ(S, p) ⊆ Λ (Sθ, p) and
(iii) If 1 < lim infr qr ≤ lim supr qr <∞ then Λ(S, p) = Λ (Sθ, p).

Proof. (i) Let lim infr qr > 1, then there exists a δ > 0 such that qr > 1 + δ
for sufficiently large r which implies that kr

hr
≤ δ+1

δ
. Let µ ∈ Λ(Sθ, p), then

by definition, there exists a set K = {k(j) : j ∈ N} such that limj→∞ pk(j) = µ
and

lim sup
r→∞

1

hr
|{k(j) ∈ Ir : j ∈ N}| > 0 (11)

Since,

1

kr
|{k(j) ≤ kr : j ∈ N}| ≥ 1

kr
|{k(j) ∈ Ir : j ∈ N}|

=

(
hr
kr

)
1

hr
|{k(j) ∈ Ir : j ∈ N}|

≥
(

δ

δ + 1

)
1

hr
|{k(j) ∈ Ir : j ∈ N}| ;

it follows by (11) that

lim sup
r→∞

1

kr
|{k(j) ≤ kr : j ∈ N}| > 0.

Since
(
pk(j)

)
is already strongly convergent to µ, it follows that µ ∈ Λ (S, p).

Hence we have Λ (Sθ, p) ⊆ Λ (S, p).

(ii) If lim supr qr <∞, then there exists a real number H such that qr < H
for all r. Without loss of generality, we can assume H > 1. Now for all r,

hr
kr−1

=
kr − kr−1
kr−1

= qr − 1 ≤ H − 1.

Now, Let µ ∈ Λ(S, p), then by definition there is a set K = {k(j) : j ∈ N}
with δ (K) > 0 and limj→∞ pk(j) = µ. Let Nr = |{k ∈ Ir : k ∈ K}| = |K ∩ Ir|
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and tr = Nr

hr
. For any integer n satisfying kr−1 < n ≤ kr, we can write

1

n
|{k ≤ n : k ∈ K}| ≤ 1

kr−1
|{k ≤ kr : k ∈ K}|

=
1

kr−1
{N1 +N2 +N3 + · · ·+N r}

=
1

kr−1
{t1h1 + t2h2 + t3h3 + · · ·+ trhr}

=
1∑r−1
i=1 hi

r−1∑
i=1

hiti +
hr
kr−1

tr

≤ 1∑r−1
i=1 hi

r−1∑
i=1

hiti + (H − 1)tr.

Suppose tr → 0 as r →∞. Since θ is a lacunary sequence and the first part on
the right side of above expression is a regular weighted mean transform of the
sequence t = (tr), therefore it too tends to zero as r → ∞. Since n → ∞ as
r →∞, it follows that δ (K) = 0 which is a contradiction as δ (K) 6= 0. Thus
we have limr→∞ tr 6= 0 and therefore by definition δθ(K) 6= 0. This shows that
µ ∈ Λ (Sθ, p). Hence Λ(S, p) ⊆ Λ (Sθ, p) .

(iii) This is an immediate consequence of (i) and (ii).

Theorem 2.7 Let θ = (kr) be a lacunary sequence and p = (pk) be a sequence
in (V, ϑ, τ, τ ∗), then we have,

(i) If lim infr qr > 1 then Γ (Sθ, p) ⊆ Γ(S, p);
(ii) If lim supr qr <∞ then Γ(S, p) ⊆ Γ (Sθ, p) and
(iii) If 1 < lim infr qr ≤ lim supr qr <∞ then Γ(S, p) = Γ (Sθ, p).

Proof for the theorem, goes on the similar lines as for Theorem 2.6, so is
omitted here.
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