

Gen. Math. Notes, Vol. 12, No. 2, October 2012, pp. 24-31 ISSN 2219-7184; Copyright © ICSRS Publication, 2012 www.i-csrs.org Available free online at http://www.geman.in

Some Strong Forms of Semiseparated Sets and Semidisconnected Space

Abdullah M. Abdul-Jabbar

Department of Mathematics, College of Science, University of Salahaddin-Erbil / Kurdistan Region Iraq E-mail: m1abdullah@yahoo.co.uk

(Received: 27-5-12/ Accepted: 7-11-12)

Abstract

The concept of semi-open sets in topological spaces was first introduced by Levine. Also the concept of θ -semi-open sets in topological spaces was introduced by Noiri, which is stronger than semi-open sets. Now, we introduce a new type of separated sets called θ -semiseparated sets, which is stronger than semiseparated sets due to Dube and Panwar, and we give some properties of it, furthermore we introduce a new type of disconnectedness interms of θ -semiseparated sets called θ -semidisconnected space, which is stronger than semi-disconnectedness due to Dorsett. Moreover, we give some characterizations and properties of it. It is shown that, a space X is θ -semiconnected if and only if every θ s-continuous function from X to the discrete space $\{0, 1\}$ is constant.

Keywords: θ -semi-open sets, θ -semiseparated sets and θ -semidisconnected.

1 Introduction

The symbols X and Y represent topological spaces with no separation axioms assumed unless explicitly stated. Let S be a subset of X, the interior and closure of S are denoted by Int(S) and Cl(S), respectively. A subset S of X is said to be semi-open [8] if and only if $S \subset Cl(Int((S)))$. A subset S of X is said to be θ -semi-open set [10] if for each $x \in S$, there exists a semi-open set G in X such that $x \in G \subset$

Cl(G) ⊂ S. The complement of each semi-open (resp. θ -semi-open) sets is called semi-closed (resp. θ -semi-closed). A point x is said to be in the θ -semi-closure of a set S [5], denoted by sCl_{θ}(S), if S ∩ Cl(G) ≠ ϕ , for each G∈SO (X) containing x. If S = sCl_{θ}(S), then S is called θ -semi-closed. For each G∈SO (X), Cl(G) is θ -semi-open and hence every regular closed set is θ -semi-open. Therefore, x∈sCl_{θ}(S) if and only if S ∩ E ≠ ϕ , for each θ -semi-open set E containing x. A space X is said to be semi-disconnected [2] if there exist two semi-open sets A and B such that X = A ∪ B and A ∩ B = ϕ , otherwise it is called semiconnected. Two non-empty subsets A and B of a topological space X are said to be semiseparated [3] if and only if A ∩ sCl(B) = sCl(A) ∩ B = ϕ . In a topological space X, a set which can be expressed as the union of two semiseparated sets is called a semi-disconnected space [3]. A function $f : X \rightarrow Y$ is said to be θ s-continuous [7] if for each x ∈ X and each open set B of Y containing f (x), there exists a semi-open set U of X containing x such that f(Cl(U)) ⊂ B.

2 θ-Semiseparated Sets

In this section we introduce a new type of separated sets called θ -semiseparated sets, and some characterizations and properties of it will be given. We start this section with the following definition.

Definition 2.1 *Two non-empty subsets A and B of a topological space X are said to be \theta-semiseparated if A \cap sCl_{\theta}(B) = sCl_{\theta}(A) \cap B = \phi.*

Lemma 2.2 Every θ -semiseparated sets is semiseparated.

Lemma 2.3 Every two θ -semiseparated sets in topological spaces are disjoint.

Proof Assume that A and B are two θ -semiseparated sets. Then, $A \cap sCl_{\theta}(B) = sCl_{\theta}(A) \cap B = \phi$ and hence $(A \cap sCl_{\theta}(B)) \cup (B \cap sCl_{\theta}(A)) = \phi$. By Theorem 1.2.2 of [1], $sCl_{\theta}(C) = C \cup \theta sd(C)$. Therefore, $(A \cap (B \cup \theta sd(B))) \cup (B \cap (A \cup \theta sd(A))) = \phi$. Then, $((A \cap B) \cup (A \cap \theta sd(B)) \cup ((B \cap A) \cup (B \cap \theta sd(A))) = \phi$. Thus, $A \cap B = \phi$.

The converse of the above two lemmas are not true ingeneral as it is shown in the following examples.

Example 2.4 Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, X, \{a, b\}, \{c\}, \{a, b, c\}\}$. Let $A = \{a\}$ and $B = \{c, d\}$ be two subsets of (X, τ) . Then, SO(X, $\tau) = \{\phi, X, \{c\}, \{a, b\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}\}$ and θ SO(X, $\tau) = \{\phi, X, \{c, d\}, \{a, b, d\}\}$. Therefore, $\{a\}$ and $\{c, d\}$ are two semiseparated sets, but they are not θ -semiseparated sets since $\{a\} \cap SCl_{\theta}(\{c, d\}) = \{a\} \cap X \neq \phi$.

Example 2.5 If we use the same topology (X, τ) in Example 2.4 and we take $Y = \{a, b\}$ and $W = \{c, d\}$ are two subsets of (X, τ) . Then, Y and W are disjoint, but they are not θ -semiseparated sets.

Proposition 2.6 If A and B are two θ -semiseparated subsets of a topological space X, $C \subset A$ and $D \subset B$, then C and D are also θ -semiseparated.

Proof It is obvious.

Theorem 2.7 Two θ -semi-closed subsets A and B of a topological space X are θ -semiseparated if and only if they are disjoint.

Proof The first direction follows from Lemma 2.3 and the second direction it is obvious.

Theorem 2.8 Two θ -semi-open subsets A and B of a topological space X are θ -semiseparated if and only if they are disjoint.

Proof The first direction follows from Lemma 2.3.

Conversely, assume that A and B are disjoint. Since A and B are two θ -semi-open sets, then $(X \setminus A)$ and $(X \setminus B)$ are θ -semi-closed. Therefore, $sCl_{\theta}(X \setminus A) = (X \setminus A)$ and $sCl_{\theta}(X \setminus B) = (X \setminus B)$. Since A and B are disjoint, then $A \subset (X \setminus B)$ and $B \subset (X \setminus A)$. Therefore, $sCl_{\theta}(A) \subset sCl_{\theta}(X \setminus B)$ and $sCl_{\theta}(B) \subset sCl_{\theta}(X \setminus A)$. This implies that, $sCl_{\theta}(A) \subset (X \setminus B)$ and $sCl_{\theta}(B) \subset (X \setminus A)$. So, $(sCl_{\theta}(A) \cap B) \subset ((X \setminus B) \cap B) = \phi$ and $(A \cap sCl_{\theta}(B)) \subset (A \cap (X \setminus A)) = \phi$. Therefore, $sCl_{\theta}(A) \cap B = A \cap sCl_{\theta}(B) = \phi$. Hence A and B are θ -semiseparated sets.

3 θ-Semidisconnectedness and θ-Semiconnectedness

In this section we introduce two new types of disconnected and connected spaces interms of θ -semiseparated sets called θ -semidisconnected and θ -semiconnected spaces, some characterizations and properties of them will be given. We start this section with the following definition.

Definition 3.1 Let X be a topological space, a subset A of X is said to be θ -semidisconnected if it is the union of non empty θ -semiseparated sets, that is there exist two non empty sets B and C such that $B \cap sCl_{\theta}(C) = \phi$, $sCl_{\theta}(B) \cap C = \phi$ and $A = B \cup C$. Also, we say that A is θ -semiconnected if it is not θ -semidisconnected.

It is obvious that every θ -semidisconnected space is semidisconnected. But the converse is not true ingeneral, as it is shown in the following example.

Example 3.2 Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, X, \{a, b\}, \{c\}, \{a, b, c\}\}$. Then, SO(X, τ) = { ϕ , X, {c}, {a, b}, {c, d}, {a, b, c}, {a, b, d}} and θ SO(X, τ) = { ϕ , X, {c, d}, {a, b, d}}. Therefore, X is semidisconnected, but it is not θ -semidisconnected.

We give some characterizations of θ -semidisconnected space.

Theorem 3.3 A topological space X is θ -semidisconnected if and only if there exists a non empty proper subset of X which is both θ -semi-open and θ -semi-closed in X.

Proof Let X be a θ -semidisconnected, so there exist two non empty subsets A and B of X such that $A \cap sCl_{\theta}(B) = \phi$, $sCl_{\theta}(A) \cap B = \phi$ and $X = A \cup B$. Since $B \subset$ $sCl_{\theta}(B)$. Then, $(A \cap B) \subset (A \cap sCl_{\theta}(B)) = \phi$. Therefore, $A \cap B = \phi$ and $A \cup B =$ X, so $A = (X \setminus B)$ (B is a non empty and A is a proper subset of X) because if A =X, then $(X \setminus B) = X$, which implies that $B = \phi$, this is contradiction. Now, $A \cup B =$ X and $B \subset sCl_{\theta}(B)$, then $X = (A \cup B) \subset (A \cup sCl_{\theta}(B))$. But, always $(A \cup$ $sCl_{\theta}(B)) \subset X$. So, $A \cup sCl_{\theta}(B) = X$. Since $A \cap sCl_{\theta}(B) = \phi$. Therefore, $A = (X \setminus$ $sCl_{\theta}(B))$. Likewise, we can show $B = (X \setminus sCl_{\theta}(A))$. Since $sCl_{\theta}(A)$ and $sCl_{\theta}(B)$ are θ -semi-closed sets. Also, $A = (X \setminus sCl_{\theta}(B))$. Thus, A is θ -semi-open. Also, $B = (X \setminus sCl_{\theta}(A))$. Thus, B is also θ -semi-open, and since $A = (X \setminus B)$, then A is θ -semi-closed. So, A is the required non empty subset of X which is both θ -semiopen and θ -semi-closed (infact B is also a non empty proper subset of X, which is both θ -semi-open and θ -semi-closed).

Conversely, let A be a non empty proper subset of X, which is both θ -semi-open and θ -semi-closed and B = (X \ A). Now, A \cup B = (A \cup (X \ A)) = X. Also, A \cap B = A \cap (X \ A) = ϕ . Since A is θ -semi-closed. Therefore, sCl_{θ} (A) = A. Also, A is θ -semi-open. Then, (X \ A) is θ -semi-closed. This implies that B is θ -semiclosed. Therefore, sCl_{θ} (B) = B. Hence, A \cap B = A \cap sCl_{θ} (B) = ϕ and sCl_{θ} (A) \cap B = ϕ . So, X is θ -semidisconnected.

Recall that, a space X is said to be θ s-disconnected [1] if there exist two θ -semi-open sets A and B such that $X = A \cup B$ and $A \cap B = \phi$. In this case, we call $A \cup B$ is called a θ s-disconnection of X, otherwise X is called θ s-connection. The above definition is equivalent to the Definition 3.1 as it is shown in the following result.

Theorem 3.4 A topological space X is θ -semidisconnected if and only if one of the following statements hold:

(i) X is the union of two non empty disjoint θ -semi-open sets. (ii) X is the union of two non empty disjoint θ -semi-closed sets.

Proof (i) Let X be a θ -semidisconnected, so by Theorem 3.3, there exists a nonempty proper subset A of X which is both θ -semi-open and θ -semi-closed. So, $(X \setminus A)$ is also both θ -semi-open and θ -semi-closed. Thus, A and $(X \setminus A)$ are two θ -semi-open sets such that $A \cap (X \setminus A) = \phi$ and $A \cup (X \setminus A) = X$. So, X is the union of two non empty disjoint θ -semi-open sets A and $X \setminus A$ of X.

Conversely, let $X = A \cup B$ and $A \cap B = \phi$, where A and B are two non empty θ -semi-open subsets of X. We want to show that X is θ -semidisconnected. Since $A \cap B = \phi$ and $X = A \cup B$. Therefore, $A = (X \setminus B)$, so A is θ -semi-closed.

Thus, A is a non empty proper subset of X (if A is not proper, then A = X and hence $B = \phi$, this is contradiction). Hence, A is a non empty proper subset of X, which is both θ -semi-open and θ -semi-closed, so by Theorem 3.3, X is θ -semidisconnected.

(ii) We can show the equivalence between θ -semidisconnectedness of X and the condition gives in (ii) by the same way.

Theorem 3.5 Let X be a topological space. If A and B are two non empty θ -semiseparated sets, then $A \cup B$ is θ -semidisconnected.

Proof Since A and B are θ -semiseparated sets, then $A \cap sCl_{\theta}(B) = \phi$ and $sCl_{\theta}(A) \cap B = \phi$. Let $G = (X \setminus sCl_{\theta}(B))$ and $H = (X \setminus sCl_{\theta}(A))$. Then, G and H are θ -semi-open and $(A \cup B) \cap G = A$ and $(A \cup B) \cap H = B$ are non empty disjoint set whose union is $A \cup B$. Thus, G and H form a θ -semidisconnection of $A \cup B$ and so $A \cup B$ is θ -semidisconnected.

Theorem 3.6 Let $G \cup H$ be a θ -semidisconnection of A. Then, $A \cap G$ and $A \cap H$ are θ -semiseparated sets.

Proof Now, $A \cap G$ and $A \cap H$ are disjoint; hence we need only show that each set contains no θ s-limit point of the other. Let p be a θ s-limit point of $A \cap G$ and suppose $p \in (A \cap H)$. Then, H is a θ -semi-open set containing p and so H contains a point of $A \cap G$ distinct from p, that is, $(A \cap G) \cap H \neq \phi$. But $(A \cap G) \cap (A \cap H) = \phi = (A \cap G) \cap H$. Then, $p \notin (A \cap H)$. Likewise, if p is a θ s-limit point of A $\cap H$, then $p \notin (A \cap G)$. Thus, $A \cap G$ and $A \cap H$ are θ -semiseparated sets.

Theorem 3.7 Let $G \cup H$ be a θ -semidisconnection of A and let B be a θ -semiconnected subset of A. Then, either $B \cap H = \phi$ or $B \cap G = \phi$, and so either $B \subset G$ or $B \subset H$.

Proof Now, $B \subset A$, and so $A \subset (G \cup H)$. Then, $B \subset (G \cup H)$ and $(G \cap H) \subset (X \setminus A)$. Therefore, $(G \cap H) \subset (X \setminus B)$. Thus, if both $B \cap G$ and $B \cap H$ are non empty, then $G \cup H$ forms a θ -semidisconnection of B. But B is θ -semiconnected, hence the conclusion follows.

Theorem 3.8 Let X be a topological space. If A and B are θ -semiconnected sets which are not θ -semiseparated, then $A \cup B$ is θ -semiconnected.

Proof Let $A \cup B$ be θ -semidisconnected and $G \cup H$ be a θ -semidisconnection of $A \cup B$. Since A is a θ -semiconnected subset of $A \cup B$. Therefore, by Theorem 3.7, either $A \subset G$ or $A \subset H$. Likewise, either $B \subset G$ or $B \subset H$. Now, if $A \subset G$ and $B \subset H$ (or $B \subset G$ and $A \subset H$), then by Theorem 3.6, $(A \cup B) \cap G = A$ and $(A \cup B) \cap H = B$ are θ -semiseparated sets. This contradicts the hypothesis; hence $(A \cup B) \subset G$ or $(A \cup B) \subset H$, and so $G \cup H$ is not a θ -semidisconnection of $A \cup B$. In other words, $A \cup B$ is θ -semiconnected.

Theorem 3.9 Let X be a topological space. If $A = \{A_i\}$ is a class of θ -semiconnected subsets of X such that no two members of A are θ -semiseparated. Then, $B = \bigcup_i A_i$ is θ -semiconnected.

Proof Assume that B is not θ -semiconnected and $G \cup H$ is a θ -semidisconnection of B. Now, each $A_i \in \mathbf{A}$ is θ -semiconnected and so by Theorem 3.7, is contained in either G or H and disjoint from the other. Futhermore, any two members A_{i1} , $A_{i2} \in \mathbf{A}$ are not θ -semiseparated and so by Theorem 3.8, $A_{i1} \cup A_{i2}$ is θ -semiconnected; then $A_{i1} \cup A_{i2}$ is contained in G or H and disjoint from the other. Therefore, all the members of \mathbf{A} , and hence $B = \bigcup_i A_i$, must be contained in either G or H and disjoint from the other. This is contradictions the fact that $G \cup H$ is a θ -semidisconnection of B; hence B is θ -semiconnected.

Theorem 3.10 Let $A = \{A_i\}$ be a class of θ -semiconnected subsets of X with a non empty intersection. Then, $B = \bigcup_i A_i$ is θ -semiconnected.

Proof Since $\cap_i A_i \neq \phi$, any two members of A are not disjoint and so are not θ -semiseparated; hence by Theorem 3.9, $B = \bigcup_i A_i$ is θ -semiconnected.

Theorem 3.11 Let X be a topological space. If A is θ -semiconnected subset of X and $A \subset B \subset sCl_{\theta}(A)$, then B is θ -semiconnected and hence, inparticular, $sCl_{\theta}(A)$ is θ -semiconnected.

Proof Suppose that B is θ -semidisconnected and suppose $G \cup H$ is a θ -semidisconnected of B. Now, A is a θ -semiconnected subset of B and so, by Theorem 3.7, either $A \cap H = \phi$ or $A \cap G = \phi$; say, $A \cap H = \phi$. Then, $(X \setminus H)$ is a θ -semi-closed superset of A and therefore, $A \subset B \subset sCl_{\theta}$ (A) \subset (X \ H). Consequently, $B \cap H = \phi$. This is contradicts the fact that $G \cup H$ is a θ -semidisconnection of B; hence B is θ -semiconnected.

Theorem 3.12 A topological space X is θ -semidisconnected if and only if there exists a θ s-continuous function f from X onto the discrete space $\{0, 1\}$.

Proof Suppose that X is θ -semidisconnected. Then, there exist two non empty disjoint θ -semi-open subsets G_1 and G_2 of X such that $X = G_1 \cup G_2$. Define a function $f: X \to \{0, 1\}$ as follows

$$f(\mathbf{x}) = \begin{cases} 0 & \text{if } \mathbf{x} \in \mathbf{G}_1 \\ & & \\ 1 & \text{if } \mathbf{x} \in \mathbf{G}_2 \end{cases}$$

Now, the only open sets in $\{0, 1\}$ are ϕ , $\{0\}$, $\{1\}$ and $\{0, 1\}$. So, $f^{-1}(\phi) = \phi$, $f^{-1}(\{0\}) = G_1, f^{-1}(\{1\}) = G_2$ and $f^{-1}(\{0, 1\}) = X$, which are θ -semi-open sets in X. Thus, f is θ -continuous surjection from X to the discrete space $\{0, 1\}$.

Conversely, let the hypothesis holds and if possible suppose (a, 1). θ -semiconnected. Therefore, by [6, Corollary 17], f(X) is connected. Thus, {0, 1} is connected, which is contradiction since {0, 1} is discrete space and every discrete space which contain more than one point is disconnected. So, X must be θ -semidisconnected.

Finally, we prove the following theorem.

Theorem 3.13 A topological space X is θ -semiconnected if and only if every θ s-continuous function from X to the discrete space $\{0, 1\}$ is constant.

Proof Let X be θ -semiconnected and $f: X \to \{0, 1\}$ any θ s-continuous function. Let $y \in f(X) \subset \{0, 1\}$, then $\{y\} \subset \{0, 1\}$ and since $\{0, 1\}$ is discrete, so $\{y\}$ is both open and closed in $\{0, 1\}$. Since f is θ s-continuous. Therefore, by [7, Theorem 2.3], $f^{-1}(\{y\})$ is both θ -semi-open and θ -semi-closed in X. Now, since $y \in f(X)$. Therefore, there exists $x \in X$ such that y = f(x). Thus, $f(x) \in \{y\}$ and $x \in f^{-1}(\{y\})$. Thus, we obtain $f^{-1}(\{y\}) \neq \phi$. If $f^{-1}(\{y\}) \neq X$, then $f^{-1}(\{y\})$ is a non empty subset of X which is both θ -semi-open and θ -semi-closed, which implies that X is θ -semidisconnected, this is a contradiction, so $f^{-1}(\{y\}) = X$. Thus, $f(X) = \{y\}$, it means that f(x) = y, for each $x \in X$, so f is constant. Conversely, let the hypothesis be holds; if possible suppose that X is

Conversely, let the hypothesis be holds; if possible suppose that X is a θ -semidisconnected. Therefore, by Theorem 3.3, X has a non-empty proper subset of X which is both θ -semi-open and θ -semi-closed. So, (X \ A) is also a non empty proper subset of X which is both θ -semi-open and θ -semi-closed. Now, consider the characteristic function ψ_A of A defined as

$$\psi_A \left(x \right) = \left\{ \begin{array}{ccc} 0 & \text{if } x \in A \\ \\ & & \\ 1 & \text{if } x \in (X \setminus A) \end{array} \right\}$$

 $\psi_A^{-1}(\phi) = \phi, \psi_A^{-1}(\{0\}) = (X \setminus A), \psi_A^{-1}(\{1\}) = A \text{ and } \psi_A^{-1}(\{0, 1\}) = X$, which are all θ -semi-open sets in X. So, ψ_A is θ s-continuous function from X to the discrete space $\{0, 1\}$. By hypothesis, ψ_A must be constant, this is contradiction since ψ_A is not constant function. So, X is θ -semiconnected, which completes the proof.

References

- [1] A.M. Abdul-Jabbar, θs-continuity, openness and closed graphs in topological spaces, *M. Sc. Thesis*, College of Science, Salahaddin Univ-Erbil, (2000).
- [2] C. Dorsett, Semi-connected spaces, *Indian J. Mech. Math.*, 17(1) (1979), 57-61.
- [3] K.K. Dube and O.S. Panwar, Some properties of s-connectedness between sets and set s-connected mappings, *Indian J. Pure Appl. Math.*, 15(4) (1984), 343-354.
- [4] D.S. Jangkovic and I.J. Reilly, On semiseparation properties, *Indian J. Pure Appl. Math.*, 16(9) (1985), 957-964.
- [5] J.E. Joseph and M.H. Kwack, On S-closed spaces, *Proc. Amer. Math. Soc.*, 80(1980), 341-348.
- [6] A.B. Khalaf and A.M. Abdul-Jabbar, On θs-continuous functions, J. *Dohuk Univ.*, 7(1) (2004), 35-38.
- [7] A.B. Khalaf and F.H. Easif, θs-continuous functions, J. Dohuk Univ., (Special issue) (1999), 1-4.
- [8] N. Levine, Semi-open sets and semi-continuity in topological spaces, *Amer. Math. Monthy*, 70(1963), 36-41.
- [9] A.H. Naser, On separation properties, *M. Sc. Thesis*, University of Baghdad, (1989).
- [10] T. Noiri, On S-closed and S-perfect functions, *Atti della Acad. Delle Sci. Torino*, (1986), 71-79.