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Abstract 

     Flow through a variable permeability Brinkman porous layer with quadratic 
permeability function, underlain by a Darcy porous layer of variable linear 
permeability function is analysed. The model flow demonstrates the compatibility 
between the low-order Darcy law and the Brinkman equation in the sense that at 
the interface between the layers it is possible to impose equality of the non-zero 
shear stresses. A matching procedure is also introduced for velocity computation 
near the point of singularity associated with the resulting Cauchy-Euler equation.  

     Keywords: Variable Permeability, Darcy-Brinkman Layers.       

 

1 Introduction 
 
The experiments of Beavers and Joseph, [1], on the flow through a channel over a 
Darcy porous layer, and their proposing a slip flow condition at the interface, 
represents the starting point of a large volume of research work devoted to this 
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problem. Many excellent reviews on the subject matter and applications of this 
type of flow are available (cf. [3, 8, 16, 17] and the references therein).  
 
In the study of flow through a channel bounded by a Darcy porous layer, a 
problem arises with the matching condition at the interface between the porous 
layer and the channel. At the interface, there exists a shear stress discontinuity, a 
permeability discontinuity, and the low-order of Darcy’s law makes it 
incompatible with the Navier-Stokes equations. This incompatibility causes an 
apparent slip in the fluid velocity at the assumed sharp interface, and has been 
handled with the Beavers and Joseph’s slip condition, [1], that was intended to 
interpret the enhancement in the volumetric flow rate in the channel as a result of 
introducing a porous boundary. Conditions at the interface between a channel and 
a porous layer are important as they influence mass and heat transfer in the flow 
domain. This initiated a need for a non-Darcy model to govern the flow in the 
porous layer, and to be compatible with the Navier-Stokes equations.  
 
While much research has been devoted to the analysis of conditions at the 
interface between a channel and a porous medium and the types of governing 
equations that are best suited for the flow through the porous layer, [3, 4, 10, 12, 
14, 15, 16, 17], recent advances in the field deal with flow through variable 
permeability layers, [2, 5, 6, 7, 9, 13], and the analysis of the transition layer that 
is associated with Brinkman’s equation and proposed by Nield and Koznetsov, 
[11]. 
 
Brinkman’s equation with variable permeability, [7], has been of great utility in 
the analysis of a transition layer between a Darcy porous layer and a channel 
through which the flow is governed by Navier-Stokes equations, [11]. However, 
most of the work carried out on analysis of flow in the transition layer has 
assumed a Brinkman layer with variable permeability underlain by a constant 
permeability Darcy layer. Little to no work has provided analysis of the problem 
of variable permeability porous layer bounding a Brinkman layer of variable 
permeability. This gives rise to the current work in which we provide analysis of 
the more general situation wherein the Darcy layer is of variable permeability in 
order to capture naturally occurring porous layers of different permeability. We do 
not consider the Brinkman layer as a transition layer in this work; rather, we 
consider flow through a two-layer composite configuration, shown in Fig. 1, one 
Darcy and one Brinkman layer, both possessing variable permeability and both 
bounded by solid, impermeable walls on opposite sides. The common side 
between layers is an assumed sharp interface on which we will assume 
permeability, velocity, and shear stress continuity. 
 

2 Problem Formulation 
 
Consider the steady, unidirectional flow of a viscous fluid through the porous 
layers shown in Fig. 1, and termed Darcy layer (the lower porous layer where 
Darcy’s law is valid) and Brinkman layer (the upper porous layer where 



28                                                                                          M.S. Abu Zaytoon et al.                                                                                                     

Brinkman’s equation is valid). Flow in both layers is driven by the same constant 
pressure gradient, and each layer is of variable permeability. The layers are 
bounded by solid, impermeable walls at Dy −=  and at Dy = , and the interface 
between the layers is an assumed sharp interface, located at 0=y . 

 

Fig. 1: Representative Sketch 
 
In the upper layer, Dy <<0 , the flow is governed by Brinkman’s unidirectional 
flow equation 
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and in the lower layer, 0<<− yD , the flow is governed by Darcy’s 
unidirectional flow equation 
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µ
ϑ eff= , 0<xp  is the constant pressure gradient, µ  

is the fluid viscosity coefficient, and effµ  is the effective viscosity of fluid in the 

Brinkman layer, )(1 yk  is the variable permeability in the Darcy layer, and )(2 yk  is 
the variable permeability in the Brinkman layer. Equations (1) and (2) are to be 
solved subject to the following conditions: 
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Conditions at the interface, y = 0, are the following velocity continuity, 
permeability continuity, and continuity of the normal component of shear stress, 
respectively,  

)0()0( vu = , )0()0( 21 kk = , ).0()0(
dy

dv

dy

du =ϑ                                                    …(3) 

 
Conditions at the solid walls are the no-slip conditions and vanishing 
permeability, respectively, namely 
 

0)( =Du , 0)( =−Dv , 0)(1 =−Dk , .0)(2 =Dk                                                   …(4) 
 

3 Method of Solution 
 
Assume that the permeability )(1 yk  in the Darcy layer to be an increasing linear 

function ofy , that reaches a maximum value, maxk , at 0=y , and in the Brinkman 

layer a quadratic permeability function, )(2 yk , written as 
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then the velocity profile in the Darcy layer is obtained from (2) as 
 

D
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and a shear stress in the lower layer and at the interface given by 
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Condition (3) thus yields the following expression for velocity at the interface: 
 

.)0()0( maxRkuvu i ===                                                                                     …(8) 

 
Using (3) and (4) gives Brinkman permeability function: 
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Choosing 2max
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k
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Y −= 1 , equation (1) is 

transformed into the Cauchy-Euler inhomogeneous ordinary differential equations 
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General solution to (10) is given by 
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and 1c  and 2c  are determined using conditions (3) and (4) and take the values: 
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Shear stress in the upper layer is obtained from (11) and takes the form 
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and has the following value at the interface, y = 0: 
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Solution to the given problem is thus completely determined and can be expressed 
in dimensionless form using the following dimensionless variables: 
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The dimensionless porous layers span the following dimensionless length*y : 

Darcy layer: 01 * ≤≤− y and 10 * ≤≤ y  for Brinkman layer. Dimensionless 
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velocity profiles in the Brinkman and Darcy layers are given by the following 
equations, respectively 
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Dimensionless permeability distributions in the lower and upper layers are given 
respectively by 
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while the dimensionless velocity and shear stress at the interface are given, 
respectively, by  
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4 Results and Discussion 
 
The dimensionless equations (17) to (22), above, are dependent on the parameters 

max
*k  and ϑ . The parameter 

µ
µ

ϑ eff=  is the ratio of effective viscosity to the fluid 

viscosity. In the absence of concrete experimental or theoretical evidence 
supporting its value, we will take the full range of values =ϑ 0.5, 0.95, 1, 1.05, 
and 1.5. The parameter max

*k is the dimensionless permeability at the interface. It is 
in fact the dimensionless Darcy number, Da, which has a maximum value of 
unity. In this analysis we take the following range of values for max

*k : 1,  0.1,  
0.01,  0.001, 0.0001, and 0.00001. 
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Using the above values of max
*k  and ϑ , we provide the following data for velocity 

and shear stress at the interface, velocity profiles, and permeability distributions in 
the layers. 
 
4.1 Velocity and Shear Stress at the Interface 
 

Equation (21) provides an expression for the dimensionless velocity *
iu  at the 

interface in terms of the dimensionless permeability max
*k . It is clear and expected 

that as max
*k  decreases, the dimensionless velocity at the interface decreases. 

Furthermore, this dimensionless velocity is independent ofϑ . Dependence of the 
dimensional velocity at the interface on viscosity, pressure gradient and on the 
dimensional permeability at the interface is given by equation (8), or 

maxk
p

u x
i µ

−= , which shows its increase with increasing permeability and 

magnitude of pressure gradient, and its decrease with increasing fluid viscosity, 
µ . For a given effµ , an increase in µ  results in a decrease inϑ . We can then 

conclude that the dimensional velocity at the interface decreases with 
decreasingϑ . 
 
Equation (21) gives an expression for the dimensionless normal component of 

velocity derivative at the interface. While the expression )0(
*

*

dy

duϑ  is given 

by max
*k , hence has the same values as the dimensionless velocity at the interface, 

its dimensional expression shows its dependence on the pressure gradient, fluid 
viscosity and depth of the lower porous layer. Magnitude of this term is inversely 
proportional to the depth of the lower porous layer. In fact, in the limit as D 
approaches infinity, shear stress at the interface approaches zero (the value of 
shear stress at the interface as given by Darcy’s law with constant permeability).  
 
4.2 Dimensionless Permeability Distribution 
 
Equation (20) gives the expressions of the dimensionless permeability 
distributions in the Darcy and Brinkman layers, respectively. The linear profile 
starts at zero on the lower bounding wall, and increases till it reaches max

*k  at the 
interface. In the upper layer, the dimensionless permeability profile is parabolic 
with a maximum value at the interface and falls to zero on the upper boundary. 
Graphs of the two permeability profiles are shown in Figure 2 for the range of 

max
*k  (Darcy number) of 0.1 and 1. 
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Fig. 2: Permeability Distribution in the Two Layers 
 
4.3 Velocity Profiles in the Porous Layers 
 
Dimensionless velocity profiles in the upper and lower layers are given, 
respectively, by equations (17) and (18). While the profile in the lower layer is 
dependent on max

*k , the profile in the upper layer depends on both max
*k  and ϑ . 

The values of the velocity in the upper layer become asymptotically large as we 
get close to the upper boundary. Inherent in the Cauchy-Euler equation is the 
ordinary point of singularity (zero of the coefficient of the highest derivative). 
Boundary conditions do not remove this singularity. Therefore, solution is valid 
near the point of singularity. We therefore follow the steps below to generate 
velocity values near the upper wall. Taking the limit of *u  as −→1*y , we obtain: 
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Velocity computations thus proceed as follows: 
 
1) Use equation (17) to calculate the velocity up to the edge of boundary 

layer. 
2) Use equation (24) to calculate the velocity from the edge of boundary 

layer to the upper boundary.  
 
In order to calculate the limits of the boundary layer, we use definition of the 
boundary layer thickness, δ , as square root of the permeability, namely 
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Critical values of *y for different max

*k are listed in Table 1 below. Therefore, we 

use equation (17) to calculate the velocity up to the critical value of *y , and 

equation (24) to calculate the velocity for 1* << yy . 
 

Table 1: Critical Values of 
*y for different max

*k  
  

max
*k  critical *y (inequality (26)) )1( *

max
* yk −=δ  

1 0.5 0.5 

0.1 0.2402 0.2402 

0.01 0.0909 0.0909 

0.001 0.0306 0.0306 

0.0001 0.0099 0.0099 

 
 
While the above decomposition of the flow domain seems reasonable it does 

however result in a jump in the velocity at
)1( max

*

max
*

k

k
y

+
= , as can be seen in 

Figs. 3 and 4, below, which illustrate the velocity profiles for 1=ϑ and different 
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values of max
*k .This points to the need for matching the two solutions at the point 

of jump discontinuity, as explained below. 
 
 

 

Fig. 3: Velocity Profiles )(* yu , )(* yv , for 1=ϑ and different values of 

max
*k . 

 

 

 

Fig. 4: Velocity Profiles )(* yu , )(* yv , for max
*k =1, and different values of 

ϑ  
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Figure 1 represents the matching configuration and illustrates three regions in the 
flow domain: the lower region where Darcy’s law is valid; the middle region 
where Brinkman’s equation and its solution, given by equation (17), are valid, and 
the boundary layer region which in which equation (24) is valid. We can thus state 
the velocity profile in the Brinkman layer as follows: 
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Now, for velocity continuity at δ−= 1y  we must match *
2u with *

1u by letting 
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Equations (27)-(33) yield 
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Now, using (27) and (35), we plot the velocity profiles in the upper layer. In 
Figures 5 and 6 we illustrate the velocity profile in both layers for 1.0max

* =k  and 
1, and 1=ϑ . These graphs show the expected decrease in the velocity in the 
upper layer as we move away from the interface, and the continuity of velocity at 
the edge of boundary layer. 
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Fig. 5: Matched Velocity profiles for 1,1max
* == ϑk  

 

 

 

Fig. 6: Matched Velocity profiles for 1,1.0max
* == ϑk  

 

5 Conclusion 
 
In this work we considered the flow of a viscous fluid through a two-layer 
configuration. The flow through one layer is governed by Darcy’s law with 
variable permeability, and the other by a Brinkman’s equation with quadratic 
variable permeability. Brinkman’s equation reduces to a Cauchy-Euler equation. 
Solution to this equation becomes excessively large for small values of 
dimensionless maximum permeability. To remedy the arising jump discontinuity 
in the velocity as we approach the upper boundary, we devised a matching 
condition that induces velocity continuity at the edge of the boundary layer to the 
upper solid boundary. 
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