Gen. Math. Notes, Vol. 2, No. 1, January 2011, pp. 24-31
Copyright © ICSRS Publication, 2011
www.i-csrs.org
Available free online at http://www.geman.in

Frames, Riesz Bases and Double Infinite Matrices

Devendra Kumar
Department of Mathematics
M.M.H.College,Model Town,Ghaziabad-201001, U.P., India
d_kumar001@rediffmail.com

(Received 01.11.2010, Accepted 15.11.2010)

Abstract

In this paper we have used double infinite matrix $A=\left(a_{i l j k}\right)$ of real numbers to define the A-frame. Some results on Riesz basis and A-frame also have been studied. This Work is motivated from the work of Moricz and Rhoades [7].

2001 AMS Classification. Primary 41A17, Secondary $42 C 15$.
Keywords and phrases. Bessel sequence, moment sequence, double infinite matrix and A-frame.

1 Introduction

Let $U(F)$ and $V(F)$ be finite dimensional vector spaces over the field F of dimension n. The elements $\left(y_{1}, \ldots, y_{n}\right) \in V$ and $\left(e_{1}, e_{2}, \cdots, e_{n}\right)$ is an ordered basis in U. Then there exists a unique linear transformation such that

$$
\begin{equation*}
T e_{i}=y_{i}, \quad i=1, \cdots, n . \tag{1.1}
\end{equation*}
$$

Let us extend the transformation T to linear transformation of vectors from the basis such that

$$
T\left(\sum_{i=1}^{n} \alpha_{i} e_{i}\right)=\sum_{i=1}^{n} \alpha_{i} y_{i} .
$$

It is clear from (1.1) that T is completely defined because any element in U can be expressed as a linear combination of basis vectors uniquely. Also, if U is n-dimensional and V is m-dimensional then the class of all linear
transformations from $U \rightarrow V$ be $n m$-dimensional.

Let an ordered bases in U and V be $\left\{e_{j}\right\}_{j=1}^{n}$ and $\left\{e_{i}\right\}_{i=1}^{m}$ respectively. Then the set of all linearly independent $\left[a_{i j}\right] .(i=1, \cdots, m, j=1, \cdots, n)$ i.e.,

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & \cdots & \\
\vdots & & \vdots \\
a_{m 1} & & & a_{m n}
\end{array}\right)_{m \times n}
$$

be characterized by the mappings

$$
a_{i j} e_{k}=\delta_{j k} e_{i} \quad i=1, \cdots, m, k, j=1, \cdots, n
$$

Now we have the following definitions
Definition 1.1 Let $A=\left(a_{i l j k}\right),(i, l, j, k=1,2, \cdots)$, be a double non-negative infinite matrix of real or complex numbers. Let (X, Y) denote the class of all such matrices A such that the series $A\left(x_{i l}\right)=\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_{i l j k} x_{j k}$ converges for all double sequences $x_{j k} \in X$ and the sequence $\left\{A\left(x_{i l}\right)\right\}$ will be called A-means or A-transform of $x_{i l}$. Also $A x=\lim _{i, l \rightarrow \infty} A\left(x_{i l}\right)$, whenever it exists.

Definition 1.2. A double matrix $A=\left(a_{i l j k}\right)$ is said to be regular if the matrix transformation $A: X \rightarrow Y$ is defined on a convergent sequence to a convergent sequence and limit is preserved i.e., $\lim _{i, l \rightarrow \infty} A\left(x_{i l}\right)=\lim _{i, l \rightarrow \infty} x_{i l}$.

Definition 1.3. [7] A double matrix $A=\left(a_{i l j k}\right)$ is said to be regular if the following conditions holds.
(I) $\lim _{i, l \rightarrow \infty} \sum_{j, k=0}^{\infty} a_{i l j k}=1$,
(II) $\lim _{i, l \rightarrow \infty} \sum_{j=0}^{\infty}\left|a_{i l j k}\right|=0, \quad(k=0,1, \cdots)$,
(III) $\lim _{i, l \rightarrow \infty} \sum_{j=0}^{\infty}\left|a_{i l j k}\right|=0, \quad(j=0,1, \cdots)$,
(IV) $\|A\|=\sup _{i, l>0} \sum_{j, k=0}^{\infty}\left|a_{i l}\right|<\infty$.

2 Frames

The theory for frames and bases has developed very fast over the last 15 years. The concept of frames were introduced by Duffin and Schaeffer [5]in
the context of non-harmonic Fourier series. A sequence in a Hilbert space H is a frame if there exist constants $C_{1}, C_{2}>0$ such that

$$
\begin{equation*}
C_{1}\|x\|^{2} \leq \sum_{n}\left|<x, x_{n}>\right|^{2} \leq C_{2}\|x\|^{2}, \quad \forall x \in H \tag{2.1}
\end{equation*}
$$

Any numbers C_{1}, C_{2} for which (2.1) is valid are called frames bounds. They are not unique if we can choose $C_{1}=C_{2}$, the frame is called tight and is said to be exact if it ceases to be a frame by removing any of its elements. The theory of frames are discussed in variety of sources, including [1,3,4,6,8]. The purpose of the present paper is to define A-frame for an infinite double nonnegative regular matrix and to study some results on A-frame and Riesz basis.

Let H be a separable Hilbert space with inner product $<.,$.$\rangle and norm$ $\|\cdot\|=<\ldots .>^{1 / 2}$. In the sequel z, and z^{+}denote the set of integers and strictly positive integers respectively.

Definition 2.1. A family of elements $\left\{x_{n}, n \in z^{+}\right\} \subseteq H$ is called a Bessel sequence if there exists a constant $B>0$ such that

$$
\begin{equation*}
\sum\left|<f, x_{n}>\right|^{2} \leq B\|f\|^{2}, \forall f \in H \tag{2.2}
\end{equation*}
$$

It is given [1] that $\left\{x_{n}, n \in z^{+}\right\}$is a Bessel sequence with bound M if and only if, for every finite sequence of scalors $\left\{c_{k}\right\}$;

$$
\begin{equation*}
\left\|\sum_{k} c_{k} x_{k}\right\|^{2} \leq M \sum_{k}\left|c_{k}\right|^{2} . \tag{2.3}
\end{equation*}
$$

Chui and Shi's [2] remarked that $\left\{x_{n}, n \in z^{+}\right\}$is a Bessel sequence with bound M if and only if (2.3) is satisfied for every sequence $\left\{c_{k}\right\} \in l^{2}$.

In the consequence of above discussion we have the following lemma.
Lemma 2.1. $\left\{x_{n}, n \in z^{+}\right\}$is a Bessel sequence if and only if

$$
T:\left\{c_{n}\right\} \rightarrow \sum_{n} c_{n} x_{n}
$$

is well defined operator from l^{2} into H. In that case T is automatically bounded, and the adjoint of T is given by

$$
T^{*}: H \rightarrow l^{2}, \quad T^{*} f=\left\{<f, x_{n}>\right\} .
$$

An important consequence of above lemma 2.1 that if $\left\{x_{n}\right\}$ is a Bessel sequence, then $\sum_{n} c_{n} x_{n}$ converges unconditionally for all $\left\{c_{n}\right\} \in l^{2}$. When
$\left\{x_{n}, n \in z^{+}\right\} \subset H$ is a frame, the operator T and T^{*} are well defined, so we define the frame operator

$$
S: H \rightarrow H, \quad S f=T T^{*} f=\sum_{n}<f, x_{n}>x_{n}
$$

Two sequences $\left\{x_{n}, n \in z^{+}\right\}$and $\left\{y_{n}, n \in z^{+}\right\}$in H are called biorthogonal if $<x_{n}, y_{n}>\delta_{m, n}$, where $\delta_{m, n}$ is the Kronecker delta.

To prove that S is bounded, positive and surjective we have the following theorem from [1].

Theorem A. Let $\left\{x_{n}, n \in z^{+}\right\} \subset H$
(a) The following are equivalent
(i) $\left\{x_{n}, n \in z^{+}\right\}$is a frame for H with frame bounds C_{1} and C_{2}.
(ii) $S: H \rightarrow H$ is a topological isomerphism with norm bounds $\|S\| \leq$ C_{2} and $\|S\| \leq C_{1}^{-1}$.
(b) In case of either condition in part (a), we obtain that

$$
C_{1} I \leq S \leq C_{2} I \quad C_{2}^{-1} I \leq S^{-1} \leq C_{1}^{-1} I,
$$

$\left\{S^{-1} x_{n}\right\}$ is a frame for H with frame bounds C_{2}^{-1} and C_{1}^{-1} and for all $x \in H$,

$$
\begin{equation*}
f=S S^{-1} f=\sum_{n}<x, S^{-1} x_{n}>x_{n} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
f=\sum_{n}<x, x_{n}>S^{-1} x_{n} \tag{2.5}
\end{equation*}
$$

If $\left\{x_{n}, n \in z^{+}\right\}$is a frame, S is called frame operator, $\left\{S^{-1} x_{n}\right\}$ is called dual frame of $\left\{x_{n}\right\},(2.4)$ is the frame decomposition of x and (2.5) is the dual frame decomposition of x. I is the identity map, $S \leq C_{2} I$ means that $<\left(C_{2} I-S\right) x, x>\geq 0$ for each $x \in H$.
We also have
Theorem B.[1]. Let $\left\{x_{n}, n \in z^{+}\right\} \subset H$ be a frame for H with frame bounds C_{1} and C_{2}. Then for each sequence $\left\{C_{n}\right\} \in l^{2}$ such that $x=\sum_{n} C_{n} x_{n}$ converges in H and $\|x\|^{2} \leq C_{2}\|C\|_{l^{2}}^{2}$ and for any arbitrary vector v there exists a moment sequence $\left\{y_{n}, n \in z^{+}\right\}$such that $v=\sum_{n=1}^{\infty} x_{n} y_{n}$ and $C_{2}^{-1}\|v\|^{2} \leq$ $\sum_{n=1}^{\infty}\left|y_{n}\right|^{2} \leq C_{2}\|v\|^{2}$.

Theorem C.[1]. A sequence $\left\{x_{n}, n \in z^{+}\right\}$in a Hilbert space H is an exact frame for H if and only if it is bounded unconditional basis for H.

3 Main Results

Theorem 3.1. Let $A=\left(a_{i l j k}\right)$ be a double non-negative regular infinite matrix. Then for any $f \in L^{2}(R)$ the frame condition for A-transform of $\left(a_{i l j k}\right)$ is

$$
\begin{equation*}
C_{1}\|f\|^{2} \leq \sum_{i, l \in z}\left|<f, A\left(\phi_{i, l}\right)>\right|^{2} \leq C_{2}\|f\|^{2} \tag{3.1}
\end{equation*}
$$

where $A\left(\phi_{i, l}\right)=\sum_{j, k=0}^{\infty} a_{i l j k} \phi_{j, k},\left\{\phi_{i, l}\right\}$ is a sequence of vectors and $0<C_{1} \leq$ $C_{2}<\infty$ are frame bounds.

$$
\begin{aligned}
\sum_{i, l \in z}\left|<f, A\left(\phi_{i, l}\right)>\right|^{2} & =\sum_{i, l \in z} \int_{-\infty}^{\infty}|f(x)|^{2}\left|\overline{A\left(\phi_{i, l}\right)}\right|^{2} d x \\
& \leq\|f\|^{2} \sum_{i, l \in z}\left|A\left(\phi_{i, l}\right)\right|^{2} \\
& =\|f\|^{2}\|A\|^{2} \sum_{i, l \in z}\left|\phi_{i, l}\right|^{2}
\end{aligned}
$$

Since A is regular matrix and by the definition of $A\left(\phi_{i, l}\right)$, we get

$$
\begin{equation*}
\sum_{i, l \in z}\left|<f, A\left(\phi_{i, l}\right)>\right|^{2} \leq C_{2}\|f\|^{2} \tag{3.2}
\end{equation*}
$$

Now for any $f \in L^{2}(R)$, let

$$
\tilde{f}=\left[\sum_{i, l \in z}\left|<f, A\left(\phi_{i, l}\right)>\right|^{2}\right]^{-1 / 2} f
$$

or

$$
<\tilde{f}, A\left(\phi_{i, l}\right)>=\left[\sum_{i, l \in z}\left|<f, A\left(\phi_{i, l}\right)>\right|^{2}\right]^{-1 / 2}<f, A\left(\phi_{i, l}\right)>
$$

then

$$
\sum_{i, l \in z}\left|<f, A\left(\phi_{i, l}\right)>\right|^{2} \leq 1
$$

Hence, for positive constant α, we get

$$
\|\tilde{f}\|^{2}\left\|\phi_{i, l}\right\|^{2} \leq \alpha
$$

or

$$
\left[\sum_{i, l \in z}\left|<f, A\left(\phi_{i, l}\right)>\right|^{2}\right]^{-1}\left|<f, A\left(\phi_{i, l}\right)>\right|^{2} \leq \alpha
$$

Since A is regular, it gives

$$
\sum_{i, l \in z}\left|<f, A\left(\phi_{i, l}\right)>\right|^{2}\|f\|^{2} \leq \alpha 1
$$

Thus,

$$
\begin{equation*}
C_{1}\|f\|^{2} \leq \sum_{i, l \in z}\left|<f, A\left(\phi_{i, l}\right)>\right|^{2} \tag{3.3}
\end{equation*}
$$

Combining (3.2) and (3.3) the proof of theorem is immediate.
Theorem 3.2. $\left\{A\left(\phi_{i, l}\right)\right\}$ is a frame for any $f \in L^{2}(R)$ if and only if the mapping

$$
T:\left\{\beta_{i, l}\right\} \rightarrow \sum_{i, l \in z} \beta_{i, l} A\left(\phi_{i, l}\right)
$$

is a well defined mapping from l^{2} into $L^{2}(R)$. Here $\beta_{i, l}=<f, A\left(\phi_{i, l}\right)>$ is A-moment sequence of $f \in L(R)$ relative to the frame.

Proof. First we shall prove that if $\left\{A\left(\phi_{i, l}\right)\right\}$ is A-frame and $\left\{\beta_{i, l}\right\} \in l^{2}$, then $\sum_{i, l \in z} \beta_{i, l} A\left(\phi_{i, l}\right)$ converges, and

$$
\begin{equation*}
\left\|\sum_{i, l \in z} \beta_{i, l} A\left(\phi_{i, l}\right)\right\|^{2} \leq C_{2} \| \sum_{i, l \in z}\left|\beta_{i, l}\right|^{2} \tag{3.4}
\end{equation*}
$$

To prove this let us assume

$$
f_{j, k}=\sum_{i, l=1}^{j, k} \beta_{i, l} A\left(\phi_{i, l}\right)
$$

then for any $j, k \geq j_{0}, k_{0}$, using Schwartz inequality with the frame condition (3.1) we obtain

$$
\left\|f_{j, k}-f_{j_{0}, k_{0}}\right\|^{2}=\left\{\sum_{i, l=j_{0}+1, k_{0}+1}^{j, k}\left|\beta_{i, l}\right|^{2}\right\}^{1 / 2}\left\{C_{2}\left\|f_{j, k}-f_{j_{0}, k_{0}}\right\|^{2}\right\}^{1 / 2}
$$

Which gives

$$
\left\|f_{j, k}-f_{j_{0}, k_{0}}\right\|^{2} \leq C_{2} \sum_{i, l=j_{0}+1, k_{0}+1}^{j, k}\left|\beta_{i, l}\right|^{2}
$$

Now we assume that $\left\{A\left(\phi_{i, l}\right)\right\}$ is a frame. Since $\left\{A\left(\phi_{i, l}\right)\right\}$ is a Bessel sequence, T is a bounded operator from l^{2} into $L^{2}(R)$ by (3.4). Now for any $f \in L^{2}(R)$ we define a linear transformation S by the relation

$$
S f=\sum_{i, l \in z}<f, A\left(\phi_{i, l}\right)>A\left(\phi_{i, l}\right)
$$

The transformation is self adjoint and it gives with (3.1) that

$$
C_{1}\|f\|^{2} \leq<S f, f>\leq C_{2}\|f\|^{2}
$$

This conclude that S is positive, bounded and surjective. Thus $S=T T^{*}$ is surjective. Hence T is surjective.

Now suppose that T is a well defined operator from l^{2} onto $L^{2}(R)$. By (3.4) $\left\{A\left(\phi_{i, l}\right)\right\}$ satisfies the upper frame condition. Now consider that T be any bounded operator from a Hilbert space H^{1} into a Hilbert space H. Then the set $C_{T}=H^{1} \ominus N(T)$ i.e., the orthogonal complement of null space of T in H^{1} is well defined, T is injective on C_{T} and ran T^{*} is dense in C_{T}. We denote T^{+}the inverse map from ran T to C_{T} i.e., $T^{+}: H \rightarrow C_{T}$. By writing $T^{+} f=\left\{\left(T^{+} f\right)_{i, l}\right\}$ for $f \in H$, we get

$$
f=T T^{+} f=\sum_{i, l \in z}\left(T^{+} f\right)_{i, l} A\left(\phi_{i, l}\right)
$$

We have

$$
\begin{aligned}
\|f\|^{4}=|<f, f>|^{2} & =\left|<\sum_{i, l \in z}\left(T^{+} f\right)_{i, l} A\left(\phi_{i, l}\right), f>\right|^{2} \\
& \leq \sum_{i, l \in z}\left|\left(T^{+} f\right)_{i, l}\right|^{2} \sum_{i, l \in z}\left|<f, A\left(\phi_{i, l}\right)>\right|^{2} \\
& \leq\left\|T^{+}\right\|^{2}\|f\|^{2} \sum_{i, l \in z}\left|<f, A\left(\phi_{i, l}\right)>\right|^{2} .
\end{aligned}
$$

Thus, we obtain

$$
\sum\left|<f, A\left(\phi_{i, l}\right)>\right|^{2} \geq \frac{1}{\left\|T^{+}\right\|^{2}}\|f\|^{2}, \forall f \in H
$$

Taking $H=L^{2}(R)$. The proof is completed in view of Theorem 3.1.
Theorem 3.3 Let any sequence of numbers $\left\{\beta_{i, l}\right\} \in l^{2}$ is a moment sequence of any function $f \in L^{2}(R)$ with respect to $\left\{A\left(\phi_{i, l}\right)\right\}$. If $\left\{A\left(\phi_{i, l}\right)\right\}$ is an exact A-frame then there exist constants $C_{1}, C_{2}>0$ such that

$$
C_{1} \sum_{i, l \in z}\left|\beta_{i, l}\right|^{2} \leq\left\|\sum_{i, l \in z} \beta_{i, l} A\left(\phi_{i, l}\right)\right\|^{2} \leq C_{2} \sum_{i, l \in z}\left|\beta_{i, l}\right|^{2}
$$

Proof. Since $\left\{A\left(\phi_{i, l}\right)\right\}$ is an exact A-frame therefore $\left\{S^{-1} A\left(\phi_{i, l}\right)\right\}$ is a biorthogonal sequence. By Theorem 3.2 we conclude that for a given sequence $\left\{\beta_{i, l}\right\} \in$ l^{2} and for any $f \in L^{2}(R)$, the series $f=\sum_{i, l \in z} \beta_{i, l} A\left(\phi_{i, l}\right)$ has a finite norm. The proof is completed with (3.1) by using the fact that $\left\{A\left(\phi_{i, l}\right)\right\}$ is bounded.

References

1. J.J. Benedettoo and D.F. Walnut, Gabor Frames for L^{2} and Related Spaces, in Wavelets; MathematicsandApplications,(Benedettoo J.J. and Frazier, M.W. eds) pp. 97-162, CRS Press, Boca Raton, (1994).
2. C.K. Chui and Shi Xianliang, Bessel's sequences and affine frames, $A p$ plied and Comput. Harm. Anal., 1(1993),29-49.
3. I. Daubechies, The wavelet transform, time frequency localization and signal analysis, IEEE Trans. Inform. Theory, 36(5)(1990), 961-1005.
4. I. Daubechies, Ten Lectures on Wavelets, SIAM Publications Phildelphia, (1992).
5. R.J. Duffin and A.C. Schaeffer, A class of non-harmonic Fourier series, Trans. Amer. Math. Soc., 72(1952),341-366.
6. C.E. Heil and D.F. Walnut, Continuous and discrete wavelet transforms, SIAM Review, 31(1989),629-666.
7. F. Mosicz and B.E. Rhoacles, Comparison theorems for double summablility methods, Publ. Math. Debrecen, 36(1989), no. 1-4, 207-220.
8. R.M. Young, An Introduction to Non-Harmonic Fourier Series, Academic Press, New York, (1980).
