Gen. Math. Notes, Vol. 31, No. 2, December 2015, pp.29-33
ISSN 2219-7184; Copyright © ICSRS Publication, 2015
www.i-csrs.org
Available free online at http://www.geman.in

The Derivation of a Goldstein Formula

L.J. Crane ${ }^{1}$ and A.G. McVeigh ${ }^{2}$
${ }^{1,2}$ Institute for Numerical Computation and Analysis
Suite 6, 5 Clarinda Park North, Dún Laoghaire
Dublin, Ireland
${ }^{2}$ E-mail: gotham1961@gmail.com

(Received: 19-10-15 / Accepted: 28-11-15)

Abstract

This technical note presents the derivation of an integral function credited to Goldstein [2] in 1932 and recently employed in the authors' previous work [1] in Archive of Applied Mechanics. The particular form of this improper integral is developed using techniques involving contour integration and the calculus of residues.

Keywords: Bingham Number, Slip Flow, Inversion Theorem, Laplace Transform.

1 Introduction

The problem of axially-symmetric slip flow generated by an infinite cylinder undergoing impulsive motion was recently investigated by Crane and McVeigh [1]. In accounting for momentum slip close to the cylinder wall, they obtained the non-dimensional shear stress analytically in terms of the Bingham number, $B n$, in the cases where the cylinder moved under both uniform velocity and acceleration. In denoting the non-dimensional variables of axial velocity, cylinder radius and time by U, R and T, respectively, they presented the unsteady Navier Stokes momentum equation as follows:

$$
\begin{equation*}
\frac{\partial U}{\partial T}=\frac{1}{R} \frac{\partial}{\partial R}\left(R \frac{\partial U}{\partial R}\right) \tag{1}
\end{equation*}
$$

subject to, for $T>0$

$$
\begin{equation*}
U_{R=1+}=1+\frac{\lambda}{2}\left(\frac{\partial U}{\partial R}\right)_{R=1+}, \quad U \rightarrow 0 \text { as } R \rightarrow \infty \tag{2}
\end{equation*}
$$

and, for $T>0$:

$$
\begin{equation*}
U=0 \text { for } R>1 \tag{3}
\end{equation*}
$$

where λ is an empirically-derived slip-length parameter. In this work, the Laplace transform of $f(T)$ is the function $\bar{f}(p)$; taken to be:

$$
\mathcal{L}\{f(T)\}=\int_{0}^{\infty} \exp (-p T) f(T) d T=\bar{f}(p)
$$

Now, investigating radiating heat flow from an infinite region of constant initial temperature and bounded internally by a circular cylinder, Goldstein [2], derived the transform:

$$
\begin{equation*}
\bar{\Psi}(p)=\frac{1}{p}\left[1+\frac{K_{0}(\sqrt{p})}{\hat{\mu} \sqrt{p} K_{0}^{\prime}(\sqrt{p})-K_{0}(\sqrt{p})}\right] \tag{4}
\end{equation*}
$$

where K_{0} denotes the modified Bessel function of the second kind of order 0, and in the work herein, Crane and McVeigh [1] specify $\hat{\mu}=2 \lambda$. The associated inverse is thus:

$$
\begin{equation*}
\Psi(T)=\frac{4}{\hat{\mu} \pi^{2}} \int_{0}^{\infty} \frac{\exp \left(-b^{2} T\right)}{b}\left[\frac{1}{\left(b J_{1}+J_{0} / \hat{\mu}\right)^{2}+\left(b Y_{1}+Y_{0} / \hat{\mu}\right)^{2}}\right] d b \tag{5}
\end{equation*}
$$

where J_{0} and J_{1} are cylindrical Bessel functions of the first kind of order 0 and 1 , respectively and where Y_{0} and Y_{1} denote the cylindrical Bessel functions of the first kind having order 0 and 1. Accordingly, Crane and McVeigh [1], give:

$$
\begin{equation*}
B n=\frac{2}{\lambda} \Psi(T) \quad \text { (uniform velocity) } \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
B n=\frac{2}{T \lambda} \int_{0}^{T} \Psi(T) d T \quad \text { (uniform acceleration) } \tag{7}
\end{equation*}
$$

2 Derivation

From (4), the complex inversion integral is:

$$
\begin{equation*}
\Psi(T)=\frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty} \frac{1}{p}\left[1+\frac{K_{0}(\sqrt{p})}{\hat{\mu} \sqrt{p} K_{0}^{\prime}(\sqrt{p})-K_{0}(\sqrt{p})}\right] \exp (p t) d p, \quad t>0 \tag{8}
\end{equation*}
$$

The integration in (8) is to be performed along a line, $p=\gamma$, in the complex plane where p is a point having coordinates $(x+i y)$. The real number, γ, is to be so large that all singularities of the integrand lie to the left of the line $(\gamma-\mathrm{i} \infty, \gamma+\mathrm{i} \infty)$. Since $p=0$ is a branch point of the integrand, the adjoining Bromwich contour is chosen as the integration path (Fig. 1). This comprises

1.pdf

Figure 1: The modified Bromwich contour
the line $A B(p=\gamma+i y)$, the $\operatorname{arcs} B D E$ and $L N A$ of a circle of radius R and centre at $(0,0)$, and the arc $H J K$ of a circle of radius, ϵ, with centre at $(0,0)$. Set

$$
\begin{equation*}
\Psi(T)=\int_{A B}+\int_{B D E}+\int_{E H}+\int_{H J K}+\int_{K L}+\int_{L N A} \tag{9}
\end{equation*}
$$

and since the only singularity, $p=0$, of the integrand is not inside the contour, the integral on the left is zero by Cauchy's theorem. Further, it is readily shown that, as R tends to infinity, the integrals along $B D E$ and $L N A$ vanish in the limit. Along the inner circle, $H J K$, where $p=\epsilon \exp (i \theta)$, then, on taking the limit as ϵ becomes vanishingly small:

$$
\begin{equation*}
\Psi(T)=\int_{H J K}=i \int_{\pi}^{-\pi}\left[1-\frac{K_{0}(0)}{K_{0}(0)}\right] d \theta=0 \tag{10}
\end{equation*}
$$

and so,

$$
\begin{equation*}
\int_{A B}=-\int_{E H}-\int_{K L} \tag{11}
\end{equation*}
$$

Along the path, $E H$, where $p=x \exp (i \pi)=-x$:

$$
\begin{equation*}
\int_{E H}=\frac{1}{i \pi} \int_{\sqrt{R}}^{\sqrt{\epsilon}} \frac{\exp \left(-b^{2} t\right)}{b}\left[1+\frac{K_{0}(i b)}{i \hat{\mu} b K_{0}^{\prime}(i b)-K_{0}(i b)}\right] d b \tag{12}
\end{equation*}
$$

Introducing the identities:

$$
i b=b \exp \left(\frac{1}{2} \pi\right) \text { and } K_{0}^{\prime}(i b)=\frac{1}{2} \pi\left[J_{1}(b)+i Y_{1}(b)\right]
$$

so that, along $E H$, as $R \rightarrow \infty$ and $\epsilon \rightarrow 0$:

$$
\begin{equation*}
\int_{E H}=\frac{1}{i \pi} \int_{\infty}^{0} \frac{\exp \left(-b^{2} t\right)}{b}\left[\frac{\hat{\mu} b\left(-J_{1}+i Y_{1}\right)}{-\hat{\mu} b J_{1}-J_{0}+i\left(Y_{0}+\hat{\mu} b Y_{1}\right)}\right] d b \tag{13}
\end{equation*}
$$

and, on taking the complex conjugate, then:

$$
\begin{align*}
& \int_{E H}= \\
& \qquad \frac{1}{i \pi} \int_{\infty}^{0} \frac{\exp \left(-b^{2} t\right)}{b}\left[\frac{\hat{\mu}^{2} b^{2}\left(J_{1}^{2}+Y_{1}^{2}\right)+\hat{\mu} b\left(J_{0} J_{1}+Y_{0} Y_{1}\right)+i \hat{\mu} b\left(J_{1} Y_{0}-J_{0} Y_{1}\right)}{2 \hat{\mu} b\left(Y_{0} Y_{1}+J_{0} J_{1}\right)+\hat{\mu}^{2} b^{2}\left(J_{1}^{2}+Y_{1}^{2}\right)+J_{0}^{2}+Y_{0}^{2}}\right] d b \tag{14}
\end{align*}
$$

Similarly, for the path $K L$, where $p=x \exp (-i \pi)=-x$.

$$
\begin{align*}
& \int_{K L}= \\
& \qquad \frac{1}{i \pi} \int_{0}^{\infty} \frac{\exp \left(-b^{2} t\right)}{b}\left[\frac{\hat{\mu}^{2} b^{2}\left(J_{1}^{2}+Y_{1}^{2}\right)+\hat{\mu} b\left(J_{0} J_{1}+Y_{0} Y_{1}\right)+i \hat{\mu} b\left(J_{0} Y_{1}-J_{1} Y_{0}\right)}{2 \hat{\mu} b\left(Y_{0} Y_{1}+J_{0} J_{1}\right)+\hat{\mu}^{2} b^{2}\left(J_{1}^{2}+Y_{1}^{2}\right)+J_{0}^{2}+Y_{0}^{2}}\right] d b \tag{15}
\end{align*}
$$

Denoting the real and imaginary parts of the integrand in (14) by $\operatorname{Re}(A)$ and $\operatorname{Im}(A)$, respectively; likewise, for $K L$ in (15) respectively by $\operatorname{Re}(B)$ and $\operatorname{Im}(B)$, so that (11) can be written:

$$
\begin{align*}
\Psi(T) & =-\int_{E H}-\int_{K L} \\
& =\frac{1}{i \pi} \int_{0}^{\infty} \frac{\exp \left(-b^{2} t\right)}{b}[\operatorname{Re}(A)+\operatorname{Im}(A)] d b-\frac{1}{i \pi} \int_{0}^{\infty} \frac{\exp \left(-b^{2} t\right)}{b}[\operatorname{Re}(B)+\operatorname{Im}(B)] d b \tag{16}
\end{align*}
$$

and so, from (14) and (15), $\operatorname{Re}(A)=\operatorname{Re}(B)$ and $\operatorname{Im}(A)=-\operatorname{Im}(B)$; hence:

$$
\begin{equation*}
\Psi(T)=\frac{2}{i \pi} \int_{0}^{\infty} \frac{\exp \left(-b^{2} t\right)}{b} \operatorname{Im}(A) d b \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{Im}(A)=\frac{i \hat{\mu} b\left(J_{1} Y_{0}-J_{0} Y_{1}\right)}{2 \hat{\mu} b\left(Y_{0} Y_{1}+J_{0} J_{1}\right)+\hat{\mu}^{2} b^{2}\left(J_{1}^{2}+Y_{1}^{2}\right)+J_{0}^{2}+Y_{0}^{2}} \tag{18}
\end{equation*}
$$

Introducing the identities:

$$
Y_{0}^{\prime}=-Y_{1} \quad \text { and } \quad J_{0}^{\prime}=-J_{1}
$$

and, using the Wronskian relation:

$$
J_{0} Y_{0}^{\prime}-Y_{0} J_{0}^{\prime}=2 / \pi b
$$

returns (17) as the real-valued function, that is:

$$
\begin{equation*}
\Psi(T)=\frac{4 \hat{\mu}}{\pi^{2}} \int_{0}^{\infty} \frac{\exp \left(-b^{2} t\right)}{b}\left[\frac{d b}{2 \hat{\mu} b\left(Y_{0} Y_{1}+J_{0} J_{1}\right)+\hat{\mu}^{2} b^{2}\left(J_{1}^{2}+Y_{1}^{2}\right)+J_{0}^{2}+Y_{0}^{2}}\right] \tag{19}
\end{equation*}
$$

and finally, following some algebra, Goldstein's result (5) is recovered; namely:

$$
\begin{equation*}
\Psi(T)=\frac{4}{\hat{\mu} \pi^{2}} \int_{0}^{\infty} \frac{\exp \left(-b^{2} t\right)}{b}\left[\frac{1}{\left(b J_{1}+J_{0} / \hat{\mu}\right)^{2}+\left(b Y_{1}+Y_{0} / \hat{\mu}\right)^{2}}\right] d b \tag{20}
\end{equation*}
$$

References

[1] L.J. Crane and A.G. McVeigh, Slip flow along an impulsively started cylinder, Arch. Appl. Mech., 85(2015), 831-836.
[2] S. Goldstein, Some two-dimensional diffusion problems with circular symmetry, Proc. Lond. Math. Soc., 2(34) (1932), 51-88.

