Gen. Math. Notes, Vol. 32, No. 1, January 2016, pp.21-31
ISSN 2219-7184; Copyright ©ICSRS Publication, 2016
www.i-csrs.org
Available free online at http://www.geman.in

On $i j-\wedge_{\delta}^{s}$ Sets in Bitopological Spaces

A. Edward Samuel ${ }^{1}$ and D. Balan ${ }^{2}$

${ }^{1}$ Ramanujan Research Centre
PG \& Research Department of Mathematics Government Arts College (Autonomous)
Kumbakonam - 612002, Tamil Nadu, India
E-mail: aedward74_thrc@yahoo.co.in
${ }^{2}$ Research scholar, Ramanujan Research Centre PG \& Research Department of Mathematics Government Arts College (Autonomous)
Kumbakonam - 612002, Tamil Nadu, India
E-mail: dh.balan@yahoo.com

(Received: 29-10-15 / Accepted: 26-12-15)

Abstract

In this present paper, by utilizing $i j-\delta$ semi open sets, we introduce $i j-\wedge_{\delta}^{s}$, $i j-\bigvee_{\delta}^{s}, g-i j-\wedge_{\delta}^{s}, g-i j-\bigvee_{\delta}^{s}$ sets and investigate some of their properties in bitopological spaces. Also, we present and study the notions of $i j-T^{\vee_{\delta}^{s}}$ space, $i j-\wedge_{\delta}^{s}$ continuous, $i j-\wedge_{\delta}^{s}$ irresolute, $i j-\wedge_{\delta}^{s}$ open and $i j-\wedge_{\delta}^{s}$ homeomorphism functions.

Keywords: $i j-\delta$ semi open, $i j-\wedge_{\delta}^{s}$ sets, $i j-\bigvee_{\delta}^{s}$ sets, $g-i j-\wedge_{\delta}^{s}$ sets, $g-i j-\vee_{\delta}^{s}$ sets, $i j-T^{\vee}{ }_{\delta}^{s}$ space, $i j-\wedge_{\delta}^{s}$ continuous, $i j-\wedge_{\delta}^{s}$ irresolute, $i j-\wedge_{\delta}^{s}$ open, ij $-\wedge_{\delta}^{s}$ homeomorphism.

\section*{1 Introduction}

The class of generalized \wedge - sets studied by H. Maki in [17]. Caldas et al. ([3],[6]) introduced the concept \wedge_{δ}^{s} - sets (resp. $\vee_{\delta}^{s}-$ sets) in topological spaces, which is the intersection of δ - semiopen (resp. union of δ - semiclosed) sets. F. H. Khedr and H. S. Al-saadi[15] introduced and studied the concept of $i j-s \wedge-$ semi- θ-Closed and pairwise θ-generalized $s \wedge$-set in bitopological spaces, which is an extension of the class of generalized \wedge-sets. The aim of this paper is

to introduce the notions of $i j-\wedge_{\delta}^{s}$ and $g-i j-\wedge_{\delta}^{s}$ sets and study some of their fundamental properties. Also, we study the new notions of $i j-T^{\vee_{\delta}^{s}}$ space, $i j-\wedge_{\delta}^{s}$ continuous, $i j-\wedge_{\delta}^{s}$ irresolute, $i j-\wedge_{\delta}^{s}$ open and $i j-\wedge_{\delta}^{s}$ homeomorphism functions and its properties.

2 Preliminaries

Throughout the present paper, $\left(X, \tau_{1}, \tau_{2}\right)$ (or briefly $\left.X\right)$ always mean a bitopological space. Also $i, j=1,2$ and $i \neq j$. Let A be a subset of $\left(X, \tau_{1}, \tau_{2}\right)$. By $i-\operatorname{int}(A)$ and $i-\operatorname{cl}(A)$, we mean respectively the interior and the closure of A in the topological space $\left(X, \tau_{i}\right)$ for $i=1,2$. A subset A of X is called $i j$ - regular open [13] if $A=i-\operatorname{int}[j-c l(A)])$. A point x of X is called an $i j-\delta$-cluster point of A if $i-\operatorname{int}(j-\operatorname{cl}(U)) \cap A \neq \phi$ for every τ_{i} - open set U containing x. The set of all $i j-\delta$-cluster points of A is called the $i j-\delta$-closure of A and is denoted by $i j-\delta c l(A)$.

Definition 2.1 A subset A is said to be $i j-\delta$ closed if $i j-\delta \operatorname{cl}(A)=A$. The complement of an $i j-\delta$ closed set is said to be $i j-\delta$ open. The set of all $i j-\delta$ open (resp. ij $-\delta$ closed) sets of X will be denoted by ij $-\delta O(X)($ resp. $i j-\delta C(X))$.

$3 \quad i j-\wedge_{\delta}^{s}$ Sets and Generalized $i j-\wedge_{\delta}^{s}$ Sets

Definition 3.1 A subset A of a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is called $i j-\delta$ semi open if there exists an $i j-\delta$ open set U such that $U \subseteq A \subseteq j-c l(U)$.

Definition 3.2 For a subset A of a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$, we define $A^{\delta s \wedge_{i j}}$ and $A^{\delta s \vee_{i j}}$ as follows, $A^{\delta \delta \wedge_{i j}}=\bigcap\{U: A \subseteq U, U \in i j-\delta S O(X)\}$ and $A^{\delta s \vee_{i j}}=\bigcup\left\{U: U \subseteq A, U^{C} \in i j-\delta S O(X)\right\}$.

Definition 3.3 A subset A of a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is called,
(a) $i j-\wedge_{\delta}^{s}$ set if $A=A^{\delta s \wedge_{i j}}$.
(b) $i j-\vee_{\delta}^{s}$ set if $A=A^{\delta s \vee_{i j}}$.

The family of all $i j-\wedge_{\delta}^{s}$ sets (resp. ij $-\vee_{\delta}^{s}$) is denoted by $i j-\wedge_{\delta}^{s}\left(X, \tau_{1}, \tau_{2}\right)$ (resp. $i j-\vee_{\delta}^{s}\left(X, \tau_{1}, \tau_{2}\right)$).

Theorem 3.4 Let A be a subset of a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$. Then $A^{\delta s \wedge_{i j}}=\left(A^{\delta s \wedge_{i j}}\right)^{\delta s \wedge_{i j}}$

Proof: We have $\left(A^{\delta \delta \wedge_{i j}}\right)^{\delta s \wedge_{i j}}=\bigcap\left\{U: U \in i j-\delta S O\left(X, \tau_{1}, \tau_{2}\right), A^{\delta s \wedge_{i j}} \subseteq\right.$ $U\}=\bigcap\left\{U: U \in i j-\delta S O\left(X, \tau_{1}, \tau_{2}\right),\left(\cap\left\{V: V \in i j-\delta S O\left(X, \tau_{1}, \tau_{2}\right), A \subseteq\right.\right.\right.$ $V\}) \subseteq U\} \subseteq \bigcap\left\{U: U \in i j-\delta S O\left(X, \tau_{1}, \tau_{2}\right), A \subseteq U\right\}=A^{\delta s \wedge_{i j}}$. This means $\left(A^{\delta s \wedge_{i j}}\right)^{\delta s \wedge_{i j}} \subseteq A^{\delta s \wedge_{i j}}$. On the other hand, $A \subseteq A^{\delta s \wedge_{i j}}$ for each subset A. Then $A^{\delta s \wedge_{i j}} \subseteq\left(A^{\delta s \wedge_{i j}}\right)^{\delta s \wedge_{i j}}$. Therefore $A^{\delta s \wedge_{i j}}=\left(A^{\delta s \wedge_{i j}}\right)^{\delta s \wedge_{i j}}$.

Theorem 3.5 For any subsets A and B of a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$, the following are hold:
(a) $A \subseteq A^{\delta s \wedge_{i j}}$.
(b) If $A \subseteq B$, then $A^{\delta s \wedge_{i j}} \subseteq B^{\delta s \wedge_{i j}}$.
(c) If $A \in i j-\delta S O\left(X, \tau_{1}, \tau_{2}\right)$, then $A=A^{\delta s \wedge_{i j}}$.
(d) $\left(A^{C}\right)^{\delta s \wedge_{i j}}=\left(A^{\delta s \wedge_{i j}}\right)^{C}$.
(e) $A^{\delta s \vee_{i j}} \subseteq A$.
(f) If $A \in i j-\delta S C\left(X, \tau_{1}, \tau_{2}\right)$, then $A=A^{\delta s \vee_{i j}}$.

Proof: (a) Obviously. By the definition of $A^{\delta \delta \wedge_{i j}}, A \subseteq A^{\delta s \wedge_{i j}}$.
(b) Suppose that $x \notin B^{\delta s \wedge_{i j}}$. Then there exists a subset $U \in i j-\delta S O\left(X, \tau_{1}, \tau_{2}\right)$ such that $U \supseteq B$ with $x \notin U$. Since $B \supseteq A$, then $x \notin A^{\delta s \wedge_{i j}}$ and thus $A^{\delta s \wedge_{i j}} \subseteq B^{\delta s \wedge_{i j}}$.
(c) By the definition of $A^{\delta s \wedge_{i j}}$ and $A \in i j-\delta S O\left(X, \tau_{1}, \tau_{2}\right)$, we have $A^{\delta s \wedge_{i j}} \subseteq A$. By (a), we have $A=A^{\delta s \wedge_{i j}}$.
(d) By the definition, $\left(A^{\delta s \vee_{i j}}\right)^{C}=\bigcap\left\{U^{C}: U^{C} \supseteq A^{C}, U^{C} \in i j-\delta S O\left(X, \tau_{1}, \tau_{2}\right)=\right.$ $\left(A^{C}\right)^{\delta s \wedge_{i j}}$.
(e) Obviously. Clear by the definition.
(f) If $A \in i j-\delta S C\left(X, \tau_{1}, \tau_{2}\right)$, then $A^{C} \in i j-\delta S O\left(X, \tau_{1}, \tau_{2}\right)$. By (d) and (e), we have $A^{C}=\left(A^{C}\right)^{\delta s \wedge_{i j}}=\left(A^{\delta s \wedge_{i j}}\right)^{C}$. Therefore $A=A^{\delta s \vee_{i j}}$.

Theorem 3.6 Let A and $\left\{A_{\alpha}, \alpha \in J\right\}$ be the subsets of a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$. Then the following are valid:
(a) $\left[\bigcup_{\alpha \in J} A_{\alpha}\right]^{\delta s \wedge_{i j}}=\bigcup_{\alpha \in J}\left(A_{\alpha}\right)^{\delta s \wedge_{i j}}$.
(b) $\left[\bigcap_{\alpha \in J} A_{\alpha}\right]^{\delta s \wedge_{i j}} \subseteq \bigcap_{\alpha \in J}\left(A_{\alpha}\right)^{\delta s \wedge_{i j}}$.
(c) $\left[\bigcup_{\alpha \in J} A_{\alpha}\right]^{\delta s \vee_{i j}} \supseteq \bigcup_{\alpha \in J}\left(A_{\alpha}\right)^{\delta s \vee_{i j}}$.

Proof: (a) Suppose there exists a point x such that $x \notin\left[\bigcup_{\alpha \in J} A_{\alpha}\right]^{\delta s \wedge_{i j}}$. Then there exists a subset $U \in i j-\delta S O\left(X, \tau_{1}, \tau_{2}\right)$, such that $\bigcup_{\alpha \in J} A_{\alpha} \subseteq U$ and $x \notin U$. Thus for each $\alpha \in J$, we have $x \notin\left(A_{\alpha}\right)^{\delta s \wedge_{i j}}$. This implies that $x \notin \bigcup_{\alpha \in J}\left(A_{\alpha}\right)^{\delta s \wedge_{i j}}$.

Conversely, Suppose there exists a point x such that $x \notin \bigcup_{\alpha \in J}\left(A_{\alpha}\right)^{\delta s \wedge_{i j}}$. Then by the definition, there exist subsets $U_{\alpha} \in i j-\delta S O\left(X, \tau_{1}, \tau_{2}\right)$, for each $\alpha \in J$ such that $x \notin U_{\alpha}$ and $A_{\alpha} \subseteq U_{\alpha}$. Let $U=\bigcup_{\alpha \in J} U_{\alpha}$. Then $x \notin$ $\bigcup_{\alpha \in J} U_{\alpha}, \bigcup_{\alpha \in J} A_{\alpha} \subseteq U$ and $U \in i j-\delta S O\left(X, \tau_{1}, \tau_{2}\right)$. Thus $x \notin\left[\bigcup_{\alpha \in J} A_{\alpha}\right]^{\delta s \wedge_{i j}}$.
(b) Suppose there exists a point x such that $x \notin \bigcap_{\alpha \in J}\left(A_{\alpha}\right)^{\delta s \wedge_{i j}}$, then there exists $\alpha \in J$ such that $x \notin\left(A_{\alpha}\right)^{\delta s \wedge_{i j}}$. Hence there exists $U \in i j-\delta S O\left(X, \tau_{1}, \tau_{2}\right)$ such that $U \supseteq A_{\alpha}$ and $x \notin U$. Thus $x \notin\left[\bigcap_{\alpha \in J} A_{\alpha}\right]^{\delta s \wedge_{i j}}$.
(c) $\left[\bigcup_{\alpha \in J} A_{\alpha}\right]^{\delta s \vee_{i j}}=\left[\left[\left(\bigcup_{\alpha \in J} A_{\alpha}\right)^{C}\right]^{\delta s \wedge_{i j}}\right]^{C}=\left[\left[\bigcap_{\alpha \in J} A_{\alpha}^{C}\right]^{\delta \delta \wedge_{i j}}\right]^{C}$.
$\supseteq\left[\bigcap_{\alpha \in J}\left(A_{\alpha}^{C}\right)^{\left.\delta s \wedge_{i j}\right]^{C}}=\left[\bigcap_{\alpha \in J}\left(A_{\alpha}^{\delta s \vee_{i j}}\right)^{C}\right]^{C}\right.$, by theorem 3.5(d). By (b), we have $\left[\cup_{\alpha \in J} A_{\alpha}\right]^{\delta s \vee_{i j}} \supseteq \bigcup_{\alpha \in J} A_{\alpha}^{\delta s \vee_{i j}}$.

Definition 3.7 A subset A of a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is called,
(a) generalized ij $-\wedge_{\delta}^{s}$ set $\left(g-i j-\wedge_{\delta}^{s}\right.$ set) if $A^{\delta s \wedge_{i j}} \subseteq U$ whenever $A \subseteq U$ and $U \in j i-\delta S C\left(X, \tau_{1}, \tau_{2}\right)$.
(b) generalized $i j-\vee_{\delta}^{s}$ set $\left(g-i j-\vee_{\delta}^{s}\right.$ set) if A^{C} is a $g \wedge_{\delta}^{s}-$ set.

The family of all $g-i j-\wedge_{\delta}^{s}$ sets and $g-i j-\vee_{\delta}^{s}$ sets are denoted by $i j-D^{\wedge}{ }_{\delta}^{s}$ and $i j-D^{\vee_{\delta}^{s}}$.

Theorem 3.8 (a) The ϕ and X are $i j-\wedge_{\delta}^{s}$ sets and $i j-\vee_{\delta}^{s}$ sets.
(b) Every union of $i j-\wedge_{\delta}^{s}$ sets (resp. $i j-\bigvee_{\delta}^{s}$) is a $i j-\wedge_{\delta}^{s}$ set (resp. $i j-\bigvee_{\delta}^{s}$).
(c) Every intersection of $i j-\wedge_{\delta}^{s}$ sets (resp. ij $-\bigvee_{\delta}^{s}$ sets) is a $i j-\wedge_{\delta}^{s}$ set (ij $-\mathrm{V}_{\delta}^{s}$ set).
(d) A subset A of $\left(X, \tau_{1}, \tau_{2}\right)$ is a ij $-\wedge_{\delta}^{s}$ set if and only if A^{C} is a $i j-\vee_{\delta}^{s}$ set.

Proof: (a) Obvious.
(b) Let $\left\{A_{\alpha}, \alpha \in J\right\}$ be a family of $i j-\wedge_{\delta}^{s}$ sets in a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$. Then by theorem 3.5(a), we have $\bigcup_{\alpha \in J} A_{\alpha}=\bigcup_{\alpha \in J}\left(A_{\alpha}\right)^{\delta s \wedge_{i j}}=$ $\left[\bigcup_{\alpha \in J} A_{\alpha}\right]^{\delta \vee_{i j}}$.
(c) Let $\left\{A_{\alpha}, \alpha \in J\right\}$ be a family of $i j-\wedge_{\delta}^{s}$ sets in a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$. By theorem 3.5(b), we have $\left[\bigcap_{\alpha \in J} A_{\alpha}\right]^{\delta \wedge \wedge_{i j}} \subseteq \bigcap_{\alpha \in J}\left(A_{\alpha}\right)^{\delta s \wedge_{i j}}=$ $\bigcap_{\alpha \in J} A_{\alpha}$. Hence by theorem 3.4(b), we have $\bigcap_{\alpha \in J} A_{\alpha}=\left[\bigcap_{\alpha \in J} A_{\alpha}\right]^{\delta \delta \wedge_{i j}}$.
(d) Obvious.

Remark 3.9 (a) In general $\left[A_{1} \cap A_{2}\right]^{\delta \delta \wedge_{i j}} \neq A_{1}^{\delta \delta \wedge_{i j}} \cap A_{2}^{\delta \delta \wedge_{i j}}$.
(b) The family of all $i j-\wedge_{\delta}^{s}$ sets and $i j-\vee_{\delta}^{s}$ sets are the topologies on X containing all $i j-\delta$ semi open and $i j-\delta$ semi closed sets respectively. Let $\tau_{i j}^{\wedge_{\delta}^{s}}=i j-\wedge_{\delta}^{s}\left(X, \tau_{1}, \tau_{2}\right)$ and $\tau_{i j}^{\vee_{\delta}^{s}}=i j-\vee_{\delta}^{s}\left(X, \tau_{1}, \tau_{2}\right)$. Clearly $\left(X, \tau_{i j}^{\wedge_{\delta}^{s}}\right)$ and $\left(X, \tau_{i j}^{\vee_{\delta}^{s}}\right)$ are Alexandroff spaces, i.e. arbitrary intersection of open sets is open.

Theorem 3.10 Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a bitopological space. Then
(a) Every $i j-\wedge_{\delta}^{s}$ set is a $g-i j-\wedge_{\delta}^{s}$ set.
(b) Every $i j-\vee_{\delta}^{s}$ set is a $g-i j-\vee_{\delta}^{s}$ set.
(c) If $A_{\alpha} \in i j-D^{\wedge \delta}$ for all $\alpha \in J$, then $\bigcup_{\alpha \in J} A_{\alpha} \in i j-D^{\wedge}{ }_{\delta}^{s}$.
(d) If $A_{\alpha} \in i j-D^{\wedge_{\delta}^{s}}$ for all $\alpha \in J$, then $\bigcap_{\alpha \in J} A_{\alpha} \in i j-D^{\wedge}{ }_{\delta}^{s}$.

Proof: (a) Obvious. Follows from definition.
(b) Let A be a $i j-\vee_{\delta}^{s}$ subset of $\left(X, \tau_{1}, \tau_{2}\right)$. Then $A=A^{\delta \delta \vee_{i j}}$. By theorem $3.4(\mathrm{~d}),\left[A^{C}\right]^{\delta \delta \wedge_{i j}}=\left[A^{\delta \delta \vee_{i j}}\right]^{C}=A^{C}$. Therefore by (a), A is a $g-i j-\vee_{\delta}^{s}$ set.
(c) Let $A_{\alpha} \in i j-D^{\wedge}{ }_{\delta}^{s}$ for all $\alpha \in J$. Then by theorem 3.5(a), $\left[\cup_{\alpha \in J} A_{\alpha}\right]^{\delta s \wedge_{i j}}=$ $\bigcup_{\alpha \in J}\left(A_{\alpha}\right)^{\delta s \wedge_{i j}}$. Hence by hypothesis and definition, $\bigcup_{\alpha \in J}\left(A_{\alpha}\right) \in i j-D^{\wedge_{\delta}^{s}}$.
(d) Obvious. Follows from (c) and definition 3.2.

Theorem 3.11 A subset A of a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is a $g-i j-\bigvee_{\delta}^{s}$ set if and only if $U \subseteq A^{\delta s \vee_{i j}}$, whenever $U \subseteq A$ and $U \in i j-\delta S O\left(X, \tau_{1}, \tau_{2}\right)$.

Proof: Let U be a $i j-\delta$ semi open subset of (X, τ_{1}, τ_{2}) such that $U \subseteq A$. Then since U^{C} is $i j-\delta$ semi closed and $U^{C} \supseteq A^{C}$, we have $U^{C} \subseteq V_{\delta}^{s}\left(A^{C}\right)$, by
definition 3.2. Hence by theorem 3.8(d), $U^{C} \supseteq\left[V_{\delta}^{s}(A)\right]^{C}$. Thus $U \subseteq V_{\delta}^{s}(A)$. Conversely, let U be a $i j-\delta$ semi closed subset of $\left(X, \tau_{1}, \tau_{2}\right)$ such that $A^{C} \subseteq U$. Since U^{C} is $i j-\delta$ semi open and $U^{C} \subseteq A$, by assumption we have $U^{C} \subseteq V_{\delta}^{s}(A)$. Then $U \supseteq\left[V_{\delta}^{s}(A)\right]^{C}=\wedge_{\delta}^{s}\left(A^{C}\right)$ by theorem 3.8(d). Therefore A^{C} is a $g-i j-\wedge_{\delta}^{s}$ set. Thus A is a $g-i j-\vee_{\delta}^{s}$.

A bitopological space (X, τ_{1}, τ_{2}) is called $i j-\delta s-T_{1}$ if for each distinct points $x, y \in X$, there exist two $i j-\delta$ semi open sets U and V such that $x \in U \backslash V$ and $y \in V \backslash U$. If X is $12-\delta s-T_{1}$ and $21-\delta s-T_{1}$, then it is called pairwise $\delta s-T_{1}\left(P-\delta s-T_{1}\right)$. Also let $\left(X, \tau_{1}, \tau_{2}\right)$ is $i j-\delta s-T_{1}$ if and only if every singleton $\{x\}$ is $i j-\delta$ semi closed.

Theorem 3.12 Let ij $-\delta S C\left(X, \tau_{1}, \tau_{2}\right)$ be closed by unions. Then for a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$, the following are equivalent,
(a) $\left(X, \tau_{1}, \tau_{2}\right)$ is $i j-\delta s-T_{1}$.
(b) Every subset of $\left(X, \tau_{1}, \tau_{2}\right)$ is a $i j-\wedge_{\delta}^{s}$ set.
(c) Every subset of $\left(X, \tau_{1}, \tau_{2}\right)$ is a $i j-\vee_{\delta}^{s}$ set.

Proof: $(\mathrm{a}) \Longrightarrow(\mathrm{c})$ Suppose that $\left(X, \tau_{1}, \tau_{2}\right)$ is $i j-\delta s-T_{1}$. Let A be any subset of X. Since every singleton $\{x\}$ is $i j-\delta$ semi closed and $A=\bigcup\{\{x\}, x \in A\}$, then A is the union of $i j-\delta$ semi closed sets. Hence A is a $i j-\vee_{\delta}^{s}$ set.
$(\mathrm{c}) \Longrightarrow$ (a) Since by (c), we have that every singleton is the union of $i j-\delta$ semi closed sets, i.e., it is $i j-\delta$ semi closed, then $\left(X, \tau_{1}, \tau_{2}\right)$ is a $i j-\delta s-T_{1}$ space.
$(\mathrm{b}) \Longrightarrow(\mathrm{c})$ Obvious.
Theorem 3.13 Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a bitopological space. Then
(a) $\left(X, \tau_{i j}^{\wedge_{\delta}^{s}}\right)$ and $\left(X, \tau_{i j}^{\vee_{\delta}^{s}}\right)$ are always $\delta-T_{1 / 2}$ spaces.
(b) If $\left(X, \tau_{1}, \tau_{2}\right)$ is ij $-\delta s-T_{1}$, then both $\left(X, \tau_{i j}^{\wedge}{ }^{\frac{s}{\delta}}\right)$ and $\left(X, \tau_{i j}^{\vee_{\delta}^{s}}\right)$ are discrete spaces.
(c) The identity function id : $\left(X, \tau_{i j}^{\wedge}\right) \longrightarrow\left(X, \tau_{i}\right)$ is δ - continuous.
(d) The identity function id : $\left(X, \tau_{i j}^{\vee_{\delta}^{s}}\right) \longrightarrow\left(X, \tau_{i}\right)$ is δ - contra continuous.

Proof: (a) Let $x \in X$. Then $\{x\}$ is $i j-\delta$ open or $i j-\delta$ semi closed in X. If $\{x\}$ is $i j-\delta$ open, then it is $i j-\delta$ semi open. Therefore $\{x\} \in \tau_{i j}^{\wedge_{\delta}^{s}}$. If $\{x\}$
is $i j-\delta$ semi closed then $X-\{x\}$ is $i j-\delta$ semi open and so $X-\{x\} \in \tau_{i j}^{\wedge_{\delta}^{s}}$, i.e., $\{x\}$ is $\tau_{i j}^{\wedge_{\delta}^{s}}$ - closed. Hence $\left(X, \tau_{i j}^{\wedge s}\right)$ is $\delta-T_{1 / 2}$. In similar manner, we can prove $\left(X, \tau_{i j}^{\vee_{\delta}^{\delta}}\right)$ is $\delta-T_{1 / 2}$.
(b) Obvious. The proof follows from theorem 3.8.
(c) If A is $i j-\delta$ open, then A is $i j-\delta$ semi open. Hence $A \in \tau_{i j}^{\wedge \delta_{j}^{s}}$
(d) If A is $i j-\delta$ open, then A is $i j-\delta$ semi open. This implies that $X-A$ is $i j-\delta$ semi closed and hence $X-A$ is $\tau_{i j}^{\vee_{\delta}^{s}}$ - open or A is $\tau_{i j}^{\vee_{\delta}^{s}}$ - closed.

4 Applications

Definition 4.1 A bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is called an $i j-\delta s-R_{0}$ space if for every $i j-\delta$ semi open set $U, x \in U$ implies $i j-\delta \operatorname{scl}(\{x\}) \subseteq U$.

Definition 4.2 A bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is called a $i j-T^{\vee \delta}{ }_{\delta}^{s}$ space if $\tau_{i j}^{\wedge \frac{s}{\delta}}=\tau_{i j}^{\vee^{\frac{s}{\delta}}}$.

Theorem 4.3 For a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ the following are equivalent,
(a) $\left(X, \tau_{1}, \tau_{2}\right)$ is $i j-\delta s-R_{0}$.
(b) $\left(X, \tau_{i j}^{\wedge{ }_{\delta}^{s}}\right)$ is discrete space.
(c) $\left(X, \tau_{i j}^{\vee^{s}}\right)$ is discrete space.
(d) For each $x \in X,\{x\}$ is a ij $-\wedge_{\delta}^{s}$ set of $\left(X, \tau_{1}, \tau_{2}\right)$.
(e) For each $i j-\delta$ semi open set U of $X, U=U^{\delta s v_{i j}}$.
(f) $\left(X, \tau_{1}, \tau_{2}\right)$ is $i j-T^{\vee_{\delta}^{s}}$ space.
(g) $\left(X, \tau_{i j}^{\wedge_{\delta}^{s}}\right)$ is R_{0} - space.

Proof: (a) $\Longrightarrow(\mathrm{b})$ For any $x \in X$ we have $\{x\}^{\delta s \wedge_{i j}}=\cap\{U:\{x\} \subseteq$ $U, U i s i j-\delta$ semiopen $\}$. Since X is $i j-\delta s-R_{0}$ space, then each $i j-\delta$ semi open set U containing x contains $i j-\delta \operatorname{scl}(\{x\})$. Hence $i j-\delta \operatorname{scl}(\{x\}) \subseteq\{x\}^{\delta s \wedge_{i j}}$. Then by theorem 3.13, $\left(X, \tau_{i j}^{\wedge_{\delta}^{s}}\right)$ is discrete space.
(b) \Longrightarrow (c) Suppose that $\left(X, \tau_{i j}^{\wedge_{\delta}^{s}}\right)$ is discrete space. By the definition of $A^{\delta \delta \vee_{i j}}$, $A^{\delta s \wedge_{i j}}=\left[(X-A)^{\delta s \vee_{i j}}\right]^{C}$. Therefore if X is $i j-\wedge_{\delta}^{s}$ set, then $X-A$ is $i j-\vee_{\delta}^{s}$ set. Then $\left(X, \tau_{i j}^{\vee_{\delta}^{s}}\right)$ is discrete space.
(c) \Longrightarrow (d) For each $x \in X,\{x\}$ is $\tau_{i} j^{\wedge_{\delta}^{s}}$ - open and $\{x\}$ is a $i j-\wedge_{\delta}^{s}$ set of $\left(X, \tau_{1}, \tau_{2}\right)$.
$(\mathrm{d}) \Longrightarrow(\mathrm{e})$ Let U be a $i j-\delta$ semi open set. Let $x \in U^{C}$. By assumption $\{x\}=x^{\delta s \wedge_{i j}}$ and therefore $x^{\delta s \wedge_{i j}} \subseteq U^{C}$. Hence $U^{C} \supseteq \bigcup\left\{\{x\}^{\delta s \wedge_{i j}}: x \in\right.$ $\left.U^{C}\right\}=\left[\bigcup\left\{x: x \in U^{C}\right\}\right]^{\delta s \wedge_{i j}}=\left[U^{C}\right]^{\delta s \wedge_{i j}}$. This shows that $U^{C}=\left[U^{C}\right]^{\delta s \wedge_{i j}}$ and By the definition of $A^{\delta s \vee_{i j}}, A^{\delta s \wedge_{i j}}=\left[(X-A)^{\delta s \vee_{i j}}\right]^{C}$, we have $U=U^{\delta s \vee_{i j}}$.
$(\mathrm{e}) \Longrightarrow(\mathrm{f}) \mathrm{By}(\mathrm{e}) i j-\delta S O\left(X, \tau_{1}, \tau_{2}\right) \subseteq \tau_{i j}^{\mathrm{V}_{\delta}^{s}}$. First we show that $\tau_{i j}^{\wedge_{\delta}^{s}} \subseteq \tau_{i j}^{\mathrm{V}_{\delta}^{s}}$. Let A be any $i j-\wedge_{\delta}^{s}$ of $\left(X, \tau_{1}, \tau_{2}\right)$. Then $A=A^{\delta s \wedge_{i j}}=\cap\{U: U \subseteq A, U \in$ $i j-\delta S O(X)\}$. Since $i j-\delta S O\left(X, \tau_{1}, \tau_{2}\right) \subseteq \tau_{i j}^{\vee_{\delta}^{s}}$, by theorem 3.10 we have $A \in \tau_{i j}^{\vee_{\delta}^{s}}$ and $\tau_{i j}^{\wedge_{\delta}^{s}} \subseteq \tau_{i j}^{\vee_{\delta}^{s}}$. Next, let $A \in \tau_{i j}^{\vee_{\delta}^{s}}$. Then $X-A \in \tau_{i j}^{\wedge_{\delta}^{s}} \subseteq \tau_{i j}^{\vee_{\delta}^{s}}$. Therefore $A \in \tau_{i j}^{\vee_{\delta}^{s}}$ and $\tau_{i j}^{\wedge_{\delta}^{s}} \subseteq \tau_{i j}^{\vee_{\delta}^{s}}$. Hence $\left(X, \tau_{1}, \tau_{2}\right)$ is a $i j-T^{\vee_{\delta}^{s}}$ space.
$(\mathrm{f}) \Longrightarrow(\mathrm{g})$ Let $U \in \tau_{i j}^{\wedge{ }_{\delta}^{\delta}}$ and $x \in U$. Since $\left(X, \tau_{1}, \tau_{2}\right)$ is a $i j-T^{\vee_{\delta}^{s}}$ space, $U \in \tau_{i j}^{\vee_{\delta}^{s}}$ and $U^{C} \in \tau_{i j}^{\wedge_{\delta}^{s}}$. Since $\{x\} \cap U^{C}=\phi, \tau_{i j}^{\wedge_{\delta}^{s}}-c l(\{x\}) \cap U^{C}=\phi$ and $\tau_{i j}^{\wedge \frac{s}{\delta}}-c l(\{x\}) \subseteq U$. Hence $\left(X, \tau_{i j}^{\wedge_{\delta}^{s}}-c l(\{x\})\right)$ is R_{0} - space.
$(\mathrm{g}) \Longrightarrow$ (a) Let $U \in i j-\delta S O\left(X, \tau_{1}, \tau_{2}\right)$ and $x \in U$. Since $i j-\delta S O\left(X, \tau_{1}, \tau_{2}\right) \subseteq$ $\tau_{i j}^{\wedge_{\delta}^{s}}$, by $(\mathrm{g}), \tau_{i j}^{\wedge_{\delta}^{s}}-c l(\{x\}) \subseteq U$. Since $\tau_{i j}^{\wedge_{\delta}^{s}}-c l(\{x\}) \in \tau_{i j}^{\vee_{\delta}^{s}}-c l(\{x\}), \tau_{i j}^{\vee_{\delta}^{s}}-$ $\operatorname{cl}(\{x\})=\bigcup\left\{F: F \in \tau_{i j}^{\wedge \frac{s}{\delta}}-\operatorname{cl}(\{x\}) a n d F \in i j-\delta S C\left(X, \tau_{1}, \tau_{2}\right)\right\}$ and $x \in$ $\tau_{i j}^{\wedge_{\delta}^{s}}-c l(\{x\})$. Therefore for some $F \in i j-\delta S C\left(X, \tau_{1}, \tau_{2}\right), x \in F$ and hence $i j-\delta s c l(\{x\}) \subseteq F \subseteq \tau_{i j}^{\wedge s}-c l(\{x\}) \subseteq U$. This shows that $\left(X, \tau_{1}, \tau_{2}\right)$ is $i j-\delta s-R_{0}$.

Definition 4.4 A function $f:\left(X, \tau_{1}, \tau_{2}\right) \longrightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is called,
(a) ij $-\wedge_{\delta}^{s}$ continuous, if $f^{-1}(V)$ is a ij $-\wedge_{\delta}^{s}$ set in $\left(X, \tau_{1}, \tau_{2}\right)$ for each σ_{i} - open set V of $\left(Y, \sigma_{1}, \sigma_{2}\right)$.
(b) ij $-\wedge_{\delta}^{s}$ irresolute, if $f^{-1}(V)$ is a ij $-\wedge_{\delta}^{s}$ set in $\left(X, \tau_{1}, \tau_{2}\right)$ for each $i j-\wedge_{\delta}^{s}$ set V of $\left(Y, \sigma_{1}, \sigma_{2}\right)$.
(c) ij $-\wedge_{\delta}^{s}$ open if $f(U)$ is a ij $-\wedge_{\delta}^{s}$ set in $\left(Y, \sigma_{1}, \sigma_{2}\right)$ for each ij $-\wedge_{\delta}^{s}$ set U of $\left(X, \tau_{1}, \tau_{2}\right)$.

Definition 4.5 A function $f:\left(X, \tau_{1}, \tau_{2}\right) \longrightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ is called a $i j-\wedge_{\delta}^{s}$
homeomorphism if f is a $i j-\wedge_{\delta}^{s}$ irresolute, ij $-\wedge_{\delta}^{s}$ open and bijective.
Theorem 4.6 Let $f:\left(X, \tau_{1}, \tau_{2}\right) \longrightarrow\left(Y, \sigma_{1}, \sigma_{2}\right)$ be a function.
(a) If f is ij $-\wedge_{\delta}^{s}$ irresolute, injection and $\left(Y, \sigma_{1}, \sigma_{2}\right)$ is a ij $-T^{\vee_{\delta}^{s}}$ space, then $\left(X, \tau_{1}, \tau_{2}\right)$ is a ij $-T^{\vee}{ }_{\delta}^{s}$ space.
(b) If f is ij $-\wedge_{\delta}^{s}$ open surjection and $\left(X, \tau_{1}, \tau_{2}\right)$ is a $i j-T^{\vee}{ }^{\delta}$ space, then $\left(Y, \sigma_{1}, \sigma_{2}\right)$ is a $i j-T^{\vee_{\delta}^{s}}$ space.
(c) If f is ij $-\wedge_{\delta}^{s}$ homeomorphism, then $\left(X, \tau_{1}, \tau_{2}\right)$ is a $i j-T^{\vee_{\delta}^{s}}$ space if and only if $\left(Y, \sigma_{1}, \sigma_{2}\right)$ is a $i j-T^{\vee_{\delta}^{s}}$ space.

Proof: (a) Since $\left(Y, \sigma_{1}, \sigma_{2}\right)$ is a $i j-T^{\vee_{\delta}^{\mathcal{\delta}}}$ space, $\left(Y, \sigma_{1}, \sigma_{2}\right)$ is discrete by theorem 4.3. Then $\{f(x)\} \in \sigma_{i j}^{\wedge_{\delta}^{s}}$ for every $x \in X$. Since f is $i j-\wedge_{\delta}^{s}$ irresolute, $f^{-1}(f(x)) \in \tau_{i j}^{\wedge_{\delta}^{s}}$ for every $x \in X$. This implies $\{x\} \in \tau_{i j}^{\wedge_{\delta}^{s}}$ for every $x \in X$, since f is injective. Therefore $\left(X, \tau_{i j}^{\wedge}{ }^{s}\right)$ is discrete and by Theorem 4.3, $\left(X, \tau_{1}, \tau_{2}\right)$ is a $i j-T^{\vee}{ }_{\delta}^{s}$ space.
(b) Let $y \in Y$. $\left\{f^{-1}(y)\right\} \neq \phi$, since f is surjective. Since $\left(X, \tau_{i j}^{\wedge_{\delta}^{s}}\right)$ is discrete, $\left\{f^{-1}(y)\right\} \in \tau_{i j}^{\wedge_{\delta}^{s}}$ for every $y \in Y$. Since f is $i j-\wedge_{\delta}^{s}$ open, $f\left(\left\{f^{-1}(y)\right\}\right) \in \sigma_{i j}^{\wedge_{\delta}^{s}}$ for every $y \in Y$. This implies $\{y\} \in \sigma_{i j}^{\wedge_{\delta}^{s}}$ for every $y \in Y$ or $\left(Y, \sigma_{i j}^{\wedge_{\delta}^{s}}\right)$ is discrete. Hence $\left(Y, \sigma_{1}, \sigma_{2}\right)$ is a $i j-T^{\vee_{\delta}^{s}}$ space.
(c) Follows from (a) and (b).

Acknowledgements: The authors would like to thank the referees for the useful comments and valuable suggestions for improvement of the paper.

References

[1] S.P. Arya and T.M. Nour, Separation axioms for bitopological spaces, Indian J. Pure. Apple. Math., 19(3) (1988), 42-50.
[2] G.K. Banerjee, On pairwise almost strongly θ - continuous mapping, Bull. Calcutta Math. Soc., 79(1987), 314-320.
[3] M. Caldas and J. Dontchev, G. $\wedge_{s}-$ sets and $G . \vee_{s}-$ sets, Mem. Fac. Sci. Kochi Univ. Math., 21(2000), 21-30.
[4] M. Caldas, M. Ganster, D.N. Georgiou, S. Jafari and S.P. Moshokoa, δ-semi open sets in topology, Topology Proc., 29(2) (2005), 369-383.
[5] M. Caldas, M. Ganster, S. Jafari and T. Noiri, On \wedge_{p} - sets and functions, Mem. Fac. Sci. Kochi Univ. Math., 25(2003), 1-8.
[6] M. Caldas, D.N. Georgiou, S. Jafari and T. Noiri, More on δ - semiopen sets, Note Mat., 22(2) (2003/04), 113-126.
[7] M. Caldas, S. Jafari, S.A. Ponmani and M.L. Thivagar, On some low separation axioms in bitopological Spaces, Bol. Soc. Paran. Mat., (3s.) (24)(1-2) (2006), 69-78.
[8] M.M. El-Sharkasy, On \wedge_{α}-sets and the associated topology $T^{\wedge_{\alpha}}$, Journal of the Egyptian Mathematical Society, 23(2015), 371-376.
[9] M. Ganster, S. Jafar and T. Noiri, On pre- \wedge-sets and pre-V-sets, Acta Math. Hungar, 95(4) (2002), 337-343.
[10] A. Ghareeb and T. Noiri, $\wedge-$ Generalized closed sets in bitopological spaces, Journal of the Egyptian Mathematical Society, 19(2011), 142-145.
[11] M.J. Jeyanthi, A. Kilicman, S.P. Missier and P. Thangavelu, \wedge_{r}-Sets and separation axioms, Malaysian Journal of Mathematics, 5(1) (2011), 45-60.
[12] A.B. Khalaf and A.M. Omer, S_{i} - Open sets and S_{i} - continuity in bitopological spaces, Tamkang Journal of Mathematics, 43(1) (2012), 81-97.
[13] F.H. Khedr, Properties of $i j$ - delta open sets, Fasciculi Mathematici, 52(2014), 65-81.
[14] F.H. Khedr and K.M. Abdelhakiem, Generalized \wedge - sets and λ - sets in bitopological spaces, International Mathematical Forum, 4(15) (2009), 705-715.
[15] F.H. Khedr and H.S. Al-saadi, On pairwise θ-semi-generalized closed sets, Far East J. Mathematical Sciences, 28(2) (February) (2008), 381-394.
[16] F.H. Khedr, A.M. Al-Shibani and T. Noiri, On δ - continuity in bitopological spaces, J. Egypt. Math. Soc., 5(3) (1997), 57-63.
[17] H. Maki, Generalized \wedge - sets and the associated closure operator, The Special Issue in Commemoration of Prof. Kazuada IKEDA's Retirement, (1986), 139-146.
[18] M. Mirmiran, Weak insertion of a perfectly continuous function between two real-valued functions, Mathematical Sciences and Applications ENotes, 3(1) (2015), 103-107.

On ij $-\wedge_{\delta}^{s}$ Sets in Bitopological Spaces
[19] T.M. Nour, A note on five separation axioms in bitopological spaces, Indian J. Pure and Appl. Math., 26(7) (1995), 669-674.
[20] M. Pritha, V. Chandrasekar and A. Vadivel, Some aspects of pairwise fuzzy semi preopen sets in fuzzy bitopological spaces, Gen. Math. Notes, 26(1) (January) (2015), 35-45.

