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Abstract 

In this paper, we established the conditions of the occurrence of local bifurcation 
(such as saddle-node, transcritical and pitchfork) with particular emphasis on the 
Hopf bifurcation near of the positive equilibrium point of eco-epidemiological 
mathematical model consisting of prey-predator model involving SIS infectious 
disease in prey population are established. After the study and analysis, of the 
observed incidence transcritical bifurcation near equilibrium point E0 as well as 
the occurrence of saddle-node bifurcation at equilibrium points E1, E2. It is worth 
mentioning, there are no possibility occurrence of the pitchfork bifurcation at 
each point Eii= 0,1,2. Finally, some numerical simulations are used to illustration 
the occurrence of local bifurcation of this model. 

     Keywords: Eco-epidemiological model, Equilibrium Points, Local bifurcation, 
Hopf bifurcation. 
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1 Introduction 
 
Mathematical modeling is an important interdisciplinary activity which involves 
the study of some aspects of diverse disciplines. Biology, Epidemiology, 
Physiology, Ecology, Immunology, Genetics, Physics are some of those 
disciplines. In fact, both mathematical ecology and mathematical epidemiology 
are distinct major fields of study in biology. But there are some commonalities 
between them. Recently, these two major fields of study are merged and renamed 
as a new field of study called eco-epidemiology. On the other hand eco-
pidemiology is the branch of biomathematics that understands the dynamics of 
disease spread on the predatorـprey system, whereas considered interaction 
between predators and their prey is a complex phenomenon in ecology. Many 
researchers, especially in the last two decades, have proposed and studied number 
of eco-epidemiological models involving two or more interacting species have 
already been performed in this particular direction, see for example [1-3] and the 
references there in. 
 
Bifurcation theory is the mathematical study of changes in the qualitative or 
topological structure of a given family, such as the integral curves of a family of 
vector fields, and the solutions of a family of differential equations. Most 
commonly applied to the mathematical study of dynamical systems, a bifurcation 
occurs when a small smooth change made to the parameter values (the bifurcation 
parameters) of a system causes a sudden 'qualitative' or topological change in its 
behavior, for example, see [4-6]. The bifurcation occurs in both continuous 
systems (described by ODEs, DDEs or PDEs), see for example [7-12] and discrete 
systems (described bymaps), see for example [12-17]. Henri Poincaré [18] was 
first introduced the name "bifurcation" in 1885 in the first paper in mathematics 
showing such a behavior also later named various types of stationary points and 
classified them. Perko L. [19] established the conditions of the occurrence of local 
bifurcation (such as saddle-node, transcritical and pitchfork). However,the 
necessary condition for the occurrence of the Hopf bifurcation presented by 
Hirsch M.W. and Smale S. [20] while, Haque M. and Venturino E. [21] Explained 
the sufficient condition for the occurrence of the Hopf bifurcation in addition to 
them, nots see for example [22,23, 24]. R. Latief Tayeh and R. Kamel Naji [25] 
had previously studied local bifurcation (such as saddle-node, transcritical and 
pitchfork) and Hopf bifurcation around each of the equilibrium points of prey- 
predator model involving SI infection disease in both the prey and predator 
species. 
 
In this paper, we will establish the conditions of the occurrence of local 
bifurcation and Hopf bifurcations around each of the equilibrium points of a 
mathematical model proposed by Karrar Q., Azhar A. and Raid N. [26].  
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2 Model Formulation [26] 
 
An eco-epidemiological mathematical model consisting of prey-predator model 
involving SIS infectious disease in prey population, is proposed and analyzed in 
[26]. 
 
��
��  = rS ( 1 – 

��� 
�  ) – c1SP1 – λ1SI – Ѳ1S + αI 

 
��
��= λ1SI + Ѳ1S – c2IP1 – γ1I – αI   

                                                                                                                               (1) 
��	
�� = – λ2P1P2 – Ѳ2P1 + e1c1SP1 + (1-m) e2c2IP1 – γ2P1 + βP2    

 
��

�� = λ2P1P2 + Ѳ2P1 + m e2c2IP1 - γ2P2 – γ3P2 - βP2. 

 
Where 0<ei< 1; i = 1,2 represent the conversion rate constants and 0< m < 1 
represents the infection rate of susceptible predator that predation the infected 
prey. This model consists of a prey, whose total population density at time T is 
denoted by N(T), interacting with predator whose total population density at time 
T is denoted by P(T). Note that, there is an SIS epidemic disease in prey 
population divides the prey population into two classes namely S(T) that 
represents the density of susceptible prey species at time T and I(T) which 
represents the density of  infected prey species at time T. Therefore at any time T, 
we have N (T) = S (T) + I (T). Also, The disease is transmitted from a prey to 
predator during attacking of predator to prey, which divides the predator 
population into two classes namely P1(T) that represents the density of susceptible 
predator species at time T and  P2(T) which represents the density of infected 
predator species at time T. Therefore at any time T, we have P(T)=P1(T) + P2(T). 
All the parameters are moreover assumed to be positive and described as given in 
[26]. 
 
Now, for further simplification of the system (2), the following dimensionless 
variables are used in [26]. 
 

t = r T, x = 
�
�  ,  y = 

�
  ,  z =

�	
�  P1 ,  w = 

�	
�  P2 . 

 
Thus, system (2) can be turned into the following dimensionless form: 
 
��
�� = x �1 − x − �1 + u��y − z −  u�� + u�y = f1(x, y, z, w) 

 
��
�  = y !u�x −  u"z − �u� +  u#�$ + u�x = f2(x, y, z, w)(2) 

 
�%
�   = z !− u&w +  u(x +  u)� 1 − m� y − �u+ + u�,�$ + u��w = f3(x, y, z, w) 



The Local Bifurcation and the Hopf…                                                                   21 

 
�-
�  = u&zw + ( u7 + u9my )z – ( u10 + u11 + u12 )w = f4(x, y, z, w). 

 
Here:                                                                                                                   
 

u1=  
.	 �

/ , u2= 
Ѳ	
/ , u3=

1
/, u4 =  3


3	, u5= 
4	
�  , u6= 

.

� � , u7= 

Ѳ

�  , u8= 

5	�	 
�  ,  

 

u9= 
5
�
 

� , u10=  
4

�  , u11= 

6
� , u12= 

47
�  . 

 
With, x(0) ≥ 0, y(0) ≥ 0, z(0) ≥ 0, w(0) ≥ 0and  it is observed that the number 
ofparameters have been reduced from Sixteen in the system (1) to Thirteen in the 
system (2).Obviously the interaction functions of the system (2) are continuous 
andhave continuous partial derivatives on the following positive fourdimensional 
space:8�"  = {(x, y, z, w) ∈ 8" : x(0) ≥ 0, y(0) ≥ 0, z(0) ≥ 0, w(0) ≥ 0}. Therefore 
these functions are Lipschitzian on 8�" , and hence the solution of the system (2) 
exists and is unique.Further, in the following theorem, the boundedness of the 
solution of the system (2) in 8�"  is established by [26]. 
 
Theorem 1: All the solutions of system (2) which initiate in the8�"are uniformly 
bounded. 
 

3 The Stability Analysis of Equilibrium Points of 
System (2) [26] 

 
It is observed that, system (2) has at most three biologically feasible equilibrium 
points Ei=(x, y, z, w); i = 0, 1, 2; which are mentioned with their existence 
conditions in [26] as in the following: 
 
1. The Vanishing Equilibrium Point: E0 = (0,0,0,0) always exists and E0 is 
locally asymptotically stable in the Int.8�" . If the following conditions hold 
 
:�> 1+ 

;7
;<(3.a) 

 
However, it is (a saddle point) unstable otherwise. More details see [26]. 
 
2. The Predator Free Equilibrium Point: E1 = (x =,y =, 0, 0) exists uniquely in the 
Int. 8�"  if and only if the following conditions are hold. 
 
:�> 1+ 

;7
;<                                                                                                            (3.a) 

 ;7
�� ;	<x>< 1 - :�                                                                                                    (3.b) 
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Where 
 

?> = 
�@� A>� ;
 �

� �� ;	�– � C7
D= � , (1+ u1 ) ≠ 

;7
A>  . 

 
While x> represents a positive root of the following second order polynomial 
equation 
 
A1 x

2 + A2 x + A3 = 0 
 
Where 
            
A1 = u1 > 0  
A2= - ( u1 +u2 + u3 + u5 ) < 0 
A3 = ( u3 + u5 ) – ( u2 u5 ). 
 
And it is locally asymptotically stable if the following conditions are satisfied: 
 

x>2 <
!;	�;
���;7�;<�$A =� �;<� ��;	�� ;7��=� ;<�;
@��@ ;7

�;	                                            (3.c) 

x =< minE a, b I. 
 
Where 
 

a =  
�;J��;	K�;		�;	
�@ ;)��@L��=

;M  

 

b = 
;J�;	K� ;	
�� ;	K�;	K�;		�;	
�@ ;N�=!��@L��;	K� ;	
�� ;		$

;M�;	K�;		�;	
�  . 

 
However, it is (a saddle point) unstable otherwise.More details see [26]. 
 
3. Finally, the Positive (Coexistence) Equilibrium Point: E2 = (x*, y*, z*, w*) 
exists and it is locally asymptotically stable, as shown in [26]. 
 

4 The Local Bifurcation Analysis of System (2) 
 
In this section, the effect of varying the parameter values on the dynamical 
behavior of the system (2) around each equilibrium points is studied. Recall that 
the existence of non hyperbolic equilibrium point of system (2) is the necessary 
but not sufficient condition for bifurcation to occur. Therefore, in the following 
theorems an application to the Sotomayor's theorem [19] for local bifurcation is 
adapted. 
 
Now, according to Jacobian matrix of system (2) given by Eq. (4.1) in [26], it is 
clear to verify that for any nonzero vector V = (v1, v2, v3, v4)

T  we have : 
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D2F( V, V ) = 

( )
( )

( )
( ) 
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(4.a) 

 
and   D3F( V, V, V ) = ( 0, 0, 0, 0 )T . 
 
So, according to Sotomayor'stheorem the pitchfork bifurcation does not occur at 
each point Ei,i = 0, 1, 2. 
 
4.1 The Local Bifurcation Analysis Near E0 
 
Theorem 2: Assume that the following condition holds: 
 
µ1 ≠ µ2                                                                                                                                                                         (4.b) 
 

Where 
 

µ1 =
O	
O<( P�

[,] )2ѱ�
[,]+( 

O<OM� ON��@T�
O<  ) P�

[,]P�
[,]ѱ�

[,]+( 
OJ� O	K

OJ )P�
[,]ѱ�

[,] 
 

( 
ONT

O< P�
[,] + OU�OJ�O	K�

O		 P�
[,]). 

 

µ2 = (
O7�O<

O7 ) P�
[,]ѱ�

[,] ( �O<�O	��
O< ) P�

[,]+ P�
[,]) +( 

OV
O<�P�

[,]P�
[,]ѱ�

[,] + 
OU�OJ�O	K�

O		  

 

(P�
[,])2ѱ�

[,]. 
 
Then, the system (2) near the vanishing equilibrium point E0 with the parameter 
:�∗  = 1+

O7
O< has: 

 
1. No saddle- node bifurcation. 
2. Transcritical bifurcation. 
 
Proof: According to the Jacobian  matrix  J0given by Eq.(4.2) in [26], the system 
(2) at the equilibrium point E0has zero eigenvalue (sayX,�= 0) at  u2 = :�∗ , and the 
Jacobian matrix J0 withu2 = :�∗  becomes: 
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Y, ∗ = Y,�:�∗�=
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Now, let Z[,] = ( P�
[,],  P�

[,], P�
[,], P"

[,] )T be the eigenvector corresponding to the 
eigenvalue X,� = 0. Thus�Y,∗ − X,� [ �Z[,] = 0, which gives: 
 

P�
[,] = 

�
O< P�

[,] ,P"
[,] = 

�OJ�O	K�
O		 P�

[,] and  P�
[,],  P�

[,] are any nonzero real numbers.   

 

Let ѱ[,] = ( ѱ�
[,] , ѱ�

[,] , ѱ�
[,] , ѱ"

[,]  )T be the eigenvector associated with the 
eigenvalue X,� = 0 of the matrix  Y,∗\. Then we have �Y,∗\ − X,� [ �ѱ[,] = 0. By 
solving this equation for  ѱ[,] we obtain 
 

ѱ[,]  = ]�O7�O<�
O7 ѱ�

[,], ѱ�
[,], ѱ�

[,], �OJ�O	K�
OJ ѱ�

[,]^ T , where ѱ�
[,]  and ѱ�

[,] are any 

nonzero real numbers.  
 
Now, consider: 
  
_ `
_O
  = aO
( X, :�) = (

_ 	̀
O
 , _ 
̀

O
 , _ 7̀
O
 , _ V̀

O
  )T= ( -x, x, 0, 0 )T. 

 
So, aO
( b,, :�∗) = ( 0, 0, 0, 0 )Tand hence  (ѱ[,] )TaO
( b,, :�∗) = 0 . 
 
Thus, according to Sotomayor'stheorem for local bifurcation,the saddle-nod 
bifurcation can't occur. While the first condition of transcritical bifurcation is 
satisfied. Now, since 
 

DaO
( X, :�) = 

















−

0000

0000

0001

0001

. 

 
Where DaO
( X, :�)  represents the derivative of  aO
( X, :�)  with respect to  X = 
( x, y, z, w )T . Further, it is observed 
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DaO
( b,, :�∗)Z[,] = 
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(ѱ[,] )TcdaO
� b,, :�∗�Z[,]e= ]�O7�O<�
O7 ѱ�

[,], ѱ�
[,], ѱ�

[,], �OJ�O	K�
OJ ѱ�

[,]^ 

 

(-P�
[,], P�

[,], 0, 0 )T 
 

= - 
O<
O7 P�

[,]ѱ�
[,] ≠ 0.  

 
Moreover, by substituting b, , :�∗   and Z[,] in (4.a) we get: 
 

D2F( b,, :�∗)(Z[,], Z[,]) = 
( )
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 +
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3

5
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Hence, it is obtain that: 
 
(ѱ[,] )Tcd�a�b,, :�∗�!Z[,], Z[,]$e= 2 ( µ1 - µ2 ). 
 
According to condition (4.b) we obtain that: 
 
(ѱ[,] )Tcd�a�b,, :�∗�!Z[,], Z[,]$e ≠ 0 . 
 
Thus, according to Sotomayor’stheorem system (2) has transcritical bifurcation 
atE0 with the parameter u2 = :�∗  . Otherwise, when condition (4.b) does not 
satisfied,the system (2) has no any type of bifurcation and thiscomplete the proof.            
■ 
 
4.2 The Local Bifurcation Analysis Near E1 
 
Theorem 3: Assume that left the condition (3.b) holds and let the following 
conditions hold 
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:� + :# + 2:�(h^)2> ( :� + 2�:� + :#� ) h^ + ( :� + :#�1 + :�� ) y^                  (4.c) 
 
:�# + 2h^ + �1 + :��y^> 1                                                                                 (4.d) 
 
(:� + :#)(:�# + 2h^ + �1 + :��y^-1)+(:�#+:� y^)((1+:�)h^ − :�) 
≠ :�h^(1- (:�# + 2h^ + �1 + :��y^))                                                                  (4.e) 
 
:� + :#>:�h^ + :"�1 + :��?^                                                                          (4.f) 
 
:+ + :�, < :(h^ + :)�1 − l�?^                                                                     (4.g) 
 
m�≠ m�.                                                                                                                (4.h) 
 
Where: 
 
m�= n�n�o�o��1 + :��o� + n�n�o�o�:" + n"o�o�:( + :& . 
 
m�= n�n�o�o��1 + o�� +n�n�o�o�o�:�+n"�:)�1 − l�o�o� + :&� + :(lo�o�. 
 
Here: 
 

o�=
�O	K�O		�O	
�

OJ�ONTp^  , o�= 
OVp^�!O	�^@�O7�O<�$/	/


!O
#�O	p^$  , o� =/	
/
 . 

 

n� = 
/7

O		/V ,  n�= :�h^ − �:� + :#� , n� = �1 + :��h^ − :� , n" = 
�O	K�O		�O	
�

O		  .  

 
With: 
 
q�= :"?^�:�# + 2h^ + �1 + :��?^ − 1� + �:�# + :�?^�h^ . 
 
q�=(:� + :#)(:�# + 2h^ + �1 + :��y^-1)+(:�#+:� y^)((1+:�)h^ − :�)+ 
 
 :�h^(1- (:�# + 2h^ + �1 + :��y^)). 
 
q�= :����:�, + :����:+ + :�, − �:(h^ + :)�1 − l�?^� − �:+ + :)l?^�� . 
 
q"= h^�:� + :# − �:�h^ + :"�1 + :��?^�� + :�:"?^. 
 
Then system (2) near the predator free equilibrium point E1 with the parameter 
 

u�# = 
];7�;<��;	A^
^@]!;	���;7�;<�$A^�!;7�;<���;	�$�^^

;<�A^  , has: 

 
1. No transcritical bifurcation. 
2. Saddle-node bifurcation. 
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Proof: According to the Jacobian matrix J1 given by Eq. (4.5) in [26], the system 
(2) at the equilibrium point E1 has zero eigenvalue (say X�p = 0) at u2 = :�# , it is 
clearly that :�#> 0 provided that condition (4.c) holds, and the Jacobian matrix J1 

with u2 = :�# becomes: 
 
Y� # = Y�� :�#�=crste4x4, where rst = ustfor all i, j = 1,2,3,4 except r�� & r�� 
 
which are given by: r��= 1- (:�# + 2h^ + �1 + :��y^) & r��= :�#+:� y^ . 
 

Now, let Z[�] = ( P�
[�],  P�

[�], P�
[�], P"

[�] )T be the eigenvector corresponding to the 
eigenvalue X�p = 0. Thus!Y�# − X�p [ $Z[�] = 0, which gives: 
 

P�
[�] =  o�o�P"

[�]  , P�
[�] = -o�o�P"

[�] & P�
[�]  = o�P"

[�] here  P"
[�]  is any nonzero real 

number, according to left the condition (3.b) and (4.d), (4.e) we have  P�
[�] exist. 

 

Let  ѱ[�]  = ( ѱ�
[�] , ѱ�

[�] ,ѱ�
[�] ,ѱ"

[�]  )T  be the eigenvector associated with the 
eigenvalue X�p = 0 of the matrix  Y�#\. Then we have !Y�#\ − X�p [ $ѱ[�] = 0. By 
solving this equation for  ѱ[�] we obtain: 
 

ѱ[�] = (p�p�ѱ"
[�], p�p�ѱ"

[�], p"ѱ"
[�], ѱ"

[�] )T here ѱ"
[�] is any nonzero real number. 

 

It is clear that ѱ�
[�], ѱ�

[�] exists under the condition (4.f). 
 
Now, since 
 
_ `
_O
  = aO
(X,:�) = (

_ 	̀
O
 , _ 
̀

O
 , _ 7̀
O
 , _ V̀

O
  )T = ( -x, x, 0, 0 )T , where X =(x, y, z, w)T. 

 
So, aO
( b�, :�#) = (- h^, h^, 0, 0 )T and hence 
 
(ѱ[�] )TaO
( b�, :�#) = n�h^ѱ"[�]�n� − n�� = n�h^ѱ"[�]�5 + h^� ≠ 0 , where n�≠ 0  
 
Under the condition (4.f) & (4.g) .Thus, according to the Sotomayor's theorem for 
local bifurcation, the transcritical bifurcation can't occur while the first condition 
of saddle-node bifurcation is satisfied. Further, by substituting E� , :�#  and  Z[�]  
in (4.a) we get: 
 

D2F( b�, :�#)(Z[�], Z[�]) = 

( )
( )

( )
( ) 




















−
+−−
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4319
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Hence, it is obtain that: 
  

(ѱ[�] )Tcd�a�b�, :�#�!Z[�], Z[�]$e =  2o��P"
[�]�2

ѱ"
[�] (m�- m�). 

 
According to condition (4.h) we obtain that: 
 
( ѱ[�]  )T cd�a�b�, :�#�!Z[�], Z[�]$e   ≠ 0, and hence system (2) hassaddle-node 
bifurcation at E1 with the bifurcation point given by:�# and thiscomplete the 
proof.■ 
 
4.3 The Local Bifurcation Analysis Near E2 
 
In order to study the local bifurcation analysis near the positive equilibrium point 
E2 = (x*, y*, z*, w*) of system (2) in the Int. 8�" . Note the following, according to 
the Jacobian matrix J2given by Eq. (4.13) in [26], the characteristic equation of J2, 
can be written as: 
 
λ

4 + y� λ3 + y� λ2 + y� λ + y" = 0                                                                       (4.i) 
 
Where the coefficients: 
 
z{= - (b44 + b11 + b22), 
 
z|= b44 (b11 + b22 + b33) + b11(b22 + b33) +  b22 b33 + b23 b42 + b31b13 – ( b34 b43+ 
b33 + b2

12 ), 
 
z}= b34(b23 b42 + b11 b43 + b22 b43 ) + b44 ( b23 b42 + b2

12 + b31 b13 ) + b11 b23 b42 + 
b12 b21 b33+ b22 b31 b13–( b11( b22 b44+b33 b44 + b22 b33) + b11 b22 b33 + b21 b32 b13 ), 
 
z~ = b34(b23 b42 + b12 b21 b43 -b23b42(u2+2x*+(1+u1) y

* +z*) - b31b42b21 - b11b22b43)+ 
b44 ( b11 b22 b33 + b21 b32 b13 - b11b23b42 - b12b21b33 - b12b31b23 - b22b31b13) - b12b23b31 
 
Note that, according to the elements of J2, it is easy to verify that: 
 
C1 = k1 – k2  

C2 = k3 – k4 
C3 = k5 – k6 
C4 = k7 – k8 
 
Further: 
 
∆1 = y�y�- y�. 
 
= k1k3 + k2 k4 + k6 – ( k1k4 + k2k3 + k5 ), 
 
and  
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∆2 = y�(y�y�- y�) -y��y". 
 
Where: 
 
k1 = u3 + u5 + u10 + u11 + u12 + 2x*+(1+u1) y

* + (1+ u4) z
*. 

 
k2 = 1 + u1x

* + u6 z
*. 

 
k3 = u6z

*(1+ u7+u9my*+ u6w
*)+(u10 + u11 + u12)(u2+2x*+(1+u1) y

*+(1+ u4) z
*+ u3 + 

u5 + u7 + u10 + u6w
* ) + (u8x

*+u9(1-m) y* )(u6z
*+u1x

*) + (u2+2x*+(1+u1) y
*+ z*)( u4 

z*+ u3+ u5 + u7 + u10 + u6w
*) + u1x

*(1+ u6 z
* ) + 2u3(1+u1)x

*+ (u3 + u5+ u4 z
*) (u7 + 

u10 + u6w
*) . 

 
k4 = (u10 + u11 + u12) (1+ u1x

*+  u8x
*+u9(1-m) y*) +u6z

*(u2+2x*+(1+u1) y
*+(1+ u4) 

z*+ u3 +u5+ u7 +u10+ u6w
*)+ (u8x

*+u9(1-m) y* ) ( u2+2x*+(1+u1) y
*+(1+ u4) z

*+ u3 
+ u5) + u1x

*( u2+2x*+(1+u1) y
*+ z*+ u7 + u10+ u6w

*) +(u3 + u5+ u4 z
*) + u11( u7 + 

u9my*+ u6w
*) + ( (1+u1) x

*)2 + u4u9my*+ u8x
*z* + u�� . 

 
k5 = u11(u7+u9my*+u6w

*) (1+u1x
*) + u6z

*(u4u9my*z* + (u7+u9my*+ u6w
*) 

(u2+2x*+(1+u1) y*+(1+u4)z
*+u3+u5) + ((1+u1) x*)2 + u�� ) + (u10 + u11 + u12) 

(u4u9my*z*+2u3 (1+u1) x* + u8x
*z*) + u3(u2+u1y

*) (u8x
*+u9 (1-m) y*) + 

u4u9my*z*(u2+2x*+(1+u1) y*+ z*+1) + (u2+u1y
*) (u7 + u10 + u6w

*) (1+u1) x*+ 
u8x

*z*(u3 + u5+ u4 z
*) + m4 + m2 + m1(u2+2x*+(1+u1) y

*+ z*). 
 
k6 = u11(u4u9my*z*+ (u7 + u9my* + u6w

*) (u2+2x*+(1+u1) y
* + (1+ u4)z

*+ u3 +u5)) 
+ (u10+u11+u12) ((1+u1)x

*)2 + u�� ) + u6z
*(u4u9my*z*+2u3(1+u1) x*+ u8x

*z*+ 
(u7+u9my*+u6w

*) (1 + u1x
*))+(u2+u1y

*) (u8x
*+u9(1-m) y*) (1+u1)x

* + u3(u2+u1y
*) 

(u7 + u10+ u6w
*) + u8u1x

*2z* + m3 + m1 + m2(u2+2x*+(1+u1) y
*+ z*). 

 
k7= u11(m5 + m8(u10+u12) ) + u6z

*(m6 + m7(u10+u12) ) + u4u8(1+u1) x
*y*z* 

 

k8 =u11 (m6 + m7(u10+u12) ) + u6z
*(m5 + m8(u10+u12) ) u3u4u8y

*z* 
 
Here: 
 
m1 = (u10+ u11+ u12)(u3 + u5+ u4 z

*+ u7 + u10 + u6w
*)+ u6z

*(u8x
*+u9(1-m) y* + u1x

*) 
+u1x

*(u8x
*+u9(1-m) y*) +(u3 + u5+ u4 z

*) (u7 + u10 + u6w
*) 

 
m2=u1x

*(2 u10+ u11+ u12+ u7 +u6w
*)+u6 z

*( u3 + u5+ u4 z
*)+( u8x

*+u9(1-m) y*)( u7 
+u10 +u6w

*+u3 +u5+u4 z
*). 

 
m3 = u1x

*(1+ (u2+2x*+(1+u1) y
*+ z*)(u7+u10 + u6w

*) ) + (u3+u5+u4 z
*)(u8x

*+u9(1-
m) y*)(u2+2x*+(1+u1)y

* + z*). 
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m4 = (u3+u5+u4z
*) (1+(u2+2x*+(1+u1)y

*+z*) (u7+u10+u6w
*)) + u1x

*(u2+2x*+(1+u1) 
y*+ z*) (u8x

*+u9(1-m) y*) + u9(1-m) (u2+u1y
*) x*z*. 

 
m5 = (u2+2x*+(1+u1)y

*+z*) (u4u9my*z*+u1x
*(u7+u9my*+u6w

*)) +(u7+u9my*+u6w
*) 

(u3(u2+u1y
*)+(u3+u5+u4 z

*). 
 
m6 = (u7+u9my*+u6w

*) (u1x
*+(1+u1) x*(u2+u1y

*) + (u3+u5+ u4z
*) (u2+2x*+ 

(1+u1)y
*+z*)) + u9mz*(u4y

*+u8z
*(u2+u1y

*)).                                                                                                                           
 
m7 = σ2 + (u2+2x*+(1+u1)y

*+z*) σ1 + (u2+u1y
*) σ4 + u8z

*
σ5 

 
m8 = σ1 + (u2+2x*+(1+u1)y

*+z*) σ2 + (u2+u1y
*) σ3 + u8z

* σ6 . 
 
With:                                                                                                                                                                       
 
σ1 = u1x

*(u8x
*+u9(1-m) y*) + (u3 + u5+ u4 z

*)(u7+u9my*+u6w
*) + u4u9my*z* . 

 
σ2 = u1x

*(u7+u9my*+u6w
*) + (u3 + u5+ u4 z

*)(u8x
*+u9(1-m) y* ) .                                                                         

 
σ3 = u3 (u7 + u10 + u6w

*) + (1+u1) x
*(u8x

*+u9(1-m) y* ) .                                                                                            
 
σ4= u9(1-m)x*z* + u3(u8x

*+u9(1-m) y* ) +(1+u1) x
*( u7+u9my*+u6w

*) .                                                              
 
σ5 = u4y

*(1+u1) x
* + (u3 + u5+ u4 z

*) x*, σ6 = u1x
*2 + u3u4y

*. 
 
According to described above, the local bifurcation analysis near the positive 
equilibrium point E2 of system (2) can be derived easily as shown in the following 
theorem.    
 
Theorem 4: Suppose that the following conditions 
 
x*>

O7
��O	                                                                                                                (4.j) 

 
m7> m8&m5< m6 + (u10+u12) (m7-m8)                                                                (4.k) 
 
:�∗ + 2h∗ + �1 + :��y*+ z*> 1                                                                          (4.L) 
 
(u3+u5+u4 z

*) (u2+2x* + (1+u1)y
*+z*-1) + (u2+u1y

*) ((1+u1) x
* - u3) ≠ 

u1x
*(1-(u2+2x*+ (1+u1) y

*+z*))                                                                          (4.m) 
 

z*> max �O		∗
OU  , O	K�O		∗ �O	


OU �                                                                               (4.n) 

 
β1 ≠ β2                                                                                                                                                                          (4.o) 
 
where: 
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β1 = t1h1(ℎ� + �1 + :��ℎ� + 1) + ��ℎ�ℎ�:� +:)lℎ� +�� (:(ℎ� + :)�1 − l�ℎ� +
:&ℎ�). 
 
β2 = ��ℎ�:"  + :&ℎ�. 
 
Here: 
 

h1= 
!���O	��∗@O7$�	��∗�


!�@�O
���∗����O	�p∗� �∗�$�
, h2 = 
�	
�
 , h3=

�ONT�∗�	��OJ�ONTp∗�OU�∗��
�
]OU�∗@�O	K�O		∗ �O	
�^�


. 

 

�� = 
�O
�O	p∗�]!OU�∗@�O	K�O		∗ �O	
�$��7�OM�∗�
�@�VONT�∗^

�
�V
 , 

 

�� = 
!OU�∗@�O	K�O		∗ �O	
�$�7@ �VONT�∗

�O		∗ @OU�∗��

 

 

��= 
@!OU�∗@�O	K�O		∗ �O	
�$

�O		∗ @OU�∗�  .  

 
With: 
 
��= :"?∗ (1- (u2+2x*+ (1+u1) y

*+z*)) - (u2+u1y
*) x*. 

 
��  = :�h∗  (1- (u2+2x*+ (1+u1) y*+z*)) + (u3+u5+u4 z

*) (u2+2x*+(1+u1)y
*+z*-1) 

+(u2+u1y
*) ((1+u1) x

* + u3). 
 
�� = u9(1-m) z*(1- (u2+2x*+ (1+u1) y

*+z*)) + u8z
*((1+u1) x

* + u3) . 
 
�" = �:&�∗ − :��∗ �(u2+2x*+ (1+u1) y

*+z* - 1).                                                                  
 
are satisfied. Then for the parameter value 
 

:��∗ = − ]OVOM�∗p∗!���O	��∗@O7$^
T<@!TU��O	K�O	
��TJ@TM�$  + u6 z

* , system (2) at the equilibrium 

point E2 has: 
 
1. No transcritical bifurcation. 
2. Saddle-node bifurcation. 
 
Proof: The characteristic equation of J2 that given by Eq. (4.i) having zero 
eigenvalue (say λ = 0) if and only if C4=0 and then E2 becomes a nonhyperbolic 
equilibrium point. Now, by substituting the value of  :��∗  in C4 we get: 
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(:��∗  – u6z
*)(l# −(l& + �:�, + :��� (l+ − l()))+ u4u8y

*z*((1+u1) x* - u3) = 0, 
where :��∗ > 0 under the conditions (4.j) & (4.k). Clearly the Jacobian matrix of 
system (2) at the equilibrium point E2 with parameteru11 = :��∗  becomes: 
 
Y�∗ = Y��:��∗ �=c�ste4x4, where �st = �st for alli, j = 1,2,3,4 except ��" & �"" which 
are given by: 
 
��" = :��∗  – u6z

*&�""= u6z
*- (u10+ :��∗ + u12).  

 

Now, let Z[�] = ( P�
[�],  P�

[�], P�
[�], P"

[�] )T be the eigenvector corresponding to the 
eigenvalue λ = 0. Thus 
 
�Y�∗ − λ [ �Z[�] = 0, which gives: 
 

P�
[�] = h1P�

[�],  P�
[�]= h2P�

[�],  P"
[�] = - h3P�

[�]and P�
[�] is any nonzero real number.  

 

It is clear that P�
[�]  and P�

[�] exists under the conditions (4.j), (4.L) & (4.m), 

while P"
[�] exist under the conditions (4.j), (4.L), (4.m) & (4.n). 

 

Let  ѱ[�]  = (ѱ�
[�] , ѱ�

[�] ,ѱ�
[�] ,ѱ"

[�]  )T  be the eigenvector associated with the 
eigenvalue λ = 0 of the matrix  Y�∗\. Then we have �Y�∗\ − λ [ �ѱ[�] = 0. By solving 
this equation for  ѱ[�] we obtain: 
 

ѱ[�]  = ( −��ѱ"
[�] , ��ѱ"

[�] , ��ѱ"
[�], ѱ"

[�]  )T  here ѱ"
[�]  is any nonzero real number. 

Clearly, according to conditions (4.j), (4.L), (4.m) & (4.n) we have ѱ�
[�] and ѱ�

[�] 
exists, while ѱ�

[�]exist under the condition (4.n). 
 
Now, since 
 
_ `

_O		  = aO		( X, :��) = (
_ 	̀
O		 , _ 
̀

O		 , _ 7̀
O		 , _ V̀

O		  )T = ( 0, 0, w, -w )T, where 

 
X = (x, y, z, w)T . 
 
So, aO		( b�, :��∗ ) = (0, 0, �∗, -�∗ )T 
 
and hence 
  

(ѱ[�] )TaO		( b�, :��∗ ) =�∗ѱ"
[�] ( t3 -1 ) =�∗ѱ"

[�] ( O	K�O	

O		∗ @OU�∗ ) ≠ 0, under condition                          

                                                                                                                            (4.n) 
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So, according to the Sotomayor's theorem for local bifurcation, the transcritical 
bifurcation can't occur while the first condition of saddle-node bifurcation is 
satisfied. Further, by substitutingE�, :��∗   and  Z[�]  in (4.a) we get: 
 

D2F( b�, :��∗ )(Z[�], Z[�]) = 

( )
( )

( )
( ) 




















−
+−+

−
+++−

]2[
336

]2[
329

]2[
3

]2[
336

]2[
329

]2[
318

]2[
3

]2[
34

]2[
311

]2[
32

]2[
3

]2[
321

]2[
31

]2[
31

2

)1(2

2

)1(2

vhuvmhuv

vhuvhmuvhuv

vuvhuvh

vvhuvhvh

. 

Hence, it is obtain that: 
 

(ѱ[�] )Tcd�a�b�, :��∗ �!Z[�], Z[�]$e =  2�P�
[�]�2ѱ"

[�] (β1 - β2) . 
 
According to condition (4.o) we obtain that: 
 
(ѱ[�] )Tcd�a�b�, :��∗ �!Z[�], Z[�]$e  ≠ 0 , and hence system (2) has saddle-node 
bifurcation at E2 with the bifurcation point given by:��∗  and thiscomplete the 
proof .   ■ 
 

5 The Hopf Bifurcation Analysis of System (2) 
 
In this section, the occurrence of Hopf-bifurcation near the equilibrium pointsof 
the system (2) is investigated as shown in thebelow. 
 
5.1 The Hopf Bifurcation Analysis Near E2 
 
To discuss the possibility of Hopf bifurcation to occur,it should be noted the 
following: 
 
The conditions of Hopf bifurcation for n = 4 are constructed according to the 
Haque and Venturino methods [21]. Consider the characteristic equation given by: 
 
n"��� = �" + y��� +y��� +y�γ + y" = 0 
 
Here: 
 
y�= - tr (J(x*)), y�= N1(J(x*)),y�= - N2(J(x*))  and  y"= det(J(x*)) with N1(J(x*)) 
and N2(J(x*))  represent the sum of the determent of the principal minors of order 
two and three of J(x*) respectively. Clearly, the first condition of Hopfbifurcation 
holds if and only if 
 
ys> 0; i = 1,3; ∆1 = y�y�- y�> 0; y�� - 4 ∆1> 0; ∆2 = y�(y�y�- y�) - y��y" = 0, 
 

consequently, y" =
�7��	�
@�7�

�	

. So, the characteristic equation becomes: 
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n"��� = ]�� + �7
�	^ ]�� + y�� + �	

�	^ = 0.                                                            (5.a) 

 
Clearly, the roots of Eq.(5.a) are 
 

��,�= ± i��7
�	   and  ��," =

�
� �− y� ± �y�� − 4 �	

�	� . 

 
Now, to verify the transversality condition of Hopf bifurcation, we substitute   
γ(q) = δ1�o�  ∓ iδ2�o� into Eq. (5.a), and calculating its derivative with respect to 
the bifurcation parameter  q,  n"́ (γ(q))= 0, also comparing the two sides of this 
equation and then equating their real and imaginary parts, we have: 
 
Ψ�o�δ�� (o) - Φ�o�δ�� (o) + Θ(o�= 0  
                                                                                                                            (5.b) 
Φ�o�δ�� (o) + Ψ�o�δ�� (o� + Γ(o) = 0 . 
 
Where: 
 
Ψ�o�= 4(δ1�o�)3+ 3y�(q)(δ1�o�)2+ y�(q) + 2y�(q) δ1�o� - 12δ1�o�δ��(q) – 3y�(q)(δ2�o�)2 

 

Φ�o�= 12(δ1�o�)2 δ2�o� + 6y�(q) δ1�o�δ2�o�+ 2y�(q) δ2�o� - 4(δ2�o�)3(5.c) 
 
Θ(o� =(δ1�o�)3 y�� �o�+y�� �o� δ1�o�+y�� �o�(δ1�o�)2+y"� �o� -3y�� �o�δ1�o�(δ2�o�)2- 
 y�� �o�(δ2�o�)2 

 
Γ(o) = 3(δ1�o�)2 δ2�o�y�� �o� + y�� �o� δ2�o�+ 2y�� �o� δ1�o�δ2�o� - y�� �o�(δ2�o�)3. 
 
Solving the linear system (5.b) by using Cramer's rule for the unknowns δ�� (o) and 
δ�� (o) , gives that: 
 

δ�� (o) = -
�����������������

!����$
�!����$
  ; δ�� (o) = - 
�����������������

!����$
�!����$
 . 

 
Therefore the second necessary and sufficient condition of Hopf bifurcation 
 
�

�� (Re(γ))|���    =δ�� (o)|��� ≠ 0. 

 
Will be satisfied if and only if 
 
Θ(o �Ψ�o � + Γ(o )Φ�o � ≠ 0                                                                                 (5.d) 
 
Finally, according to the above results in the following theorem, the conditions of 
Hopf bifurcation of the positive equilibrium point E2 are established. 
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Theorem 5: Suppose that the conditions (4.j), (4.k) with the following conditions 
are satisfied: 
 
k1> k2&k5> k6                                                                                                                                                        (5.e) 
 
k1k3 + k2 k4 + k6>   k1k4 + k2 k3 + k5                          (5.f) 
 
(k1-k2)

2 + 4k4> 4k3                                                                                                                                             (5.g) 
 
(k1-k2)

2 b > a                                                                                                       (5.h) 
 
∆1>y�& H1 ≠ H2                                                                                                                                      (5.i) 
 
Where: 
 
a = (k5 – k6)( k1k3 + k2 k4 + k6 – (  k1k4 + k2 k3 + k5 ) ) > 0. 
 
b = u6z

*(m6 + (u10+u12) (m7-m8)  - m5)+ u4u8y
*z*((1+u1) x

* -  u3)> 0. 
 

H1 = 
�∆	@�7�

�	

¢�+ 

�7
�	 ¢� + m6 + (u10+u12) (m7-m8) - m5. 

 

H2 =  
�∆	@�7�

�	

 (¢"+

�7
�	 ) + 

�7
�	 ¢�. 

 
Here: 
 
¢�= u10 + (u2+2x*+(1+u1) y

*+ z*) + (u3+u5+u4 z
*) . 

 
¢�= 1+ u1x

*+u9my* + (u8x
*+u9(1-m) y* ) . 

 
¢�= u1x

*+ (u7 + u9my*+ u6w
*) (1+u1) x

* + (u4u9my*z*+ 2u3(1+u1) x
*+ u8 x

*z* ) + 
(u2+2x*+(1+u1) y

*+ z*) ((u7 + u9my*+ u6w
*) +(u3+u5+u4 z

*) ). 
 
¢"= u4u9my*z*+(u7 + u9my*+u6w

*)(1+ (u2+2x*+(1+u1) y*+ z*) + (u3+u5+u4 z
*))+ 

u1x
*(u2+2x*+(1+u1) y

*+ z*) + ((1+u1) x
*)2 + u�� ) . 

 

Then at the parameter value  : �� = 
£@  ��	@�
�
 ¤

T<@!TU��O	K�O	
��TJ@TM�$��	@�
�
, the system 

(2) has a Hopf bifurcation near the point  E2 . 
 
Proof: Consider the characteristic equation of the system (2) at E2 which is given 
by Eq. (4.i). Now, to verify the necessary and sufficient conditions for a Hopf 
bifurcation to occur we need to find a parameter (say  : ��) satisfy that: 
 
ys(: ��) >0; i = 1, 3, ∆1 (: ��) >0,y���: ��� − 4Δ��: ���> 0, ∆2 (: ��) =0. 
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Where ys ; i = 1, 3represent the coefficients of characteristic Eq.( 4.i).Therefore it 
is observed that  ∆2 =0 gives: 
 
(k5 – k6)(k1k3 + k2 k4 + k6 – ( k1k4 + k2 k3 + k5 )) - (k1-k2)

2 (k7 – k8) =0 
 
It is easy to verify that, the parameter's value that satisfy the above equation is: 
 

: �� = 
£@  ��	@�
�
 ¤

T<@!TU��O	K�O	
��TJ@TM�$��	@�
�
 , 

 
Where : �� is a positive parameter under the conditions (4.j), (4.k) and (5.h). Now, 
at u11 = : �� the characteristic equation given by Eq.(4.i) can be written as: 
 

n"�X��= ]X�� + �7
�	^ ]X�� + y�X� + �	

�	^ = 0. 

 

Thus, the roots become X� �,p= ± i ��7
�	    and  X� �,�  = 

�
� �− y� ± �y�� − 4 �	

�	�. 

Clearly, at u11 = : �� there are two pure imaginary eigenvalues ( X� � &  X� p) and 
two eigenvalues which are real and negative provided the conditions (5.f) and  
(5.g) holds .  
 
Now for all values ofu11in the neighborhood of  : �� , the roots in general of the 
following form: 
 

 X� � = ω1(u11) + iω2(u11)  and  X� p  = ω1(u11) - iω2(u11) ;  X� �,�  = 
�
� �− y� ±

�y�� − 4 �	
�	

�. Clearly, Re(X� �,p�:���)|O		�O¦		= ω1(: �� ) = 0 , that means the first 

condition of the necessary and sufficient conditions for Hopf bifurcation is 
satisfied at  u11 = : �� .  
 
Now to verify the transversality condition we must prove thatΘ(: ���Ψ�: ��� + 
Γ(: ��)Φ�: ��� ≠ 0,where the form of  Θ, Ψ, Γ and Φ are given in Eq.(5.c). Note 

that for  u11 = : ��we have  ω1= 0  and  ω2= ��7
�	  , substitution into (5.c) gives the 

following simplifications:  
 
Ψ�: ��� = - 2y�� :¦��� 
 

Θ(: ��� = y�"� :¦�7ــ���
�	 y��� :¦��� 

 

Γ(: ��) = ω2(: �� )(y���7ــ���¦: �
�	 y��� :¦���  )  

 

Φ�: ���=2 
§
�O¦		 �

�	  (y�y�- 2y�  ) . 
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Where: 
 

y��= 
��	

�O		 |O		�O¦		= 1  

 

y��= 
��


�O		 |O		�O¦		= ¢�- ¢� 

 

y��= 
��7

�O		 |O		�O¦		= ¢�- ¢" 

 

y�"= 
��V

�O		 |O		�O¦		= m5–( m6 + (u10+u12) (m7-m8)). 

 
Further, by substitution into Eq.(5.d) we get that: 
 
Θ(o �Ψ�o � + Γ(o )Φ�o � = H1ـ   .H2≠ 0  yields, under the condition (5.i) ـ
 
So, we obtain that the Hopf bifurcation occurs around the equilibrium pointE2at 
the parameter :�� =  : ��  and the proof is complete.             ■ 
 

6 Numerical Simulation Analysis of System (2) 
 
In this section the dynamical behavior of system (2) is studied numerically for 
different sets of parameters and different sets of initial points. The objectives of 
this study are: first investigate the effect of varying the value of each parameter on 
the dynamical behavior of system (2) and second confirm our obtained analytical 
results. It is observed that, for the following set of hypothetical parameters that 
satisfies stability conditions ofthe positive equilibrium point, system (2) has a 
globally asymptotically stable positive equilibrium point as shown in Fig. (1). 
 
Note that, from now onward the red, blue, sky blue and green colors are used to 
describing the trajectories of the susceptible prey x, infected prey y, susceptible 
predator z and infected predator w respectively. 
 
u1 = 0.5, u2 = 0.1, u3 = 0.1,u4 = 0.5, u5 = 0.5, 
u6 = 0.3, u7 = 0.2, u8 = 0.5, u9 = 0.5, u10 = 0.1,                                           (6.1)          
u11 = 0.3, u12 = 0.2, m= 0.6. 
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Fig. 1: Time series of the solution of system (2) that started from four different 
initial points (1.5, 0.8, 0.9, 0.9), (0.5, 0.4, 0.8, 0.9), (0.4, 0.4, 0.7, 0.7) and (0.3, 
0.3, 0.5, 0.5) for the data given by Eq. (6.1). (a) trajectories of  x  as a function of 
time, (b) trajectories of y  as a function of time, (c) trajectories of  z  as a function 
of time, (d) trajectories of w as a function of time. 
 
Clearly, figure (1) shows that system (2) has a globally asymptotically stable as 
the solution of system (2) approaches asymptotically to the positive equilibrium 
pointE2 = (0.41, 0.4, 0.18, 0.06) starting from four different initial points and this 
is confirming our obtained analytical results, see [26]. 
 
Now, in order to discuss the effect of the parameters values of system (2) on the 
dynamical behavior of the system, the system is solved numerically for the data 
given in Eq. (6.1) with varying one parameter each time. It is observed that 
varying the parameters values  ui; i = 1,3,4,5,6,9,11,12 and  m, do not  have any 
effect on the dynamical behavior of system (2) and the solution of the system still 
approaches to positive equilibrium point  E2 = (x*,y*,z*,w*). 
 
However, we note that varying the infection rates of susceptible prey and predator 
u2 and u7, respectively keeping other parameters fixed as given in Eq. (6.1), leads 
to occurrence of local bifurcation as shown in Fig. (2).                         
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Fig. 2: Time series of the solution of system (2) for the data given by Eq. 

(6.1)with varying in the values ofu2 andu7, which summarized in the following 
table (1). 

 
Table 1: Numerical behaviors and local bifurcation of system (2) as varying in 
some parameters with keeping to the rest of the parameters fixed as in Eq. (6.1) 

 
 

Parameter varied in 
system (2) 

Numerical behavior of system (2) Local bifurcation of 
system (2) 

0.1 ≤u2≤0.9 Approaches to the positive stable 
pointInt..8�"  

Saddle-node bifurcation 

0.001 ≤u2 ≤ 0.0099 
0.001 ≤u7< 0.0036 

Approaches to the stable point  E1 Saddle-node bifurcation  

1.2  ≤  u2< 34.94   Approaches to the stable point  E0 Transcritical bifurcation  
 

Clearly, figure (2) show that the occurrence of local bifurcation (such as  saddle-
node and  transcritical) of system (2) and  the used values in table (1) satisfy the 
stability conditions of the equilibrium point of system (2). 
 

7 Conclusion and Discussion 
 
In this paper, we established the conditions of the occurrence of local bifurcation 
(such as saddle-node, transcritical and pitchfork) with particular emphasis on the 
Hopf bifurcation near of thepositive equilibrium point of eco-epidemiological 
mathematical model involving SIS infectious disease in prey population whereas, 
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this disease passed from a prey to predator through attacking of predator to prey . 
The dynamical behavior of system (2) has been investigated local bifurcation as 
well as Hopf bifurcation. Further, it is observed that the system (2) near the 
vanishing equilibrium point (E0) with the parameter  u�∗  = 1+

;7
;<  , has transcritical 

bifurcation. While the system (2) near the predator free equilibrium point(E1) with 

the parameter u�#  =
];7�;<��;	A^
^@]!;	���;7�;<�$A^�!;7�;<���;	�$�^^

;<�A^ , has Saddle-

node bifurcation. Also the system (2) near the positive equilibrium point (E2) at 
the parameter 
 

u��∗ =− ];V;M%∗�∗!���;	�A∗@;7$^
L<@!LU��;	K�;	
��LJ@LM�$ + u6 z

*, has saddle-node bifurcation. 

 
Note that, the system (2)at each point  Eii= 0,1,2  has no pitchfork bifurcation. 
Finally, the conditions of occurrence of the Hopf-bifurcation near the positive 
equilibrium point (E2)are given. 
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