

Gen. Math. Notes, Vol. 4, No. 1, May 2011, pp. 28-34 ISSN 2219-7184; Copyright © ICSRS Publication, 2011 www.i-csrs.org Available free online at http://www.geman.in

Unique Fixed Point Theorem for Weakly

S-Contractive Mappings

D.P. Shukla and Shiv Kant Tiwari

Department of Mathematics/ Computer Science Govt. P.G. Science College, Rewa, 486001 (M.P.) India E-mail: shukladpmp@gmail.com

(Received: 2-2-11 /Accepted: 5-4-11)

Abstract

In this paper, we have unique fixed point theorem using S-contractive mappings in complete metric space. We supported our result by some examples.

Keywords: Complete metric space, Fixed point, Weak S-contraction.

1 Introduction

It is well known that Banach's contraction mapping theorem is one of the pivotal results of functional analysis. A mapping T:X \rightarrow X where (X,d) is a metric space, is said to be a contraction if there exist $0 \le k < 1$ such that

$$d(Tx, Ty) \le k d(x, y) \text{ for all } x, y, \in X$$

$$(1.1)$$

If the metric space (X, d) is complete then the mapping satisfying (1.1) has a unique fixed point which established by Banach (1922). The contractive definition (1.1) implies that. T is uniformly continuous. It is natural to ask if there is

contractive definition which do not force T to be continuous. It was answered in affirmative by Kannan [5] who establish a fixed point theorem for mapping satisfying.

$$d(Tx, Ty) \le k [d(x, Tx) + d(y, Ty)]$$
 (1.2)

for all x, $y \in x$ and $0 \le k < \frac{1}{2}$

The mapping satisfying (1.2) are called Kannan type mapping. It is clear that contractions are always continuous and Kannan mapping are not necessarily continuous.

There is a large literature dealing with Kannan type mapping and generalization some of which are noted in [2, 4, 6, 7]

A similar contractive condition has been introduced by Shukla's we call this contraction a S-contraction.

Definition 1.1. S-contraction

Let $T: X \to X$ where (X, d) is a complete metric space is called a S-contraction if there exist $0 \le k < 1/3$ such that for all $x, y \in X$ the following inequality holds:

$$d(Tx, Ty) \le k [d(x, Ty) + d(Tx, y) + d(x, y)]$$
(1.3)

A weaker contraction has been introduced in Hilbert spaces in [1].

Definition 1.2. Weakly contractive mapping

A mapping $T: X \to X$ where (X,d) is a complete metric space is said to be weakly contractive [3] if

$$d(Tx, Ty) \le d(x, y) - \psi[d(x, y)]$$
(1.4)

where $x, y \in X, \psi: [0, \infty) \rightarrow [0, \infty)$ is continuous and non decreasing

$$\psi(x) = 0$$
 iff $x = 0$ and $\lim \psi(x) = \infty$

If we take $\Psi(x) = kx$ where $0 \le k < 1$ then (1.4) reduces to (1.1)

Definition1.3. Weak S-contraction

A mapping $T: X \to X$ where (X, d) is a complete metric space is said to be weakly S-contractive or a weak S-Contraction if for all $x, y \in X$ such that

$$d(Tx, Ty) \le 1/3[d(x, Ty) + d(Tx, y) + d(x, y)] -\psi[d(x, Ty), d(Tx, y), d(x, y)]$$
(1.5)

where $\psi: [0, \infty)^3 \rightarrow [0, \infty)$ is a continuous mapping such that

$$\Psi(x, y, z) = 0$$
 iff $x = y = z = 0$ and $\lim_{x \to \infty} \Psi(x) = \infty$

If we take $\psi(x, y, z) = k (x + y + z)$ where $0 \le k < 1/3$ then (1.5) reduces to (1.3). i.e. weak S-contractions are generalization of S-Contraction. The next section we established that in a complete metric space a weak S-contraction has a unique fixed point. At the end of the next section we supported some examples.

2 Main Results

Theorem 2.1. Let $T : X \to X$, where (X, d) is a complete metric space be a weak *S*-contraction. Then *T* has a unique fixed point.

Proof. Let $x_0 \in X$ and $n \ge 1$, $x_{n+1} = Tx_n$. (2.1) If $x_n = x_{n+1} = Tx_n$ then x_n is a fixed point of T. So we assume $x_n \ne x_{n+1}$ Putting $x = x_{n-1}$ and $y = x_n$ in (1.5) we have for all n = 0, 1, 2, ...

 $\begin{aligned} d(x_n, x_{n+l}) &= d(Tx_{n-l}, Tx_n) \\ &\leq 1/3 \left[d(x_{n-l}, Tx_n) + d(Tx_{n-1}, x_n) + d(x_{n-l}, x_n) \right] \\ &- \psi \left[d(x_{n-l}, Tx_n), d(Tx_{n-1}, x_n), d(x_{n-l}, x_n) \right] \\ &= 1/3 \left[d(x_{n-1}, x_{n+1}) + d(x_n, x_n) + d(x_{n-l}, x_n) \right] \\ &- \psi \left[d(x_{n-l}, x_{n+1}), d(x_n, x_n), d(x_{n-1}, x_n) \right] \\ &= 1/3 \left[d(x_{n-1}, x_{n+1}) + d(x_{n-1}, x_n) \right] - \psi \left[d(x_{n-l}, x_{n+1}), 0, d(x_{n-1}, x_n) \right] \\ &\leq 1/3 \left[d(x_{n-1}, x_n) + d(x_n, x_{n+1}) + d(x_{n-l}, x_n) \right] \\ &- \psi \left[d(x_{n-l}, x_n) + d(x_n, x_{n+1}) + d(x_{n-l}, x_n) \right] \\ &- \psi \left[d(x_{n-1}, x_n) + d(x_n, x_{n+1}) + d(x_{n-1}, x_n) \right] \end{aligned} \tag{2.2} \\ &2/3 \ d(x_n, x_{n+1}) \leq 2/3 \ d(x_{n-1}, x_n) - \psi \left[d(x_{n-1}, x_n) + d(x_n, x_{n+1}), d(x_{n-1}, x_n) \right] \\ &\leq 2/3 \ d(x_{n-1}, x_n) \end{aligned} \tag{2.3}$

i.e. $\{d(x_n, x_{n+1})\}$ is a monotone decreasing sequence of (2.3) decreasing sequence of non-negative real numbers and hence is convergent.

i.e. $\lim_{n\to\infty} d(x_n, x_{n+1})$ is exist.

let
$$d(x_n, x_{n+1}) \rightarrow r \text{ as } n \rightarrow \infty$$
 (2.4)
We next prove that $r = 0$.

$$\begin{aligned} d(x_n, x_{n+l}) &= d(Tx_{n-l}, Tx_n) \\ &\leq 1/3 \left[d(x_{n-l}, Tx_n) + d(Tx_{n-l}, x_n) + d(x_{n-l}, x_n) \right] \\ &- \psi \left[d(x_{n-1}, Tx_n), d(Tx_{n-1}, x_n), d(x_{n-1}, x_n) \right] \\ &= 1/3 \left[d(x_{n-l}, x_{n+1}) + d(x_n, x_n) + d(x_{n-l}, x_n) \right] \\ &- \psi \left[d(x_{n-1}, x_{n+1}), d(x_n, x_n), d(x_{n-1}, x_n) \right] \\ &\leq 1/3 \left[d(x_{n-l}, x_{n+1}) + d(x_{n-1}, x_n) \right] \end{aligned}$$
(2.5)

taking $n \rightarrow \infty$ in (2.5) we have by (2.4).

$$\begin{split} &\lim_{n \to \infty} d(x_n, x_{n+1}) \le 1/3 \lim_{n \to \infty} \left[d(x_{n-1}, x_{n+1}) + d(x_{n-1}, x_n) \right] \\ &r \le 1/3 \left[\lim_{n \to \infty} d(x_{n-1}, x_{n+1}) + r \right] \\ &2r \le \lim_{n \to \infty} d(x_{n-1}, x_{n+1}) \end{split} \tag{2.6}$$

Since $d(x_{n-1}, x_{n+1}) \le d(x_{n-1}, x_n) + d(x_n, x_{n+1})$ taking limit as $n \to \infty$ in above we have by (2.4)

$$\lim_{n \to \infty} d(x_{n-1}, x_{n+1}) \le 2r$$
(2.7)

from (2.6) and (2.7)

$$\lim_{n\to\infty} d(x_{n-1}, x_{n+1}) = 2n$$

Again taking $n \rightarrow \infty$ in (2.2)

$$\begin{split} &\lim_{n \to \infty} d(x_n, x_{n-1}) \leq 1/3 \ [\lim_{n \to \infty} d(x_{n-1}, x_n) + d(x_n, x_{n+1}) + d(x_{n-1}, x_n)] \\ &- \psi \ [\lim_{n \to \infty} \ \{d(x_{n-1}, x_n) + d(x_n, x_{n+1})\}, \ \lim_{n \to \infty} d(x_{n-1}, x_n)] \\ &r \leq 1/3 \ [r + r + r] - \psi \ (2r, r, 0) \\ &r \leq r - \psi \ (2r, r, 0) \end{split}$$

or $\psi(2r, r, 0) \le 0$ which is contraction unless r = 0Thus we have established that

$$d(x_n, x_{n+l}) \to 0 \text{ as } n \to \infty$$
(2.9)

Next we show that $\{x_n\}$ is a Cauchy sequence. If otherwise, then there exist $\in > 0$ and increasing sequences of integers $\{m(k)\}$ and $\{n(k)\}$ such that for all integers 'k',

$\mathbf{n}(\mathbf{k}) > \mathbf{m}(\mathbf{k}) > \mathbf{k},$	
$d(x_{m(k)}, x_{n(k)}) \ge \in$	(2.10)

and $d(x_{m(k)}, x_{n(k)-1}) < \in$

Then,

$$\begin{split} & \in \leq d(x_{m(k)}, x_{n(k)}) = d(Tx_{m(k)-l} Tx_{n(k)-l}) \\ & \leq 1/3 \left[d(x_{m(k)-l}, Tx_{n(k)-l}) + d \left(Tx_{m(k)-l}, x_{n(k)-l} \right) + (d(x_{m(k)-l}, x_{n(k)-l}) \right] \\ & - \psi \left[d(x_{m(k)-l}, Tx_{n(k)-l}) + d(Tx_{m(k)-l}, x_{n(k)-l}), d(x_{m(k)-l}, x_{n(k)-l}) \right] \\ & = 1/3 \left[d(x_{m(k)-l}, x_{n(k)}) + d \left(x_{m(k)}, x_{n(k)-l} \right) + (d(x_{m(k)-l}, x_{n(k)-l}) \right] \end{split}$$

(2.11)

$$\begin{array}{ll} - \psi \left[d(x_{m(k)-l}, x_{n(k)}), d(x_{m(k)}, x_{n(k)-l}), \ d(x_{m(k)-l}, x_{n(k)-l}) \right] \end{array} \tag{2.12} \\ \mbox{Again} \\ & \in \leq d(x_{m(k)}, x_{n(k)}) \\ & \leq d(x_{m(k)}, x_{n(k)-1}) + d(x_{n(k)-l}, x_{n(k)}) \ by \ (2.11), \\ & \leq \epsilon + d(x_{n(k)-1}, x_{n(k)}) \\ \mbox{taking} \quad k \to \infty \ is \ a \ above \ inequality \ and \ using \ (2.9) \ we \ obtain \\ & \quad \epsilon \leq \lim_{k \to \infty} d(x_{m(k)}, x_{n(k)}) \leq \epsilon \\ \mbox{and} \\ & \quad \epsilon \leq \lim_{k \to \infty} d(x_{m(k)}, x_{n(k)-1}) + \lim_{k \to \infty} d(x_{n(k)-l}, x_{n(k)}) \leq \epsilon \\ \mbox{we have} \\ & \quad \lim_{k \to \infty} d(x_{m(k)}, x_{n(k)}) = \epsilon \end{aligned} \tag{2.13} \\ \mbox{And} \\ & \quad \lim_{k \to \infty} d(x_{m(k)}, x_{n(k)-1}) = \epsilon \\ \mbox{Similarly} \\ \mbox{Similarly} \\ \end{array}$$

 $\lim_{k \to \infty} d(x_{m(k)-1}, x_{n(k)}) = \in$ (2.15)

taking $k \rightarrow \infty$ in (2.12) and using (2.9), (2.13), (2.14) and (2.15) we obtain

$$\begin{aligned} & \epsilon \leq 1/3 \ [\epsilon + \epsilon + \epsilon] - \psi (\epsilon, \epsilon, \epsilon) \\ & \epsilon \leq \epsilon - \psi (\epsilon, \epsilon, \epsilon) \\ & \psi (\epsilon, \epsilon, \epsilon) \leq 0 \text{ which is contraction since } \epsilon > 0 \end{aligned}$$

Hence $\{x_n\}$ is a Cauchy sequence and therefore is convergent in the complete metric space (X,d)

Let
$$x_n \to z$$
 and $n \to \infty$. (2.16)
Then

$$d(z, Tz) \le d(z, x_{n+1}) + d(x_{n+1}, Tz) = d(z, x_{n+1}) + d(Tx_n, Tz).$$

$$\le d(z, x_{n+1}) + 1/3 [d(x_n, Tz) + d(Tx_n, z) + d(x_n, z)] = \psi [d(x_n, Tz), d(Tx_n, z), d(x_n, z)] = d(z, Tx_n) + 1/3 [d(x_n, Tz) + d(Tx_n, z) + d(x_n, z)] = -\psi [d(x_n, Tz), d(Tx_n, z), d(x_n, z)] = d(z, Tz) + 1/3 [d(z, Tz) + d(Tz, z) + d(z, z)] = -\psi (d(z, Tz), d(Tz, z), d(z, z)] = 2d(z, Tz) - \psi (d(z, Tz), d(Tz, z), d(z, z)) < 2d(z, Tz) - d(z, Tz) < 0 = d(z, Tz) < 0$$

Hence Tz = z

Next we establish that the fixed point z is unique. Let z_1 and z_2 be two fixed points of T, then

 $\begin{aligned} &d(z_1, z_2) = d(Tz_1, Tz_2) \\ &\leq 1/3 \left[d(z_1, Tz_2) + d(Tz_1, z_2) + d(z_1, z_2) \right] \\ &\quad - \psi \left(d(Tz_1, z_2), d(z_1, Tz_2), d(z_1, z_2) \right) \end{aligned}$

i.e.

 $d(z_1, z_2) \le d(z_1, z_2) - \psi d(z_1, z_2), d(z_1, z_2), d(z_1, z_2))$ which by property of ψ is a contradiction unless $d(z_1, z_2) = 0$, that is $z_1 = z_2$. Hence fixed point is unique in S-contraction. consider the following example

Example 2.1. Let $x = \{p, q, r,\}$ and d is a metric defined on X as follows.

<i>(i)</i>	d(p, q) = 2	d(q, r) = 4	d(r, p) = 3
and	T(p) = q	T(q) = q	T(r) = p
(ii)	d(q, r) = 2	d(r, p) = 4	d(p,q) = 3
	T(q) = r	T(r) = r	T(p) = q
(iii)	d(r, p) = 2	d(p, q) = 4	d(q, r) = 3
	T(r) = p	T(p) = p	T(q) = r
1			1 ()

where $T: X \rightarrow x$ is mapping defined as (i) (ii) and (iii) respectively Then (X, d) is a complete metric space.

Let $\psi(a, b, c) = 1/3 \min \{a, b, c\}$

Then T is a weak S-contraction and conditions of theorem are satisfied. Hence T must have a unique fixed point.

It is clear that q, r and p are fixed point of T

Corresponding mapping of T.

and if x replace p or q and y replace r then inequality. (1.3) does not holds by definition of T in (i)

Similarly x replace q and r and y replace p then inequality (1.3) does not holds by definition of T in (ii)

and x replace r and p and y replace q then inequality (1.3) does not holds by definition of T in (iii)

Acknowledgements

The author's express grateful thanks to Prof. S.K. Chatteorjea and Binayak S. Choudhury for there valuable research papers for the improvement for our paper.

References

- [1] A. Azam and Md. Arshad, Kannan fixed point theorem on generalization metric spaces, *J. Nonlinear. Sci. Appli.*, 1(1) (2008), 45-48.
- [2] Ya.I. Alber and S. Guerre-Delabrieer, Principles of weakly contractive maps in Hilbert spaces, new results in operator theory, *Advances and*

Appl., (ed.by I. Gohberg and Yu Lyubich), Birkhauser Verlag, Basel, 98 (1997), 7 - 22.

- [3] B.S. Chaudhury, Unique fixed point theorem for weakly C-contractive mappings, *Kathmandu University Journal of Science, Engineering and Technology*, 5(1) (2009), 6-13.
- [4] K.M. Ghosh, A generalization of contraction principle, *Internat. J. Math. and Math. Sci*, 4(1) (1981), 201-207.
- [5] R. Kannan, Some results on fixed points, *Bull. Calcutta Math. Soc.*, 60(1968), 71-76.
- [6] N. Shioji, T. Suzuki and W. Takahashi, Contractive mappings, Kannan mappings and metric completeness, *Proc. Amer. Math. Soc.*, 126(1998), 3117-3124.
- [7] T. Zamfirescu, Fixed point theorem in metric spaces, *Arch. Math.*, 23(1972), 126-298.