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Abstract
For any graph G = (V,E), a subset S of V is a dominating set if every

vertex in V − S is adjacent to at least one vertex in S. A dominating set S is
said to be a complementary connected dominating set if the induced subgraph
〈V −S〉 is connected. The minimum cardinality of a complementary connected
dominating set is called the complementary connected domination number and
is denoted by γcc(G). The connectivity κ(G) of a connected graph G is the
minimum number of vertices whose removal results in a disconnected or trivial
graph. In this paper we find an upper bound for the sum of the complementary
connected domination number and connectivity of a graph and characterize the
corresponding extremal graphs.
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1 Introduction

The graph G = (V,E) we mean a finite, undirected and connected graph with
neither loops nor multiple edges. The order and size of G are denoted by n
and m respectively. The degree of any vertex u in G is the number of edges
incident with u and is denoted by d(u). The minimum and maximum degree
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of a graph G is denoted by δ(G) and ∆(G) respectively. For graph theoretic
terminology we refer to Chartrand and Lesniak [1] and Haynes et.al [2, 3].

In a graph G, a subset S ⊆ V is a dominating set if every vertex in V −S is
adjacent to at least one vertex in S. The minimum cardinality of a dominating
set is called the domination number of G and is denoted by γ(G). T. Tamizh
Chelvam and B. Jayaprasad [6] introduced the concept of complementary con-
nected domination in graphs. Also V.R. Kulli and B. Janakiram [4] studied
the same concept in the name of the nonsplit domination number of a graph.
A dominating set S is said to be a complementary connected dominating set
if the induced subgraph 〈V − S〉 is connected. The minimum cardinality of
a complementary connected dominating set is called the complementary con-
nected domination number of G and is denoted by γcc(G) and such a set S
is called a γcc− set. The connectivity κ(G) of a connected graph G is the
minimum number of vertices whose removal results in a disconnected or trivial
graph.

Several authors have studied the problem of obtaining an upper bound
for the sum of a domination parameter and a graph theoretic parameter and
characterized the corresponding extremal graphs. J. Paulraj Joseph and S.
Arumugam [5] proved that γ(G) + κ(G) ≤ n and characterized the corre-
sponding extremal graphs. In this paper, we obtain an upper bound for the
sum of the complementary connected domination number and connectivity
of a graph and characterize the corresponding extremal graphs. We use the
following theorems and notations.

Theorem 1.1 [6] For any graph G, γcc(G) ≤ n − 1 and equality holds if
and only if G is a star.

Theorem 1.2 [1] For a graph G, κ(G) ≤ δ(G).

Notation 1.3 H(m1,m2, ...,mn) denotes the graph obtained from the graph
H by attaching mi pendant edges to the vertex vi ∈ V (H), 1 ≤ i ≤ n. The graph
K2(m1,m2) is called a bistar and it is also denoted by B(m1,m2).

Notation 1.4 H(Pm1 , Pm2 , ..., Pmn) is the graph obtained from the graph H
by attaching an end vertex of Pmi

to the vertex vi in H, 1 ≤ i ≤ n.

Notation 1.5 Let G be a regular graph. The graph G(r) is obtained from
the graph G ∪ K1 by adding r number of edges between the vertex of K1 and
any r vertices of G.

2 Main Results

Observation 2.1 Suppose n ≥ 3, Y is a matching of Kn and G = Kn− Y
then γcc(G) ≤ 2.
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Theorem 2.2 For any connected graph G, γcc(G) + κ(G) ≤ 2n − 2 and
equality holds if and only if G is isomorphic to K2.

Proof: γcc(G) + κ(G) ≤ n− 1 + δ ≤ n− 1 + n− 1 = 2n− 2.
Let γcc(G) + κ(G) = 2n− 2. Then γcc(G) = n− 1 and κ(G) = n− 1 which

gives G is a complete graph as well as a star graph. Hence G is isomorphic to
K2. The converse is obvious. �

Theorem 2.3 For any connected graph G, γcc(G) + κ(G) = 2n− 3 if and
only if G is isomorphic to K1,2 or K3.

Proof: Let γcc(G) + κ(G) = 2n− 3. Then there are two cases to consider
(i) γcc(G) = n− 1 and κ(G) = n− 2 (ii) γcc(G) = n− 2 and κ(G) = n− 1.
Case 1. γcc(G) = n− 1 and κ(G) = n− 2

Then G is a star graph and hence κ(G) = 1 which gives n = 3. Thus G is
isomorphic to K1,2.
Case 2. γcc(G) = n− 2 and κ(G) = n− 1

Since κ(G) = n−1, we have G is a complete graph. But γcc(Kn) = 1 which
gives n = 3. Hence G is isomorphic to K3. The converse is obvious. �

Theorem 2.4 For any connected graph G, γcc(G) + κ(G) = 2n − 4 if and
only if G is isomorphic to K1,3 or K4 or C4.

Proof: Let γcc(G) +κ(G) = 2n−4. Then there are three cases to consider
(i) γcc(G) = n − 1 and κ(G) = n − 3, (ii) γcc(G) = n − 2 and κ(G) = n − 2,
(iii) γcc(G) = n− 3 and κ(G) = n− 1.

Case 1. γcc(G) = n− 1 and κ(G) = n− 3

Then G is a star graph and hence κ(G) = 1 which gives n = 4. Thus G is
isomorphic to K1,3.

Case 2. γcc(G) = n− 2 and κ(G) = n− 2

Then n − 2 ≤ δ. If δ = n − 1 then G is a complete graph which is a
contradiction. Hence δ = n − 2. Then G is isomorphic to Kn − Y where Y
is any matching in Kn. Then γcc ≤ 2 . If γcc = 1 then n = 3 and hence G is
isomorphic to K1,2 which is a contradiction. If γcc = 2 then n = 4. Hence G
is isomorphic to C4 or K4 − e. But γcc(K4 − e) = 1 6= n− 2 which gives G is
isomorphic to C4.

Case 3. γcc(G) = n− 3 and κ(G) = n− 1

Since κ(G) = n−1, we have G is a complete graph. But γcc(Kn) = 1 which
gives n = 4. Hence G is isomorphic to K4. The converse is obvious. �
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Theorem 2.5 For any connected graph G, γcc(G) + κ(G) = 2n− 5 if and
only if G is isomorphic to any one of the following graphs (i) K1,4 (ii) K5

(iii) K4 − e (iv) C5 (v) P4 (vi) K3(1, 0, 0).

Proof: Let γcc(G) + κ(G) = 2n− 5. Then there are four cases to consider
(i) γcc(G) = n − 1 and κ(G) = n − 4, (ii) γcc(G) = n − 2 and κ(G) = n − 3,
(iii) γcc(G) = n− 3 and κ(G) = n− 2, (iv) γcc(G) = n− 4 and κ(G) = n− 1.

Case 1. γcc(G) = n− 1 and κ(G) = n− 4

Then G is a star graph and hence κ(G) = 1 which gives n = 5. Thus G is
isomorphic to K1,4.

Case 2. γcc(G) = n− 2 and κ(G) = n− 3

Then n − 3 ≤ δ. If δ = n − 1 then G is a complete graph which is a
contradiction. If δ = n − 2 then G is isomorphic to Kn − Y where Y is a
matching in Kn. Then γcc ≤ 2 and hence n = 4 which gives G is isomorphic to
either C4 or K4− e which is a contradiction to κ(G) = n−3. Hence δ = n−3.

Let X = {v1, v2, · · · , vn−3} be a minimum vertex cut of G and let V −X =
{x1, x2, x3}.

Sub Case 2.1. 〈V −X〉 = K3

Then every vertex of V − X is adjacent to all the vertices in X. Sup-
pose E(〈X〉) = ∅. Then G is isomorphic to K1,3 or K2,3 or K3,3 which is a
contradiction to γcc(G) = n− 2.

Suppose E(〈X〉) 6= ∅. Let v1v2 ∈ E(G). Then V − {x1, x2, x3, v1} is a
complementary connected dominating set of G which is a contradiction.

Sub Case 2.2. 〈V −X〉 = K1 ∪K2

Let x1 x2 ∈ E(G). Then x3 is adjacent to all the vertices in X and x1, x2
are not adjacent to at most one vertex in X. If |X| ≥ 3 then there exists an
vertex v1 ∈ X such that v1 x1, v1 x2 ∈ E(G). Then V − {x1, x2, v1} is a com-
plementary connected dominating set of G which is a contradiction. If |X| = 1
then G is either P4 or K3(1, 0, 0). Suppose |X| = 2 and let X = {v1, v2}. If x1
and x2 are adjacent to all the vertices in X. Then G is a graph obtained from
(K4− e)∪K1 by joining a vertex of K1 to two vertices of K4− e of degree 2 or
K4(2). But for these graphs γcc 6= n−2. If x1 and x2 are adjacent to v1 and not
adjacent to v2 then also γcc 6= n− 2. If x1 is not adjacent to v1 and x2 is not
adjacent to v2 then G is isomorphic to C5 or C4(2). But γcc(C4(2)) = 2 6= n−2.
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Hence G is isomorphic to C5.

Case 3. γcc(G) = n− 3 and κ(G) = n− 2

Then n − 2 ≤ δ. If δ = n − 1 then G is a complete graph which is a
contradiction. Hence δ = n − 2. Then G is isomorphic to Kn − Y where Y
is any matching in Kn. Then γcc ≤ 2. If γcc = 1 then n = 4 and hence G
is isomorphic to either C4 or K4 − e. But γcc(C4) = 2 6= n − 3. Hence G is
isomorphic to K4 − e.

Case 4. γcc(G) = n− 4 and κ(G) = n− 1

Since κ(G) = n−1 we have G is a complete graph. But γcc(Kn) = 1 which
gives n = 5. Hence G is isomorphic to K5. The converse is obvious. �

Theorem 2.6 For any connected graph G, γcc(G) + κ(G) = 2n − 6 if and
only if G is isomorphic to any one of the following graphs (i) K1,5 (ii) K6

(iii) C6 (iv) P5 (v) B(2, 1) (vi) C3(1, 1, 0) (vii) K3(2, 0, 0) (viii) K2,3 (ix) C4(2)
(x) C4(3) (xi) K5 −M where M is a matching in K5 (xii) K6 − Y where Y
is a perfect matching in K6.

Proof: Let γcc(G) + κ(G) = 2n− 6. Then there are five cases to consider
(i) γcc(G) = n − 1 and κ(G) = n − 5 (ii) γcc(G) = n − 2 and κ(G) = n − 4
(iii) γcc(G) = n− 3 and κ(G) = n− 3 (iv) γcc(G) = n− 4 and κ(G) = n− 2
(v) γcc(G) = n− 5 and κ(G) = n− 1

Case 1. γcc(G) = n− 1 and κ(G) = n− 5

Then G is a star graph and hence κ(G) = 1 which gives n = 6. Thus G is
isomorphic to K1,5.

Case 2. γcc(G) = n− 2 and κ(G) = n− 4

Then n− 4 ≤ δ(G). If δ(G) = n− 1 then G is a complete graph which is a
contradiction to κ(G) = n−4. If δ(G) = n−2 then G is isomorphic to Kn−Y
where Y is a matching in Kn. Hence γcc(G) ≤ 2. Then n ≤ 4 which is a con-
tradiction to κ(G) = n− 4. Suppose δ(G) = n− 3. Let X = {v1, v2, · · · , vn−4}
be a minimum vertex cut of G and let V − X = {x1, x2, x3, x4}. If 〈V − X〉
contains at least one isolated vertex then δ(G) ≤ n−4 which is a contradiction.
Hence 〈V −X〉 is isomorphic to K2 ∪K2. Let us assume x1x2, x3x4 ∈ E(G).
Also every vertex of V − X is adjacent to all the vertices of X. If |X| ≥ 2
then (X − {v1}) ∪ {x1, x2} is a complementary connected dominating set of
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G which is a contradiction. If |X| = 1 then {x2, x3} is a complementary con-
nected dominating set of G which is a contradiction. Thus δ(G) = n− 4.

Sub Case 2.1. 〈V −X〉 = K4

Then every vertex of V −X is adjacent to all the vertices in X. Suppose
E(〈X〉) = φ. Then |X| ≤ 4 and hence G is isomorphic to Ks,4, 1 ≤ s ≤ 4. But
γcc(G) + κ(G) 6= 2n− 6.

Suppose E(〈X〉) 6= φ. If any one of the vertex in X say v1 is adjacent to
all the vertices in X and hence γcc(G) = 1. Then n = 3 which is impossible.
Hence every vertex in X is not adjacent to at least one vertex in X. Hence
γcc(G) = 2. Then n = 4 which is also impossible.

Sub Case 2.2. 〈V −X〉 = P3 ∪K1

Let x1 be the isolated vertex in 〈V −X〉 and let (x2, x3, x4) be the path in
〈V −X〉. Then x1 is adjacent to all the vertices in X and x2, x4 are not adja-
cent to at most one vertex in X and x3 is not adjacent to at most two vertices
in X. If |X| ≥ 3 then X ∪ {x1} is a complementary connected dominating set
of cardinality n − 3 which is a contradiction. If |X| = 2 then {x3, x4, v2} is a
complementary connected dominating set of G or G is isomorphic to C6.Thus
G is isomorphic to C6. If |X| = 1 then G is isomorphic to P5 or B(2, 1) or
C3(1, 1, 0) or C4(1, 0, 0) or the graph G1 which is obtained from (K4− e)∪K1

by adding an edge between a vertex of K1 and a vertex of degree three in
K4 − e. But γcc(C4(1, 0, 0)) = γcc(G1) = 2 6= n− 2. Hence G is isomorphic to
P5 or B(2, 1) or C3(1, 1, 0).

Sub Case 2.3. 〈V −X〉 = K3 ∪K1

Let x1 be the isolated vertex in 〈V − X〉 and let 〈{x2, x3, x4}〉 be the
complete graph. Then x1 is adjacent to all the vertices in X and x2, x3, x4
are not adjacent to at most two vertices in X. If |X| ≥ 3 then X ∪ {x1}
is a complementary connected dominating set of cardinality n − 3 which is
a contradiction. If |X| = 2 then {v1, x1, x2} or {v1, x1, x3} or {v1, x1, x4} is a
complementary connected dominating set of G. Hence γcc(G) ≤ 3. Then n ≤ 5
which is a contradiction. If |X| = 1 then γcc(G) ≤ 2 and hence n ≤ 4 which is
a contradiction.

Sub Case 2.4. 〈V −X〉 = K2 ∪K2

Let x1 x2, x3 x4 ∈ E(G). Since δ(G) = n − 4 each xi, 1 ≤ i ≤ 4 is non-
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adjacent to at most one vertex in X. If |X| ≥ 3 then N(x1) ∩ N(x3) ∩ X 6=
φ. Let v1 ∈ N(x1) ∩ N(x3) ∩ X. Then V − {x1, x3, v1} is a complementary
connected dominating set of G which is a contradiction. Let |X| = 2. If
{N(x1) ∪ N(x2)} ∩ {N(x3) ∪ N(x4)} = φ then κ(G) = 1 6= n − 4 which is
a contradiction. Hence we assume with out loss of generality x1 and x3 are
adjacent to v1. Then {v2, x2, x4} is a complementary connected dominating
set of G which is a contradiction. Hence |X| = 1. Then G is isomorphic to P5

or C3(P3, P1, P1) or the graph G2 which is obtained from C3(2, 0, 0) by joining
the pendant vertices by an edge. But γcc(C3(P3, P1, P1)) = γcc(G2) = 2 6= n−2
which is a contradiction. Hence G is isomorphic to P5.

Sub Case 2.5. 〈V −X〉 = K2 ∪K2

Let x1 x2 ∈ E(G) and x3 x4 ∈ E(G). Then each xi, i = 1 or 2 is non adja-
cent to at most one vertex in X and each xj, j = 3 or 4 is adjacent to all the
vertices in X. For this graph γcc(G) ≤ 3 and hence n ≤ 5. Thus n = 5. Then
|X| = 1. Hence G is isomorphic to B(2, 1) or K3(2, 0, 0).

Case 3. γcc(G) = n− 3 and κ(G) = n− 3

Then n−3 ≤ δ(G). If δ = n−1 then G is a complete graph which is a con-
tradiction to κ(G) = n−3. If δ = n−2 then G is isomorphic to Kn−Y where
Y is a matching in Kn. Then γcc(G) ≤ 2. If γcc(G) = 1 then n = 4. Hence G
is isomorphic to K4 − e. But κ(K4 − e) = 2 6= n− 3 which is a contradiction.
If γcc(G) = 2 then n = 5. But γcc(K5−Y ) = 1. Hence there is no graph satisfy
the given conditions. Hence δ(G) = n − 3. Let X = {v1, v2, · · · , vn−3} be a
minimum vertex cut of G and let V −X = {x1, x2, x3}.

Sub Case 3.1. 〈V −X〉 = K3

Then every vertex of V −X is adjacent to all the vertices in X. Suppose
E(〈X〉) = φ. Then |X| ≤ 3 and hence G is isomorphic to K2,3 or K3,3. But
γcc(K3,3) = 2 6= n − 3. Hence G is isomorphic to K2,3. Suppose E(〈X〉) 6= φ.
If vi ∈ X for some i, is adjacent to all the vertices in X and hence γcc(G) = 1.
Then n = 4 which is a contradiction. Hence every vertex in X is not adjacent
to at least one vertex in X. Hence γcc(G) = 2. Then n = 5. Hence G is
isomorphic to K2,3.

Sub Case 3.2. 〈V −X〉 = K1 ∪K2

Let x1 x2 ∈ E(G). Since δ = n−3 we have x3 is adjacent to all the vertices
ofX and x1, x2 are non adjacent to at most one vertex inX. Suppose x1 is adja-
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cent to all the vertices of X. Then {x2, x3} is a complementary connected dom-
inating set of G and hence γcc(G) ≤ 2. If γcc(G) = 1 then n = 4. Hence G is
isomorphic to either P4 orK3(1, 0, 0). But γcc(P4) = γcc(K3(1, 0, 0)) = 2 6= n−3
which is a contradiction. If γcc(G) = 2 then n = 5. Hence G is isomorphic to
C4(2) or C4(3). Suppose d(xi) = n − 3, 1 ≤ i ≤ 2.. Then γcc(G) = 2 or 3. If
γcc(G) = 3 then n = 6. Then we get the graphs with γcc(G)+κ(G) 6= 2n−6. If
γcc(G) = 2 then n = 5. Hence G is isomorphic to C5 or C4(2) or C3(P3, P1, P1)
or the graph G3 which is obtained from C3(2, 0, 0) by joining the pendant
vertices by an edge. If G is isomorphic to C5 or C3(P3, P1, P1) or G3 then
γcc(G) + κ(G) 6= 2n− 6. Hence G is isomorphic to C4(2).

Case 4. γcc(G) = n− 4 and κ(G) = n− 2

Then δ(G) ≥ n− 2. If δ(G) = n− 1 then G is a complete graph which is a
contradiction. Hence δ(G) = n − 2. Then G is isomorphic to Kn −M where
M is a matching in Kn. Thus γcc(G) ≤ 2. If γcc(G) = 1 then n = 5. Hence
G is isomorphic to K5 −M where M is a matching in K5. If γcc(G) = 2 then
n = 6 and hence G is isomorphic to K6−Y where Y is a perfect matching in K6.

Case 5. γcc(G) = n− 5 and κ(G) = n− 1

Since κ(G) = n−1 we have G is a complete graph. But γcc(Kn) = 1 which
gives n = 6. Hence G is isomorphic to K6. The converse is obvious. �

3 Conclusion

In this paper we found an upper bound for the sum of complementary con-
nected domination number and connectivity of graphs and characterized the
corresponding extremal graphs. Similarly complementary connected domina-
tion number with other graph theoretical parameters can be considered.
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