Gen. Math. Notes, Vol. 27, No. 2, April 2015, pp. 17-36
ISSN 2219-7184; Copyright © ICSRS Publication, 2015
www.i-csrs.org
Available free online at http://www.geman.in

Idempotent Elements of the Semigroups $B_{X}(D)$ Defined by Semilattices of the Class $\Sigma_{2}(X, 8)$, When $Z_{7} \wedge Z_{6}=\emptyset$

Nino Tsinaridze
Faculty of Mathematics, Physics and Computer Sciences
Department of Mathematics, Shota Rustaveli Batumi State University
35, Ninoshvili St., Batumi 6010, Georgia
E-mail: ninocinaridze@mail.ru

(Received: 13-2-15 / Accepted: 8-4-15)

Abstract

By the symbol $\Sigma_{2}(X, 8)$ we denote the class of all X - semilattices of unions whose every element is isomorphic to an X - semilattice of form $D=\left\{Z_{7}, Z_{6}, Z_{5}\right.$, $\left.Z_{4}, Z_{3}, Z_{2}, Z_{1}, D\right\}$, where $$
\begin{aligned} & Z_{6} \subset Z_{3} \subset Z_{1} \subset \breve{D}, \quad \mathrm{Z}_{6} \subset \mathrm{Z}_{4} \subset \mathrm{Z}_{1} \subset D, \mathrm{Z}_{6} \subset Z_{4} \subset Z_{2} \subset \breve{D}, \mathrm{Z}_{7} \subset Z_{4} \subset Z_{1} \subset \breve{D}, \\ & \mathrm{Z}_{7} \subset Z_{4} \subset Z_{2} \subset \bar{D}, \mathrm{Z}_{7} \subset Z_{5} \subset Z_{2} \subset \bar{D} ; \\ & Z_{i} \backslash Z_{j} \neq \varnothing,(i, j) \in\{(7,6),(6,7),(5,4),(4,5),(5,3),(3,5),(4,3),(3,4),(2,1),(1,2)\} . \end{aligned}
$$

The paper gives description of idempotent elements of the semigroup $B_{X}(D)$ which are defined by semilattices of the class $\Sigma_{2}(X, 8)$, for which intersection the minimal elements is empty. When X is a finite set, the formulas are derived, by means of which the number of idempotent elements of the semigroup is calculated.

Keywords: Semilattice, Semigroup, Binary Relation, Idempotent Element.

1 Introduction

Let X be an arbitrary nonempty set, D be a X-semilattice of unions, i.e. a nonempty set of subsets of the set X that is closed with respect to the settheoretic operations of unification of elements from D, f be an arbitrary mapping from X into D. To each such a mapping f there corresponds a binary relation α_{f} on the set X that satisfies the condition $\alpha_{f}=\bigcup_{x \in X}(\{x\} \times f(x))$. The set of all such $\alpha_{f} \quad(f: X \rightarrow D)$ is denoted by $B_{X}(D)$. It is easy to prove that $B_{X}(D)$ is a semigroup with respect to the operation of multiplication of binary relations, which is called a complete semigroup of binary relations defined by a X semilattice of unions D (see ([1], Item 2.1).

By \varnothing we denote an empty binary relation or empty subset of the set X. The condition $(x, y) \in \alpha$ will be written in the form $x \alpha y$. Let $x, y \in X, Y \subseteq X, \alpha \in B_{X}(D)$, $T \in D, \quad \varnothing \neq D^{\prime} \subseteq D$ and $t \in \breve{D}=\bigcup_{Y \in D} Y$. Then by symbols we denote the following sets:
$y \alpha=\{x \in X \mid y \alpha x\}, Y \alpha=\bigcup_{y \in Y} y \alpha, V(D, \alpha)=\{Y \alpha \mid Y \in D\}$,
$X^{*}=\{T \mid \varnothing \neq T \subseteq X\}, D_{t}^{\prime}=\left\{Z^{\prime} \in D^{\prime} \mid t \in Z^{\prime}\right\}, Y_{T}^{\alpha}=\{x \in X \mid x \alpha=T\}$,
$D_{T}^{\prime}=\left\{Z^{\prime} \in D^{\prime} \mid T \subseteq Z^{\prime}\right\}, \ddot{D}_{T}^{\prime}=\left\{Z^{\prime} \in D^{\prime} \mid Z^{\prime} \subseteq T\right\}$.
By symbol $\wedge\left(D, D_{t}\right)$ we mean an exact lower bound of the set D^{\prime} in the semilattice D.

Definition 1.1: Let $\varepsilon \in B_{X}(D)$. If $\varepsilon \circ \varepsilon=\varepsilon$, then ε is called an idempotent element of the semigroup $B_{X}(D)$ and ε is called right unit if $\alpha \circ \varepsilon=\alpha$ for any $\alpha \in B_{X}(D)$ (see [1], [2], [3]).

Definition 1.2: We say that a complete X - semilattice of unions D is an XIsemilattice of unions if it satisfies the following two conditions:
a) $\quad \wedge\left(D, D_{t}\right) \in D$ for any $t \in \check{D}$;
b) $Z=\bigcup_{t \in Z} \wedge\left(D, D_{t}\right)$ for any nonempty element Z of D. (see ([1], definition 1.14.2), ([2] definition 1.14.2), [3], or [4]).

Definition 1.3: Let $\alpha \in B_{x}(D), \quad T \in V\left(X^{*}, \alpha\right)$ and $Y_{T}^{\alpha}=\{y \in X \mid y \alpha=T\}$. A representation of a binary relation α of the form $\alpha=\bigcup_{T \in V\left(X^{*}, \alpha\right)}\left(Y_{T}^{\alpha} \times T\right)$ is colled quasinormal.

Note that, if $\alpha=\bigcup_{T \in V\left(X^{*}, \alpha\right)}\left(Y_{T}^{\alpha} \times T\right)$ is a quasinormal representation of a binary relation α, then the following conditions are true:

1) $X=\bigcup_{T \in V\left(X^{*}, \alpha\right)} Y_{T}^{\alpha}$;
2) $\quad Y_{T}^{\alpha} \cap Y_{T^{\prime}}^{\alpha}=\varnothing$, for $T, T^{\prime} \in V\left(X^{*}, \alpha\right)$ and $T \neq T^{\prime}$;

Let $\Sigma_{n}(X, m)$ denote the class of all complete X-semilattice of unions where every element is isomorphic to a fixed semilattice D (see [1]).

Definition 1.4: We say that a nonempty element T is a nonlimiting element of the set D^{\prime} if $T \backslash l\left(D^{\prime}, T\right) \neq \varnothing$ and a nonempty element T is a limiting element of the set D^{\prime} if $T \backslash l\left(D^{\prime}, T\right)=\varnothing($ see ([1], Definition 1.13.1 and 1.13.2), ([2], Definition 1.13.1 and 1.13.2]).

Theorem 1.1: Let D be a complete X-semilattice of unions. The semigroup $B_{X}(D)$ possesses right unit iff D is an $X I$-semilattice of unions (see ([1], Theorem 6.1.3), ([2] Theorem6.1.3), or [5]).

Theorem 1.2: Let X be a finite set and $D(\alpha)$ be the set of all those elements T of the semilattice $Q=V(D, \alpha) \backslash\{\varnothing\}$ which are nonlimiting elements of the set \ddot{Q}_{T}. A binary relation α having a quasinormal representation $\alpha=\bigcup_{T \in V(D, \alpha)}\left(Y_{T}^{\alpha} \times T\right)$ is an idempotent element of this semigroup iff
a) $\quad V(D, \alpha)$ is complete $X I$ - semilattise of unions;
b) $\quad \bigcup_{T^{\prime} \in D(\alpha)_{T}} Y_{T^{\prime}}^{\alpha} \supseteq T$ for any $T \in D(\alpha)$;
c) $\quad Y_{T}^{\alpha} \cap T \neq \varnothing$ for any nonlimiting element of the set $\ddot{D}(\alpha)_{T}$ (see ([1], Theorem 6.3.9), ([2], Theorem 6.3.9) or [5]).

Theorem1.3. Let $D, \Sigma(D), E_{x}^{(r)}\left(D^{\prime}\right)$ and I denote respectively the complete $X-$ semilattice of unions, the set of all XI-subsemilatices of the semilattice D, the set of all right units of the semigroup $B_{X}\left(D^{\prime}\right)$ and the set of all idempotents of the semigroup $B_{X}(D)$. Then for the sets $E_{X}^{(r)}\left(D^{\prime}\right)$ and I the following statements are true:
b) if $\varnothing \notin D$, then

1) $E_{X}^{(r)}\left(D^{\prime}\right) \cap E_{X}^{(r)}\left(D^{\prime \prime}\right)=\varnothing$ for any elements D^{\prime} and $D^{\prime \prime}$ of the set $\Sigma(D)$ that satisfy the condition $D^{\prime} \neq D^{\prime \prime}$;
2) $I=\bigcup_{D \in \mathbb{Z}(D)} E_{X}^{(r)}\left(D^{\prime}\right)$;
3) The equality $|I|=\sum_{D \in\{(D)}\left|E_{X}^{(r)}\left(D^{\prime}\right)\right|$ is fulfilled for the finite set X (see ([1], statement b) Theorem (6.2.3) , ([2] statement b) Theorem 6.2.3), or [5]).

2 Results

By the symbol $\Sigma_{2}(X, 8)$ we denote the class of all X - semilattices of unions whose every element is isomorphic to an X-semilattice of form $D=\left\{Z_{7}, Z_{6}, Z_{5}, Z_{4}, Z_{3}, Z_{2}, Z_{1}, \breve{D}\right\}$, where

$$
\begin{array}{ll}
Z_{6} \subset Z_{3} \subset Z_{1} \subset \check{D}, & Z_{6} \subset Z_{4} \subset Z_{1} \subset D, \\
Z_{7} \subset Z_{4} \subset Z_{1} \subset \widetilde{D}, & Z_{7} \subset Z_{4} \subset Z_{2} \subset \breve{D}, \tag{1}\\
Z_{1} \backslash Z_{2} \neq \varnothing, & Z_{2} \backslash Z_{1} \neq \varnothing, \\
Z_{5} \backslash Z_{3} \neq \varnothing, & Z_{3} \backslash Z_{4} \neq \varnothing, \\
Z_{7} \subset Z_{5} \subset \varnothing & Z_{4} \backslash Z_{3} \subset Z_{2} \subset \widetilde{D}, \\
Z_{5} \backslash Z_{4} \neq \varnothing, & Z_{6} \backslash Z_{7} \neq \varnothing, \\
\neq \varnothing, & Z_{7} \backslash Z_{6} \neq \varnothing .
\end{array}
$$

The semilattice satisfying the conditions (1) is shown in Figure 1. Let $C(D)=\left\{P_{0}, P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}, P_{7}\right\}$ is a family sets, where $P_{0}, P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}, P_{7}$ are pairwise disjoint subsets of the set X and

$$
\varphi=\left(\begin{array}{llllllll}
\breve{D} & Z_{1} & Z_{2} & Z_{3} & Z_{4} & Z_{5} & Z_{6} & Z_{7} \\
P_{0} & P_{1} & P_{2} & P_{3} & P_{4} & P_{5} & P_{6} & P_{7}
\end{array}\right)
$$

is a mapping of the semilattice D onto the family sets $C(D)$. Then for the formal equalities of the semilattice D we have a form:

Fig. 1
Here the elements $P_{1}, P_{2}, P_{3}, P_{5}$ are basis sources, the element $P_{0}, P_{4}, P_{6}, P_{7}$ is sources of completenes of the semilattice D. Therefore $|X| \geq 4$ and $\delta=4$ (see ([1], Item 11.4), ([2], Item 11.4) or [3]).

Now assume that $D \in \Sigma_{2}(X, 8)$. We introduce the following notation:

1) $\quad Q_{1}=\{T\}$, where $T \in D$ (see diagram 1 in figure 2);
2) $\quad Q_{2}=\left\{T, T^{\prime}\right\}$, where $T, T^{\prime} \in D$ and $T \subset T^{\prime}$ (see diagram 2 in figure 2);
3) $Q_{3}=\left\{T, T^{\prime}, T^{\prime \prime}\right\}$, where $T, T^{\prime}, T^{\prime \prime} \in D$ and $T \subset T^{\prime} \subset T^{\prime \prime}$ (see diagram 3 in figure $2)$;
4) $\quad Q_{4}=\left\{T, T^{\prime}, T^{\prime \prime}, \breve{D}\right\}$, where $T, T^{\prime}, T^{\prime \prime} \in D$ and $T \subset T^{\prime} \subset T^{\prime \prime} \subset \breve{D}$ (see diagram 4 in figure 2);
5) $\quad Q_{5}=\left\{T, T^{\prime}, T^{\prime \prime}, T^{\prime} \cup T^{\prime \prime}\right\}$, where $T, T^{\prime}, T^{\prime \prime} \in D, \quad T \subset T^{\prime}, \quad T \subset T^{\prime \prime}$ and $T^{\prime} \backslash T^{\prime \prime} \neq \varnothing$, $T^{\prime \prime} \backslash T^{\prime} \neq \varnothing$ (see diagram 5 in figure 2);
6) $\quad Q_{6}=\left\{T, Z_{4}, Z, Z^{\prime}, \breve{D}\right\}$, where $\quad T \in\left\{Z_{7}, Z_{6}\right\}, \quad Z, Z^{\prime} \in\left\{Z_{2}, Z_{1}\right\}, Z \neq Z^{\prime}$, $Z \backslash Z^{\prime} \neq \varnothing, Z \backslash Z \neq \varnothing$ (see diagram 6 in figure 2);
7) $\quad Q_{\urcorner}=\left\{T, T^{\prime}, T^{\prime \prime}, T^{\prime} \cup T^{\prime \prime}, \breve{D}\right\}$, where $T, T^{\prime}, T^{\prime \prime} \in D, T \subset T^{\prime}, T \subset T^{\prime \prime}$ and $T^{\prime} \backslash T^{\prime \prime} \neq \varnothing$, $T^{\prime \prime} \backslash T^{\prime} \neq \varnothing$ (see diagram 7 in figure 2);
8) $Q_{8}=\left\{T, T^{\prime}, Z_{4}, Z_{4} \cup T^{\prime}, Z, \breve{D}\right\}$, where
$T \in\left\{Z_{7}, Z_{6}\right\}, T^{\prime} \in\left\{Z_{5}, Z_{3}\right\}, Z_{4} \cup T^{\prime}, Z \in\left\{Z_{2}, Z_{4}\right\}, Z_{4} \cup T^{\prime} \neq Z, T \subset T^{\prime} \quad$ and $T^{\prime} \backslash Z_{4} \neq \varnothing, \quad Z_{4} \backslash T^{\prime} \neq \varnothing,\left(Z_{4} \cup T^{\prime}\right) \backslash Z \neq \varnothing, Z \backslash\left(Z_{4} \cup T^{\prime}\right) \neq \varnothing$ (see diagram 8 in figure 2);
9) $\quad Q_{9}=\left\{T, T^{\prime}, T \cup T^{\prime}\right\}$, where $T, T^{\prime} \in D, T \backslash T^{\prime} \neq \varnothing, \quad T^{\prime} \backslash T \neq \varnothing$ and $T \cap T^{\prime}=\varnothing$ (see diagram 9 in figure 2);
10) $Q_{10}=\left\{T, T^{\prime}, T \cup T^{\prime}, T^{\prime \prime}\right\}$, where $T, T^{\prime}, T^{\prime \prime} \in D, T \cup T^{\prime} \subset T^{\prime \prime}, T \backslash T^{\prime} \neq \varnothing, T^{\prime} \backslash T \neq \varnothing$ and $T \cap T^{\prime}=\varnothing$ (see diagram 10 in figure2);
11) $Q_{11}=\left\{Z_{7}, Z_{6}, Z_{4}, Z, \breve{D}\right\}$, where $Z \in\left\{Z_{2}, Z_{1}\right\}$ and $Z_{7} \cap Z_{6}=\varnothing$ (see diagram 11 in figure 2);
12) $Q_{12}=\left\{Z_{7}, Z_{6}, Z_{4}, Z_{2}, Z_{1}, \breve{D}\right\}$, where $Z_{7} \cap Z_{6}=\varnothing$ (see diagram 12 in figure 2);
13) $Q_{13}=\left\{T, T^{\prime}, T \cup T^{\prime}, T^{\prime \prime}, Z\right\}, \quad$ where $T, T^{\prime}, T^{\prime \prime}, Z \in D, \quad\left(T \cup T^{\prime}\right) \subset Z, \quad T^{\prime} \subset T^{\prime \prime} \subset Z$, $\left(T \cup T^{\prime}\right) \backslash T^{\prime \prime} \neq \varnothing, T^{\prime \prime} \backslash\left(T \cup T^{\prime}\right) \neq \varnothing$ and $T \cap T^{\prime \prime}=\varnothing$ (see diagram 13 in figure 2);
14) $Q_{14}=\left\{T, T^{\prime}, Z_{4}, Z, Z^{\prime}, \breve{D}\right\}$, where $T, T^{\prime}, Z, Z^{\prime} \in D,\left(T \cup T^{\prime}\right) \subset Z^{\prime}, T^{\prime} \subset Z \subset Z^{\prime} \subset \breve{D}$, $Z_{4} \backslash Z \neq \varnothing, Z \backslash Z_{4} \neq \varnothing$ and $T \cap Z=\varnothing$ (see diagram 14 in figure 2);
15) $Q_{15}=\left\{T^{\prime}, T, Z_{4}, T^{\prime \prime}, Z, T^{\prime \prime} \cup Z_{4}, \breve{D}\right\}$, where $T, T^{\prime} \in\left\{Z_{7}, Z_{6}\right\}, \quad T \neq T^{\prime}, \quad T \subset T^{\prime \prime}$, $T^{\prime \prime} \in\left\{Z_{5}, Z_{3}\right\}, \quad Z_{4} \subset Z, \quad Z \cup T^{\prime \prime} \cup Z_{4}=\breve{D}, \quad\left(T^{\prime \prime} \cup Z_{4}\right) \backslash Z \neq \varnothing, \quad Z \backslash\left(T^{\prime \prime} \cup Z_{4}\right) \neq \varnothing$, $T^{\prime \prime} \backslash Z_{4} \neq \varnothing, \quad Z_{4} \backslash T^{\prime \prime} \neq \varnothing$ and $T^{\prime} \cap T^{\prime \prime}=\varnothing$ (see diagram 15 in figure 2);
16) $Q_{16}=\left\{Z_{7}, Z_{6}, Z_{5}, Z_{4}, Z_{3}, Z_{2}, Z_{1}, \breve{D}\right\}$, where $Z_{5} \cap Z_{3}=\varnothing$ (see diagram 16 in figure 2).

Fig. 2

Denote by the symbol $\Sigma\left(Q_{i}\right)(i=1,2, \ldots, 16)$ the set of all $X I$-subsemilattices of the semilattice D isomorphic to Q_{i}. Assume that $D^{\prime} \in \sum\left(Q_{i}\right)$ and denote by the symbol $I\left(D^{\prime}\right)$ the set of all idempotent elements α of the semigroup $B_{X}\left(D^{\prime}\right)$, for which the semilattices $V(D, \alpha)$ and Q_{i} are mutually α isomorphic and $V(D, \alpha)=Q_{i}$.

Definition 2.1: Let the symbol $\Sigma_{X I}^{\prime}(X, D)$ denote the set of all XI-subsemilattices of the semilattice D.

Let, further, $D, D^{\prime} \in \Sigma^{\prime}(X, D)$ and $\vartheta_{X I} \subseteq \sum_{X I}^{\prime}(X, D) \times \sum_{X I}^{\prime}(X, D)$. It is assumed that $D \vartheta_{X 1} D^{\prime}$ if and only if there exists some complete isomorphism φ between the semilattices D and D^{\prime}. One can easily verify that the binary relation $v_{x I}$ is an equivalence relation on the set $\sum_{X I}^{\prime}(X, D)$.

Let D^{\prime} be an $X I$-subsemilattices of the semilattice. By $I\left(D^{\prime}\right)$ we denoted the set of all idempotent elements of the semigroup $B_{X}\left(D^{\prime}\right)$ and $\left|I^{*}\left(Q_{i}\right)\right|=\sum_{D^{\prime} \in Q_{i}, V_{X}}\left|I\left(D^{\prime}\right)\right|$, where $i=1,2, \ldots, 16$.

Lemma 2.1: If $D \in \Sigma_{2}(X, 8)$, then the following equalities are true:

1) $\quad\left|I\left(Q_{1}\right)\right|=1$;
2) $\quad\left|I\left(Q_{2}\right)\right|=\left(2^{\left|T^{\prime} T\right|}-1\right) \cdot 2^{|X \backslash T|}$;
3) $\quad\left|I\left(Q_{3}\right)\right|=\left(2^{\mid T^{\prime} T T}-1\right) \cdot\left(3^{\left|T^{*} \backslash T^{\prime}\right|}-2^{\left|T^{\wedge}\right| T^{T} \mid}\right) \cdot 3^{\left|X \backslash T^{N \mid}\right|}$;

4) $\quad\left|I\left(Q_{5}\right)\right|=\left(2^{\left|T^{\prime} \backslash T^{T}\right|}-1\right) \cdot\left(2^{\left|T^{\prime \prime}\right| T^{\prime} \mid}-1\right) \cdot 4^{\left|X \backslash\left(T^{\prime} \cup T^{*}\right)\right|}$;
5) $\quad\left|I\left(Q_{6}\right)\right|=\left(2^{\left|Z_{4}\right| T \mid}-1\right) \cdot 2^{\left|\left(z_{2} \cap Z_{1}\right)\right| Z_{4} \mid} \cdot\left(3^{3^{|Z|} \mid}-2^{|z Z|}\right) \cdot\left(3^{\left|Z^{\prime}\right| Z \mid}-2^{\left|Z^{\prime}\right| Z \mid}\right) \cdot 5^{|x| x \mid}$;

6) $\quad\left|I\left(Q_{8}\right)\right|=\left(2^{\left|T^{\prime} Z\right|}-1\right) \cdot\left(2^{\left|Z_{4} \backslash T\right|}-1\right) \cdot\left(3^{|Z|\left(Z_{4} \cup T^{\prime}\right)}-2^{|Z|\left(Z_{4} \cup T^{\prime}\right) \mid}\right) \cdot 6^{\mid\langle | \bar{x} \mid}$;
7) $\quad\left|I\left(Q_{9}\right)\right|=3^{X X(T \sim T)}$;
8) $\quad\left|I\left(Q_{10}\right)\right|=\left(4^{\mid T^{\wedge}\left(T \cup T^{\prime} \mid\right.}-3^{\left|T^{\Upsilon} \backslash\left(T \cup T^{\prime}\right)\right|}\right) \cdot 4^{\left|X \backslash T^{\eta}\right|}$;
9) $\quad\left|I\left(Q_{11}\right)\right|=\left(4^{|z| Z_{4} \mid}-3^{|z| Z_{4} \mid}\right) \cdot\left(5^{|\bar{D}| \bar{z} \mid}-4^{|\bar{D}| z \mid}\right) \cdot 5^{|x| \bar{D} \mid}$;
10) $\quad\left|I\left(Q_{12}\right)\right|=\left(4^{\left|z_{1}\right| Z_{2} \mid}-3^{\left|Z_{1}\right| Z_{2} \mid}\right) \cdot\left(4^{\left|Z_{2}\right| Z_{1} \mid}-3^{\left|z_{2}\right| Z_{1} \mid}\right) \cdot 6^{|x| 0 \mid}$;
11) $\quad\left|I\left(Q_{13}\right)\right|=\left(2^{\left|T^{\Upsilon}\left(T^{\prime} \cup T\right)\right|}-1\right) \cdot 5^{|X \backslash Z|}$;
12) $\quad\left|I\left(Q_{14}\right)\right|=\left(2^{|z| Z_{4} \mid}-1\right) \cdot\left(6^{|\bar{D}| Z \mid}-5^{\left|\bar{D} \backslash Z^{\prime}\right|}\right) \cdot 6^{|x \backslash \bar{D}|}$;

$$
\left|I\left(Q_{15}\right)\right|=\left(2^{\left|T^{\top} \backslash Z\right|}-1\right) \cdot\left(4^{\left|Z\left(T^{*} \cup Z_{4}\right)\right|}-3^{\left|z \backslash\left(T^{*} \cup Z_{4}\right)\right|}\right) \cdot 7^{|x \backslash \bar{D}|} ;
$$

$$
\left|I\left(Q_{16}\right)\right|=\left(2^{\left|Z_{s} \backslash Z_{1}\right|}-1\right) \cdot\left(2^{\left|Z_{3} \backslash Z_{2}\right|}-1\right) \cdot 8^{|X \backslash \breve{D}|} \text { (see [6] Lemma 3.3). }
$$

Theorem 2.1: Let $D \in \Sigma_{2}(X, 8), \quad Z_{7} \cap Z_{6}=\varnothing, Z_{7} \cap Z_{3} \neq \varnothing, Z_{6} \cap Z_{5} \neq \varnothing \quad$ and $\alpha \in B_{X}(D)$. The binary relation α is an idempotent relation of the semmigroup $B_{X}(D)$ iff binary relation α satisfies only one condition of the following conditions:

1) $\alpha=X \times T$, where $T \in D$;
2) $\alpha=\left(Y_{T}^{\alpha} \times T\right) \cup\left(Y_{T}^{\alpha} \times T^{\prime}\right)$, where $\quad T, T^{\prime} \in D, T \subset T^{\prime}, \quad Y_{T}^{\alpha}, Y_{T^{\prime}}^{\alpha} \notin\{\varnothing\} \quad$ and \quad satisfies the conditions: $Y_{T}^{\alpha} \supseteq T, Y_{T^{\prime}}^{\alpha} \cap T^{\prime} \neq \varnothing$;
3) $\alpha=\left(Y_{T}^{\alpha} \times T\right) \cup\left(Y_{T^{\prime}}^{\alpha} \times T^{\prime}\right) \cup\left(Y_{T^{\prime}}^{\alpha} \times T^{\prime \prime}\right)$, where $T, T^{\prime}, T^{\prime \prime} \in D, T \subset T^{\prime} \subset T^{\prime \prime}, Y_{T}^{\alpha}, Y_{T^{\prime}}^{\alpha}, Y_{T^{\prime}}^{\alpha} \notin\{\varnothing\}$ and satisfies the conditions: $Y_{T}^{\alpha} \supseteq T, Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq T^{\prime}, Y_{T^{\prime}}^{\alpha} \cap T^{\prime} \neq \varnothing, Y_{T^{\prime}}^{\alpha} \cap T^{\prime \prime} \neq \varnothing$;
4) $\alpha=\left(Y_{T}^{\alpha} \times T\right) \cup\left(Y_{T^{\prime}}^{\alpha} \times T^{\prime}\right) \cup\left(Y_{T^{\prime}}^{\alpha} \times T^{\prime \prime}\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)$, where $T, T^{\prime}, T^{\prime \prime} \in D$ and $T \subset T^{\prime} \subset T^{\prime \prime} \subset \breve{D}$, $Y_{T}^{\alpha}, Y_{T^{\prime}}^{\alpha}, Y_{T^{\prime}}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$ and satisfies the conditions: $Y_{T}^{\alpha} \supseteq T, Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq T^{\prime}$, $Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq T^{\prime \prime}, Y_{T^{\prime}}^{\alpha} \cap T^{\prime} \neq \varnothing, Y_{T^{\prime}}^{\alpha} \cap T^{\prime \prime} \neq \varnothing, Y_{0}^{\alpha} \cap \check{D} \neq \varnothing ;$
 $T \subset T^{\prime \prime}, T^{\prime} \backslash T^{\prime} \neq \varnothing, \quad T^{\prime \prime} \backslash T^{\prime} \neq \varnothing, Y_{T}^{\alpha}, Y_{T^{\prime}}^{\alpha}, Y_{T^{\prime}}^{\alpha} \notin\{\varnothing\}$ and satisfies the conditions: $Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq T^{\prime}, Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq T^{\prime \prime}, Y_{T^{\prime}}^{\alpha} \cap T^{\prime} \neq \varnothing, Y_{T^{*}}^{\alpha} \cap T^{\prime \prime} \neq \varnothing ;$
5) $\alpha=\left(Y_{T}^{\alpha} \times T\right) \cup\left(Y_{4}^{\alpha} \times Z_{4}\right) \cup\left(Y_{Z}^{\alpha} \times Z\right) \cup\left(Y_{Z^{\prime}}^{\alpha} \times Z^{\prime}\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)$, where $T \in\left\{Z_{7}, Z_{6}\right\}$, $Z, Z^{\prime} \in\left\{Z_{2}, Z_{1}\right\}, Z \neq Z^{\prime}, \quad Z \backslash Z^{\prime} \neq \varnothing, Z \backslash Z \neq \varnothing, \quad Y_{T}^{\alpha}, Y_{4}^{\alpha}, Y_{Z}^{\alpha}, Y_{Z}^{\alpha} \notin\{\varnothing\} \quad$ and satisfies the conditions: $Y_{T}^{\alpha} \supseteq T, Y_{T}^{\alpha} \cup Y_{4}^{\alpha} \supseteq Z_{4}, Y_{T}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{Z}^{\alpha} \supseteq Z, Y_{T}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{Z^{\prime}}^{\alpha} \supseteq Z^{\prime}, Y_{4}^{\alpha} \cap Z_{4} \neq \varnothing$, $Y_{Z}^{\alpha} \cap Z_{Z} \neq \varnothing, Y_{Z^{\prime}}^{\alpha} \cap Z^{\prime} \neq \varnothing$
6) $\alpha=\left(Y_{T}^{\alpha} \times T\right) \cup\left(Y_{T^{\prime}}^{\alpha} \times T^{\prime}\right) \cup\left(Y_{T^{\prime}}^{\alpha} \times T^{\prime \prime}\right) \cup\left(Y_{T^{\prime} \cup T^{\prime}}^{\alpha} \times\left(T^{\prime} \cup T^{\prime \prime}\right)\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)$, where $\quad T, T^{\prime}, T^{\prime \prime} \in D$ and $T \subset T^{\prime}, T \subset T^{\prime \prime}, T^{\prime} \backslash T^{\prime \prime} \neq \varnothing, T^{\prime \prime} \backslash T^{\prime} \neq \varnothing, Y_{T}^{\alpha}, Y_{T^{\alpha}}^{\alpha}, Y_{T^{\prime}}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$ and satisfies the conditions: $Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq T^{\prime}, Y_{T}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq T^{\prime \prime}, Y_{T^{\prime}}^{\alpha} \cap T^{\prime} \neq \varnothing, Y_{T^{\prime}}^{\alpha} \cap T^{\prime \prime} \neq \varnothing, Y_{0}^{\alpha} \cap \check{D} \neq \varnothing$;
7) $\alpha=\left(Y_{T}^{\alpha} \times T\right) \cup\left(Y_{T}^{\alpha} \times T^{\prime}\right) \cup\left(Y_{4}^{\alpha} \times Z_{4}\right) \cup\left(Y_{T}^{\alpha} \cup Z_{4} \times\left(T^{\prime} \cup Z_{4}\right)\right) \cup\left(Y_{Z}^{\alpha} \times Z\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)$, where $T \in\left\{Z_{7}, Z_{6}\right\}$, $T^{\prime} \in\left\{Z_{5}, Z_{3}\right\}, \quad Z_{4} \cup T^{\prime}, Z \in\left\{Z_{2}, Z_{4}\right\}, \quad Z_{4} \cup T^{\prime} \neq Z, \quad T \subset T^{\prime}, \quad T^{\prime} \backslash Z_{4} \neq \varnothing, \quad Z_{4} \backslash T^{\prime} \neq \varnothing$, $\left(Z_{4} \cup T^{\prime}\right) \backslash Z \neq \varnothing, \quad Z \backslash\left(Z_{4} \cup T^{\prime}\right) \neq \varnothing, \quad Y_{T}^{\alpha}, Y_{T^{\prime}}^{\alpha}, Y_{4}^{\alpha}, Y_{Z}^{\alpha} \notin\{\varnothing\}$ and satisfies the conditions: $Y_{T}^{\alpha} \cup Y_{T}^{\alpha} \supseteq T^{\prime}, Y_{T}^{\alpha} \cup Y_{4}^{\alpha} \supseteq Z_{4}, Y_{T}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{Z}^{\alpha} \supseteq Z, Y_{T^{\prime}}^{\alpha} \cap T^{\prime} \neq \varnothing, Y_{4}^{\alpha} \cap Z_{4} \neq \varnothing, Y_{Z}^{\alpha} \cap Z \neq \varnothing ;$
8) $\alpha=\left(Y_{T}^{\alpha} \times T\right) \cup\left(Y_{T^{\prime}}^{\alpha} \times T^{\prime}\right) \cup\left(Y_{T \cup T^{\prime}}^{\alpha} \times\left(T \cup T^{\prime}\right)\right), \quad$ where $\quad T, T^{\prime} \in D, \quad T \backslash T^{\prime} \neq \varnothing, \quad T^{\prime} \backslash T \neq \varnothing$, $Y_{T}^{\alpha}, Y_{T^{\prime}}^{\alpha} \notin\{\varnothing\}$ and satisfies the conditions: $Y_{T}^{\alpha} \supseteq T, Y_{T^{\prime}}^{\alpha} \supseteq T^{\prime}$;
9) $\alpha=\left(Y_{T}^{\alpha} \times T\right) \cup\left(Y_{T^{\alpha}}^{\alpha} \times T^{\prime}\right) \cup\left(Y_{T \cup T^{\prime}}^{\alpha} \times\left(T \cup T^{\prime}\right)\right) \cup\left(Y_{T^{\prime}}^{\alpha} \times T^{\prime \prime}\right), \quad$ where $\quad T, T^{\prime}, T^{\prime \prime} \in D, \quad T \backslash T^{\prime} \neq \varnothing$, $T^{\prime} \backslash T \neq \varnothing, Y_{T}^{\alpha}, Y_{T}^{\alpha}, Y_{T^{*}}^{\alpha} \notin\{\varnothing\}$ and satisfies the conditions: $Y_{T}^{\alpha} \supseteq T, Y_{T^{\prime}}^{\alpha} \supseteq T^{\prime}, Y_{T^{\circ}}^{\alpha} \cap T^{\prime \prime} \neq \varnothing$;
10) $\alpha=\left(Y_{7}^{\alpha} \times Z_{7}\right) \cup\left(Y_{6}^{\alpha} \times Z_{6}\right) \cup\left(Y_{4}^{\alpha} \times Z_{4}\right) \cup\left(Y_{Z}^{\alpha} \times Z\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)$, where $Z \in\left\{Z_{2}, Z_{1}\right\}, Y_{7}^{\alpha}, Y_{6}^{\alpha}, Y_{Z}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$ and satisfies the conditions:
$Y_{7}^{\alpha} \supseteq Z_{7}, Y_{6}^{\alpha} \supseteq Z_{6}, Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{Z}^{\alpha} \supseteq Z, Y_{Z}^{\alpha} \cap Z \neq \varnothing, \quad Y_{0}^{\alpha} \cap \check{D} \neq \varnothing ;$
11) $\alpha=\left(Y_{7}^{\alpha} \times Z_{7}\right) \cup\left(Y_{6}^{\alpha} \times Z_{6}\right) \cup\left(Y_{4}^{\alpha} \times Z_{4}\right) \cup\left(Y_{2}^{\alpha} \times Z_{2}\right) \cup\left(Y_{1}^{\alpha} \times Z_{1}\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)$, where $Y_{7}^{\alpha}, Y_{6}^{\alpha}, Y_{2}^{\alpha}, Y_{1}^{\alpha} \notin\{\varnothing\}$ and satisfies the conditions: $Y_{7}^{\alpha} \supseteq Z_{7}, Y_{6}^{\alpha} \supseteq Z_{6}, Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{2}^{\alpha} \supseteq Z_{2}, Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{1}^{\alpha} \supseteq Z_{1}$, $Y_{2}^{\alpha} \cap Z_{2} \neq \varnothing, \quad Y_{1}^{\alpha} \cap Z_{1} \neq \varnothing$.

Proof: In this case, when $Z_{7} \cap Z_{6}=\varnothing$, from the Lemma 2.3 in [6] it follows that diagrams 1-12 given in fig. 1 exhibit all diagrams of $X I$-subsemilattices of the semilattices D, a quasinormal representation of idempotent elements of the semigroup $B_{X}(D)$, which are defined by these $X I$ - semilattices, may have one of the forms listed above. The statements 1)-4) immediately follows from the Corollary 13.1.1 in [1], Corollary 13.1.1 in [2], the statements 5)-7) immediately follows from the Corollary 13.3.1 in [1], Corollary 13.3.1 in [2] and the statement 8) immediately follows from the Theorems 13.7.2 in [1], Theorems 13.7.2 in [2], The statements 9)-11) immediately follows from the Corollary 13.2.1 in [1], 13.2.1 in [2], the statement 12) immediately follows from the Corollary 13.5.1 in [1], 13.5 in [2].

The Theorem is proved.
Lemma 2.2: Let $D \in \Sigma_{2}(X, 8)$ and $Z_{7} \cap Z_{6}=\varnothing, Z_{7} \cap Z_{3} \neq \varnothing, Z_{6} \cap Z_{5} \neq \varnothing$. If X is a finite set, then the number $\left|I^{*}\left(Q_{9}\right)\right|$ can be calculated by the formula

$$
\left|I^{*}\left(Q_{9}\right)\right|=3^{\left|X Z_{4}\right|} .
$$

Proof: By definition of the given semilattice D we have $Q_{9} \theta_{x l}=\left\{\left\{Z_{7}, Z_{6}, Z_{4}\right\}\right\}$. If the following equality is hold $D_{1}^{\prime}=\left\{Z_{7}, Z_{6}, Z_{4}\right\}$, then $\left|I^{*}\left(Q_{9}\right)\right|=\left|I\left(D_{1}^{\prime}\right)\right|$. From this equality and statement (9) of Lemma 2.1 we obtain validity of Lemma 2.2.

The Lemma is proved.
Lemma 2.3: Let $D \in \Sigma_{2}(X, 8)$ and $Z_{7} \cap Z_{6}=\varnothing, Z_{7} \cap Z_{3} \neq \varnothing, Z_{6} \cap Z_{5} \neq \varnothing$. If X is a finite set, then the number $\left|I^{*}\left(Q_{10}\right)\right|$ can be calculated by the formula

$$
\left|I^{*}\left(Q_{10}\right)\right|=\left(4^{\left|Z_{2}\right| Z_{4} \mid}-3^{\left|Z_{2}\right| Z_{4} \mid}\right) \cdot 4^{|X| Z_{2} \mid}+\left(4^{\left|Z_{1}\right| Z_{4} \mid}-3^{\left|Z_{1}\right| Z_{4} \mid}\right) \cdot 4^{|X| Z_{\mid} \mid}+\left(4^{|\bar{D}| Z_{4} \mid}-3^{\left|\bar{D} Z_{4}\right|}\right) \cdot 4^{|X| \bar{D} \mid} .
$$

Proof: By definition of the given semilattice D we have

$$
Q_{10} \theta_{x I}=\left\{\left\{Z_{7}, Z_{6}, Z_{4}, Z_{2}\right\},\left\{Z_{7}, Z_{6}, Z_{4}, Z_{1}\right\},\left\{Z_{7}, Z_{6}, Z_{4}, \breve{D}\right\}\right\} .
$$

If the following equalities are hold

$$
\begin{aligned}
D_{1}^{\prime}= & \left\{Z_{7}, Z_{6}, Z_{4}, Z_{2}\right\}, D_{2}^{\prime}=\left\{Z_{7}, Z_{6}, Z_{4}, Z_{1}\right\}, D_{3}^{\prime}=\left\{Z_{7}, Z_{6}, Z_{4}, \check{D}\right\}, \text { then } \\
& \left|I^{*}\left(Q_{10}\right)\right|=\left|I\left(D_{1}^{\prime}\right)\right|+\left|I\left(D_{2}^{\prime}\right)\right|+\left|I\left(D_{3}^{\prime}\right)\right|
\end{aligned}
$$

From this equality and statement (10) of Lemma 2.1 we obtain validity of Lemma 2.3.

The Lemma is proved.
Lemma 2.4: Let $D \in \Sigma_{2}(X, 8)$ and $Z_{7} \cap Z_{6}=\varnothing, Z_{7} \cap Z_{3} \neq \varnothing, Z_{6} \cap Z_{5} \neq \varnothing$. If X is a finite set, then the number $\left|I^{*}\left(Q_{11}\right)\right|$ can be calculated by the formula

$$
\left|I^{*}\left(Q_{11}\right)\right|=\left(4^{\left|Z_{2}\right| Z_{4} \mid}-3^{\left|Z_{2}\right| Z_{4} \mid}\right) \cdot\left(5^{|\bar{D}| Z_{2} \mid}-4^{\left|\bar{D} Z_{2}\right|}\right) \cdot 5^{|x| \bar{D} \mid}+\left(4^{\left|Z_{1}\right| Z_{4} \mid}-3^{\left|Z_{1}\right| Z_{4} \mid}\right) \cdot\left(5^{\left|\bar{D} z_{1}\right|}-4^{\left|\bar{D} Z_{1}\right|}\right) \cdot 5^{|x| \bar{D} \mid} .
$$

Proof: By definition of the given semilattice D we have

$$
Q_{11} \theta_{x I}=\left\{\left\{Z_{7}, Z_{6}, Z_{4}, Z_{2}, \breve{D}\right\},\left\{Z_{7}, Z_{6}, Z_{4}, Z_{1}, \breve{D}\right\}\right\} .
$$

If the following equalities are hold $D_{1}^{\prime}=\left\{Z_{7}, Z_{6}, Z_{4}, Z_{2}, \breve{D}\right\}, D_{2}^{\prime}=\left\{Z_{7}, Z_{6}, Z_{4}, Z_{1}, \breve{D}\right\}$, then

$$
\left|I^{*}\left(Q_{11}\right)\right|=\left|I\left(D_{1}^{\prime}\right)\right|+\left|I\left(D_{2}^{\prime}\right)\right|
$$

From this equality and statement (11) of Lemma 2.1 we obtain validity of Lemma 2.4.

The Lemma is proved.
Lemma 2.5: Let $D \in \Sigma_{2}(X, 8)$ and $Z_{7} \cap Z_{6}=\varnothing, Z_{7} \cap Z_{3} \neq \varnothing, Z_{6} \cap Z_{5} \neq \varnothing$. If X is a finite set, then the number $\left|I^{*}\left(Q_{12}\right)\right|$ can be calculated by the formula

$$
\left|I^{*}\left(Q_{12}\right)\right|=3^{\left.\mid Z_{2} \cap Z_{1}\right)\left|Z_{4}\right|} \cdot\left(4^{\left|Z_{1}, Z_{2}\right|}-3^{\left|Z_{1}\right| Z_{2} \mid}\right) \cdot\left(4^{\left|z_{2}\right| Z_{1} \mid}-3^{\left|Z_{2} 2 Z_{1}\right|}\right) \cdot 6^{|x| \bar{D} \mid} .
$$

Proof: By definition of the given semilattice D we have

$$
Q_{12} \theta_{X I}=\left\{\left\{Z_{7}, Z_{6}, Z_{4}, Z_{2}, Z_{1}, \breve{D}\right\}\right\} .
$$

If the following equality is hold $D_{1}^{\prime}=\left\{Z_{7}, Z_{6}, Z_{4}, Z_{2}, Z_{1}, \breve{D}\right\}$, then $\left|I^{*}\left(Q_{12}\right)\right|=\left|I\left(D_{1}^{\prime}\right)\right|$
From this equality and statement (12) of Lemma 2.1 we obtain validity of Lemma 2.5.

The Lemma is proved.
It was seen in [6] that $k_{1}=\sum_{i=1}^{8}\left|I^{*}\left(Q_{i}\right)\right|$. Now, let us assume that

$$
\begin{aligned}
& k_{2}=\left|I^{*}\left(Q_{9}\right)\right|+\left|I^{*}\left(Q_{10}\right)\right|+\left|I^{*}\left(Q_{11}\right)\right|+\left|I^{*}\left(Q_{12}\right)\right|= \\
& =3^{\left|X Z_{4}\right|}+\left(4^{\left|Z_{2}\right| Z_{4} \mid}-3^{\left|Z_{2}\right| Z_{\mid} \mid}\right) \cdot 4^{|X| Z_{2} \mid}+\left(4^{\left|Z_{1}\right| Z_{4} \mid}-3^{\left|Z_{1}\right| Z_{4} \mid}\right) \cdot 4^{|X| Z_{\mid} \mid}+\left(4^{|\bar{D}| Z_{4} \mid}-3^{\left|\bar{D} Z_{4}\right|}\right) \cdot 4^{|X X| \bar{D} \mid}+ \\
& +\left(4^{\left|Z_{2}\right| Z_{4} \mid}-3^{\left|Z_{2}\right| Z_{4} \mid}\right) \cdot\left(5^{|\check{D}| Z_{2} \mid}-4^{|\bar{D}| Z_{2} \mid}\right) \cdot 5^{|x| \bar{D} \mid}+\left(4^{\left|Z_{1}\right| Z_{4} \mid}-3^{\left|Z_{1}\right| Z_{4} \mid}\right) \cdot\left(5^{|\bar{D}| Z_{\mid} \mid}-4^{\left|\bar{D} Z_{\mid}\right|}\right) \cdot 5^{|X| \bar{D} \mid}+ \\
& +3^{\left|\left(Z_{2} \cap Z_{1}\right)\right| Z_{4} \mid} \cdot\left(4^{\left|Z_{1}\right| Z_{2} \mid}-3^{\left|Z_{1}\right| Z_{2} \mid}\right) \cdot\left(4^{\left|Z_{2}\right| Z_{1} \mid}-3^{\left|Z_{2}\right| Z_{1} \mid}\right) \cdot 6^{|X| \bar{D} \mid}
\end{aligned}
$$

Theorem 2.2: Let $D \in \Sigma_{2}(X, 8)$ and $Z_{7} \cap Z_{6}=\varnothing, Z_{7} \cap Z_{3} \neq \varnothing, Z_{6} \cap Z_{5} \neq \varnothing$. If X is a finite set and I_{D} is the set of all idempotent elements of the semigroup $B_{X}(D)$, then $\left|I_{D}\right|=k_{1}+k_{2}$.

Proof: This Theorem immediately follows from the Theorem 2.1.
The Theorem is proved.
Theorem 3.1: Let $D \in \Sigma_{2}(X, 8), Z_{7} \cap Z_{6}=\varnothing, Z_{7} \cap Z_{3}=\varnothing, Z_{6} \cap Z_{5} \neq \varnothing \quad$ and $\alpha \in B_{X}(D)$. The binary relation α is an idempotent relation of the semmigroup $B_{X}(D)$ iff binary relation α satisfies only one condition of the Theorem 2.1 and only one following conditions:
13) $\alpha=\left(Y_{7}^{\alpha} \times Z_{7}\right) \cup\left(Y_{6}^{\alpha} \times Z_{6}\right) \cup\left(Y_{4}^{\alpha} \times Z_{4}\right) \cup\left(Y_{3} \times Z_{3}\right) \cup\left(Y_{1}^{\alpha} \times Z_{1}\right)$, where $\quad Y_{7}^{\alpha}, Y_{6}^{\alpha}, Y_{3}^{\alpha} \notin\{\varnothing\}$ and satisfies the conditions: $Y_{7}^{\alpha} \supseteq Z_{7}, Y_{6}^{\alpha} \supseteq Z_{6}, Y_{6}^{\alpha} \cup Y_{3}^{\alpha} \supseteq Z_{3}, Y_{3}^{\alpha} \cap Z_{3} \neq \varnothing$;
14) $\alpha=\left(Y_{7}^{\alpha} \times Z_{7}\right) \cup\left(Y_{6}^{\alpha} \times Z_{6}\right) \cup\left(Y_{4}^{\alpha} \times Z_{4}\right) \cup\left(Y_{3}^{\alpha} \times Z_{3}\right) \cup\left(Y_{1}^{\alpha} \times Z_{1}\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)$, where $Y_{7}^{\alpha}, Y_{6}^{\alpha}, Y_{3}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$ and satisfies the conditions:

$$
Y_{7}^{\alpha} \supseteq Z_{7}, Y_{6}^{\alpha} \supseteq Z_{6}, Y_{6}^{\alpha} \cup Y_{3}^{\alpha} \supseteq Z_{3}, Y_{3}^{\alpha} \cap Z_{3} \neq \varnothing, Y_{0}^{\alpha} \cap \check{D} \neq \varnothing ;
$$

15) $\alpha=\left(Y_{7}^{\alpha} \times Z_{7}\right) \cup\left(Y_{6}^{\alpha} \times Z_{6}\right) \cup\left(Y_{4}^{\alpha} \times Z_{4}\right) \cup\left(Y_{3}^{\alpha} \times Z_{3}\right) \cup\left(Y_{2}^{\alpha} \times Z_{2}\right) \cup\left(Y_{1}^{\alpha} \times Z_{1}\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)$, where $Y_{7}^{\alpha}, Y_{6}^{\alpha}, Y_{3}^{\alpha}, Y_{2}^{\alpha} \notin\{\varnothing\}$ and satisfies the conditions:

$$
Y_{7}^{\alpha} \supseteq Z_{7}, \quad Y_{6}^{\alpha} \supseteq Z_{6}, \quad Y_{6}^{\alpha} \cup Y_{3}^{\alpha} \supseteq Z_{3}, \quad Y_{6}^{\alpha} \cup Y_{3}^{\alpha} \cup Y_{2}^{\alpha} \supseteq Z_{2}, \quad Y_{3}^{\alpha} \cap Z_{3} \neq \varnothing, Y_{2}^{\alpha} \cap Z_{2} \neq \varnothing ;
$$

Proof: In this case, when $Z_{7} \cap Z_{6}=\varnothing, Z_{7} \cap Z_{3}=\varnothing, Z_{6} \cap Z_{5} \neq \varnothing$, from the Lemma 2.4 in [6] it follows that diagrams 1-15 given in fig. 1 exhibit all diagrams of XIsubsemilattices of the semilattices D, a quasinormal representation of idempotent elements of the semigroup $B_{X}(D)$, which are defined by these $X I$ - semilattices, may have one of the forms listed above. The statements 13), 14) immediately follows from the Corollary 13.4 .1 in [1], 13.4.1 in [2], the statement 15) immediately follows from the Theorem 13.10.2 in [1].

The Theorem is proved.
Lemma 3.1: Let $D \in \Sigma_{2}(X, 8)$ and $Z_{7} \cap Z_{6}=\varnothing, Z_{7} \cap Z_{3}=\varnothing, Z_{6} \cap Z_{5} \neq \varnothing$. If X is a finite set, then the number $\left|I^{*}\left(Q_{9}\right)\right|$ can be calculated by the formula

$$
\left|I^{*}\left(Q_{9}\right)\right|=3^{|X| z_{i} \mid}+3^{|X| z_{4} \mid} .
$$

Proof: By definition of the given semilattice D we have

$$
Q_{9} \theta_{x I}=\left\{\left\{Z_{7}, Z_{6}, Z_{4}\right\},\left\{Z_{7}, Z_{3}, Z_{1}\right\}\right\} .
$$

If the following equalities are hold $D_{1}^{\prime}=\left\{Z_{7}, Z_{6}, Z_{4}\right\}, D_{2}^{\prime}=\left\{Z_{7}, Z_{3}, Z_{1}\right\}$, then $\left|I^{*}\left(Q_{9}\right)\right|=\left|I\left(D_{1}^{\prime}\right)\right|+\left|I\left(D_{2}^{\prime}\right)\right|$. From this equality and statement (9) of Lemma 2.1 we obtain validity of Lemma 3.1.

The Lemma is proved.
Lemma 3.2: Let $D \in \Sigma_{2}(X, 8)$ and $Z_{7} \cap Z_{6}=\varnothing, Z_{7} \cap Z_{3}=\varnothing, Z_{6} \cap Z_{5} \neq \varnothing$. If X is a finite set, then the number $\left|I^{*}\left(Q_{10}\right)\right|$ can be calculated by the formula

$$
\begin{aligned}
\left|I^{*}\left(Q_{10}\right)\right| & =\left(4^{|\bar{D}| Z_{1} \mid}-3^{\left|\bar{D} Z_{1}\right|}\right) \cdot 4^{|X| \bar{D} \mid}+\left(4^{\left|Z_{2}\right| Z_{4} \mid}-3^{\left|Z_{1} Z_{4}\right|}\right) \cdot 4^{|X| Z_{2} \mid}+ \\
& +\left(4^{\left|Z_{1}\right| Z_{4} \mid}-3^{\left|Z_{1}\right| Z_{4} \mid} \mid\right) \cdot 4^{\left|X Z_{1}\right|}+\left(4^{\left|\bar{D} Z_{4}\right|}-3^{|\bar{D}| Z_{d} \mid}\right) \cdot 4^{|X| \bar{D} \mid}
\end{aligned}
$$

Proof: By definition of the given semilattice D we have

$$
Q_{10} \theta_{X I}=\left\{\left\{Z_{7}, Z_{6}, Z_{4}, Z_{2}\right\},\left\{Z_{7}, Z_{6}, Z_{4}, Z_{1}\right\},\left\{Z_{7}, Z_{6}, Z_{4}, \breve{D}\right\},\left\{Z_{7}, Z_{3}, Z_{1}, \breve{D}\right\}\right\} .
$$

If the following equalities are hold

$$
D_{1}^{\prime}=\left\{Z_{7}, Z_{6}, Z_{4}, Z_{2}\right\}, D_{2}^{\prime}=\left\{Z_{7}, Z_{6}, Z_{4}, Z_{1}\right\}, D_{3}^{\prime}=\left\{Z_{7}, Z_{6}, Z_{4}, \breve{D}\right\}, D_{4}^{\prime}=\left\{Z_{7}, Z_{3}, Z_{1}, \breve{D}\right\} \text {, }
$$

Then $\left|I^{*}\left(Q_{10}\right)\right|=\left|I\left(D_{1}^{\prime}\right)\right|+\left|I\left(D_{2}^{\prime}\right)\right|+\left|I\left(D_{3}^{\prime}\right)\right|+\left|I\left(D_{4}^{\prime}\right)\right|$. From this equality and statement (10) of Lemma 2.1 we obtain validity of Lemma 3.2.

The Lemma is proved.
Lemma 3.3: Let $D \in \Sigma_{2}(X, 8)$ and $Z_{7} \cap Z_{6}=\varnothing, Z_{7} \cap Z_{3}=\varnothing, Z_{6} \cap Z_{5} \neq \varnothing$. If X is a finite set, then the number $\left|I^{*}\left(Q_{13}\right)\right|$ can be calculated by the formula

$$
\left|I^{*}\left(Q_{13}\right)\right|=\left(2^{\left|Z_{3}\right| Z_{4} \mid}-1\right) \cdot 5^{\left|\left|z_{1}\right|\right.} .
$$

Proof: By definition of the given semilattice D we have $Q_{13} \theta_{x I}=\left\{\left\{Z_{7}, Z_{6}, Z_{4}, Z_{3}, Z_{1}\right\}\right\}$. If the following equality is hold $D_{1}^{\prime}=\left\{Z_{7}, Z_{6}, Z_{4}, Z_{3}, Z_{1}\right\}$, then $\left|I^{*}\left(Q_{13}\right)\right|=\left|I\left(D_{1}^{\prime}\right)\right|$. From this equality and statement (13) of Lemma 2.1 we obtain validity of Lemma 3.3.

The Lemma is proved.
Lemma 3.4: Let $D \in \Sigma_{2}(X, 8)$ and $Z_{7} \cap Z_{6}=\varnothing, Z_{7} \cap Z_{3}=\varnothing, Z_{6} \cap Z_{5} \neq \varnothing$. If X is a finite set, then the number $\left|I^{*}\left(Q_{14}\right)\right|$ can be calculated by the formula

$$
\left|I^{*}\left(Q_{14}\right)\right|=\left(2^{\left|Z_{3} \backslash Z_{2}\right|}-1\right) \cdot\left(6^{\left|\bar{D} Z_{1}\right|}-5^{|\bar{D}| Z_{1} \mid}\right) \cdot 6^{|x \overline{\bar{D} \mid}|} .
$$

Proof: By definition of the given semilattice D we have $Q_{14} \theta_{X I}=\left\{\left\{Z_{7}, Z_{6}, Z_{4}, Z_{3}, Z_{1}, \breve{D}\right\}\right\}$. If the following equality is hold $D_{1}^{\prime}=\left\{Z_{7}, Z_{6}, Z_{4}, Z_{3}, Z_{1}, \breve{D}\right\}$, then $\left|I^{*}\left(Q_{14}\right)\right|=\left|I\left(D_{1}^{\prime}\right)\right|$. From this equality and statement (14) of Lemma 2.1 we obtain validity of Lemma 3.4.

The Lemma is proved.
Lemma 3.5: Let $D \in \Sigma_{2}(X, 8)$ and $Z_{7} \cap Z_{6}=\varnothing, Z_{7} \cap Z_{3}=\varnothing, Z_{6} \cap Z_{5} \neq \varnothing$. If X is a finite set, then the number $\left|I^{*}\left(Q_{15}\right)\right|$ can be calculated by the formula

$$
\left|I^{*}\left(Q_{15}\right)\right|=\left(2^{\left|Z_{3}\right| Z_{2} \mid}-1\right) \cdot\left(4^{\left|Z_{2}\right| Z_{1} \mid}-3^{\left|Z_{2}\right| Z_{1} \mid}\right) \cdot 7^{|X| \bar{D} \mid} .
$$

Proof: By definition of the given semilattice D we have

$$
Q_{15} \theta_{X I}=\left\{\left\{Z_{7}, Z_{6}, Z_{4}, Z_{3}, Z_{2}, Z_{1}, \breve{D}\right\}\right\} .
$$

If the following equality is hold $D_{1}^{\prime}=\left\{Z_{7}, Z_{6}, Z_{4}, Z_{3}, Z_{2}, Z_{1}, \breve{D}\right\}$, then $\left|I^{*}\left(Q_{15}\right)\right|=\left|I\left(D_{1}^{\prime}\right)\right|$.
From this equality and statement (15) of Lemma 2.1 we obtain validity of Lemma 3.5 .

The Lemma is proved.
Let us assume that

$$
\begin{aligned}
& k_{3}=\left|I^{*}\left(Q_{9}\right)\right|+\left|I^{*}\left(Q_{10}\right)\right|+\left|I^{*}\left(Q_{11}\right)\right|+\left|I^{*}\left(Q_{12}\right)\right|+\left|I^{*}\left(Q_{13}\right)\right|+\left|I^{*}\left(Q_{14}\right)\right|+\left|I^{*}\left(Q_{15}\right)\right|= \\
& =3^{|X| z_{1} \mid}+3^{|X| z_{4} \mid}+\left(4^{\left|\bar{D} z_{\mid}\right|}-3^{|\bar{D}| z_{\mid} \mid}\right) \cdot 4^{|x| \overline{0} \mid}+\left(4^{\left|z_{2}\right| z_{4} \mid}-3^{\left|z_{2}\right| z_{4} \mid}\right) \cdot 4^{|X| z_{z} \mid}+ \\
& +\left(4^{\left|Z_{1}\right| Z_{4} \mid}-3^{\left|Z_{1}\right| Z_{4} \mid}\right) \cdot 4^{\left|X Z_{1}\right|}+\left(4^{|\check{D}| Z_{4} \mid}-3^{|\tilde{D}| Z_{4} \mid}\right) \cdot 4^{|X \bar{D}|}+\left(4^{\left|Z_{2}\right| Z_{4} \mid}-3^{\left|Z_{2}\right| Z_{A} \mid}\right) \cdot\left(5^{|\bar{D}| Z_{2} \mid}-4^{|\bar{D}| Z_{2} \mid}\right) \cdot 5^{|X| \bar{D} \mid}+ \\
& +\left(4^{\left|Z_{1}\right| Z_{4} \mid}-3^{\left|Z_{1}\right| Z_{4} \mid}\right) \cdot\left(5^{|\bar{D}| Z_{1} \mid}-4^{\left|\bar{D} Z_{\mid}\right|}\right) \cdot 5^{|x| \bar{D} \mid}+3^{\left|\left(Z_{2} \cap Z_{1}\right)\right| Z_{4} \mid} \cdot\left(4^{\left|Z_{1}\right| Z_{2} \mid}-3^{\left|Z_{1}\right| Z_{2} \mid}\right) \cdot\left(4^{\left|Z_{2} Z_{1}\right| Z_{1} \mid}-3^{\left|Z_{2}\right| Z_{1} \mid}\right) \cdot 6^{|x| \bar{D} \mid}+ \\
& +\left(2^{\left|Z_{3}\right| Z_{4} \mid}-1\right) \cdot 5^{|X| Z_{\mid} \mid}+\left(2^{\left|Z_{3}\right| Z_{4} \mid}-1\right) \cdot\left(6^{|\bar{D}| Z_{\mid} \mid}-5^{|\bar{D}| Z_{1} \mid}\right) \cdot 6^{|X| \bar{D} \mid}+\left(2^{\left|Z_{3}\right| Z_{z} \mid}-1\right) \cdot\left(4^{\left|Z_{2}\right| Z_{1} \mid}-3^{\left|Z_{2}\right| Z_{1} \mid}\right) \cdot 7^{|X| \bar{D} \mid}
\end{aligned}
$$

Theorem 3.2: Let $\quad D \in \Sigma_{2}(X, 8)$ and $Z_{7} \cap Z_{6}=\varnothing, Z_{7} \cap Z_{3}=\varnothing, Z_{6} \cap Z_{5} \neq \varnothing$. If X is a finite set and I_{D} is the set of all idempotent elements of the semigroup $B_{X}(D)$, then $\left|I_{D}\right|=k_{1}+k_{3}$.

Proof: This Theorem immediately follows from the Theorem 3.1.
The Theorem is proved.
Theorem 4.1: Let $D \in \Sigma_{2}(X, 8), Z_{7} \cap Z_{6}=\varnothing, Z_{6} \cap Z_{5}=\varnothing, Z_{7} \cap Z_{3} \neq \varnothing$ and $\alpha \in B_{X}(D)$. The binary relation α is an idempotent relation of the semmigroup $B_{X}(D)$ iff binary relation α satisfies only one condition of the Theorem 2.1 and only one following conditions:
13) $\alpha=\left(Y_{7}^{\alpha} \times Z_{7}\right) \cup\left(Y_{6}^{\alpha} \times Z_{6}\right) \cup\left(Y_{5}^{\alpha} \times Z_{5}\right) \cup\left(Y_{4}^{\alpha} \times Z_{4}\right) \cup\left(Y_{2}^{\alpha} \times Z_{2}\right)$, where $\quad Y_{7}^{\alpha}, Y_{6}^{\alpha}, Y_{5}^{\alpha} \notin\{\varnothing\}$ and satisfies the conditions: $Y_{7}^{\alpha} \supseteq Z_{7}, Y_{6}^{\alpha} \supseteq Z_{6}, Y_{7}^{\alpha} \cup Y_{5}^{\alpha} \supseteq Z_{5}, Y_{5}^{\alpha} \cap Z_{5} \neq \varnothing$;
14) $\alpha=\left(Y_{7}^{\alpha} \times Z_{7}\right) \cup\left(Y_{6}^{\alpha} \times Z_{6}\right) \cup\left(Y_{5}^{\alpha} \times Z_{5}\right) \cup\left(Y_{4}^{\alpha} \times Z_{4}\right) \cup\left(Y_{2}^{\alpha} \times Z_{2}\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)$, where $Y_{7}^{\alpha}, Y_{6}^{\alpha}, Y_{5}^{\alpha}, Y_{0}^{\alpha} \notin\{\varnothing\}$ and satisfies the conditions:

$$
Y_{7}^{\alpha} \supseteq Z_{7}, Y_{6}^{\alpha} \supseteq Z_{6}, Y_{7}^{\alpha} \cup Y_{5}^{\alpha} \supseteq Z_{5}, Y_{5} \cap Z_{5} \neq \varnothing, Y_{0}^{\alpha} \cap \check{D} \neq \varnothing ;
$$

15) $\alpha=\left(Y_{7}^{\alpha} \times Z_{7}\right) \cup\left(Y_{6}^{\alpha} \times Z_{6}\right) \cup\left(Y_{5}^{\alpha} \times Z_{5}\right) \cup\left(Y_{4}^{\alpha} \times Z_{4}\right) \cup\left(Y_{2}^{\alpha} \times Z_{2}\right) \cup\left(Y_{1}^{\alpha} \times Z_{1}\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)$, where
$Y_{7}^{\alpha}, Y_{6}^{\alpha}, Y_{5}^{\alpha}, Y_{1}^{\alpha} \notin\{\varnothing\}$ and satisfies the conditions:

$$
Y_{7}^{\alpha} \supseteq Z_{7}, Y_{6}^{\alpha} \supseteq Z_{6}, Y_{7}^{\alpha} \cup Y_{5}^{\alpha} \supseteq Z_{5}, Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{1}^{\alpha} \supseteq Z_{1}, Y_{5}^{\alpha} \cap Z_{5} \neq \varnothing, \quad Y_{1}^{\alpha} \cap Z_{1} \neq \varnothing .
$$

Proof: In this case, when $Z_{7} \cap Z_{6}=\varnothing, Z_{6} \cap Z_{5}=\varnothing, Z_{7} \cap Z_{3} \neq \varnothing$, from the Lemma 2.5 in [6] it follows that diagrams 1-15 given in fig. 1 exhibit all diagrams of XIsubsemilattices of the semilattices D, a quasinormal representation of idempotent
elements of the semigroup $B_{X}(D)$, which are defined by these $X I$ - semilattices, may have one of the forms listed above. The statements 13), 14) immediately follows from the Corollary 13.4.1 in [1], 13.4.1 in [2], the statement 15) immediately follows from the Theorem 13.10.2 in [1].

The Theorem is proved.
Lemma 4.1: Let $D \in \Sigma_{2}(X, 8)$ and $Z_{7} \cap Z_{6}=\varnothing, Z_{6} \cap Z_{5}=\varnothing, Z_{7} \cap Z_{3} \neq \varnothing$. If X is a finite set, then the number $\left|I^{*}\left(Q_{9}\right)\right|$ can be calculated by the formula

$$
\left|I^{*}\left(Q_{9}\right)\right|=3^{|X| Z_{2} \mid}+3^{|X| Z_{4} \mid} .
$$

Proof: By definition of the given semilattice D we have $Q_{9} \theta_{x I}=\left\{\left\{Z_{7}, Z_{6}, Z_{4}\right\},\left\{Z_{6}, Z_{5}, Z_{2}\right\}\right\}$. If the following equalities are hold $D_{1}^{\prime}=\left\{Z_{7}, Z_{6}, Z_{4}\right\}, D_{2}^{\prime}=\left\{Z_{6}, Z_{5}, Z_{2}\right\}$, then $\left|I^{*}\left(Q_{9}\right)\right|=\left|I\left(D_{1}^{\prime}\right)\right|+\left|I\left(D_{2}^{\prime}\right)\right|$. From this equality and statement (9) of Lemma 2.1 we obtain validity of Lemma 4.1.

The Lemma is proved.
Lemma 4.2: Let $D \in \Sigma_{2}(X, 8)$ and $Z_{7} \cap Z_{6}=\varnothing, Z_{6} \cap Z_{5}=\varnothing, Z_{7} \cap Z_{3} \neq \varnothing$. If X is a finite set, then the number $\left|I^{*}\left(Q_{10}\right)\right|$ can be calculated by the formula

$$
\begin{aligned}
\mid I^{*}\left(Q_{10}\right) & =\left(4^{|\bar{D}| Z_{2} \mid}-3^{\left|\bar{D} Z_{2}\right|}\right) \cdot 4^{|X| \bar{D} \mid}+\left(4^{\left|Z_{2}\right| Z_{Z} \mid} \mid-3^{\left|Z_{2}\right| Z_{4} \mid}\right) \cdot 4^{|X| Z_{2} \mid}+ \\
& +\left(4^{\left|Z_{1}\right| Z_{4} \mid}-3^{\left|Z_{1}\right| Z_{4} \mid}\right) \cdot 4^{|X| Z_{\mid} \mid}+\left(4^{\bar{D} Z_{4} \mid}-3^{\left|\bar{D} Z_{4}\right|}\right) \cdot 4^{|x| \bar{D} \mid} .
\end{aligned}
$$

Proof: By definition of the given semilattice D we have

$$
Q_{10} \theta_{x I}=\left\{\left\{Z_{7}, Z_{6}, Z_{4}, Z_{2}\right\},\left\{Z_{7}, Z_{6}, Z_{4}, Z_{1}\right\},\left\{Z_{7}, Z_{6}, Z_{4}, \breve{D}\right\},\left\{Z_{6}, Z_{5}, Z_{2}, \breve{D}\right\}\right\} .
$$

If the following equalities are hold

$$
D_{1}^{\prime}=\left\{Z_{7}, Z_{6}, Z_{4}, Z_{2}\right\}, D_{2}^{\prime}=\left\{Z_{7}, Z_{6}, Z_{4}, Z_{\}}\right\}, D_{3}^{\prime}=\left\{Z_{7}, Z_{6}, Z_{4}, \breve{D}\right\}, D_{4}^{\prime}=\left\{Z_{6}, Z_{5}, Z_{2}, \breve{D}\right\},
$$

then $\left|I^{*}\left(Q_{10}\right)\right|=\left|I\left(D_{1}^{\prime}\right)\right|+\left|I\left(D_{2}^{\prime}\right)\right|+\left|I\left(D_{3}^{\prime}\right)\right|+\left|I\left(D_{4}^{\prime}\right)\right|$. From this equality and statement (10) of Lemma 2.1 we obtain validity of Lemma 4.2.

The Lemma is proved.
Lemma 4.3: Let $D \in \Sigma_{2}(X, 8)$ and $Z_{7} \cap Z_{6}=\varnothing, Z_{6} \cap Z_{5}=\varnothing, Z_{7} \cap Z_{3} \neq \varnothing$. If X is a finite set, then the number $\left|I^{*}\left(Q_{13}\right)\right|$ can be calculated by the formula

$$
\left|I^{*}\left(Q_{13}\right)\right|=\left(2^{\left|Z_{s}\right| Z_{4} \mid}-1\right) \cdot 5^{|x| Z_{2} \mid} .
$$

Proof: By definition of the given semilattice D we have $Q_{13} \theta_{X I}=\left\{\left\{Z_{7}, Z_{6}, Z_{5}, Z_{4}, Z_{2}\right\}\right\}$. If the following equality is hold $D_{1}^{\prime}=\left\{Z_{7}, Z_{6}, Z_{5}, Z_{4}, Z_{2}\right\}$, then $\left|I^{*}\left(Q_{13}\right)\right|=\left|I\left(D_{1}^{\prime}\right)\right|$. From this equality and statement (13) of Lemma 2.1 we obtain validity of Lemma 4.3.

The Lemma is proved.
Lemma 4.4: Let $D \in \Sigma_{2}(X, 8)$ and $Z_{7} \cap Z_{6}=\varnothing, Z_{6} \cap Z_{5}=\varnothing, Z_{7} \cap Z_{3} \neq \varnothing$. If X is a finite set, then the number $\left|I^{*}\left(Q_{14}\right)\right|$ can be calculated by the formula

$$
\left|I^{*}\left(Q_{14}\right)\right|=\left(2^{\left|z_{S}\right| Z_{4} \mid}-1\right) \cdot\left(6^{|\bar{D}| Z_{z} \mid}-5^{|\bar{D}| Z_{2} \mid}\right) \cdot 6^{|X| \bar{D} \mid} .
$$

Proof: By definition of the given semilattice D we have $Q_{14} \theta_{x l}=\left\{\left\{Z_{7}, Z_{6}, Z_{5}, Z_{4}, Z_{2}, \breve{D}\right\}\right\}$. If the following equality is hold $D_{1}^{\prime}=\left\{Z_{7}, Z_{6}, Z_{5}, Z_{4}, Z_{2}, \breve{D}\right\}$, then $\left|I^{*}\left(Q_{14}\right)\right|=\left|I\left(D_{1}^{\prime}\right)\right|$. From this equality and statement (14) of Lemma 2.1 we obtain validity of Lemma 4.4.

The Lemma is proved.
Lemma 4.5: Let $D \in \Sigma_{2}(X, 8)$ and $Z_{7} \cap Z_{6}=\varnothing, Z_{6} \cap Z_{5}=\varnothing, Z_{7} \cap Z_{3} \neq \varnothing$. If X is a finite set, then the number $\left|I^{*}\left(Q_{15}\right)\right|$ can be calculated by the formula

$$
\left|I^{*}\left(Q_{15}\right)\right|=\left(2^{\left|Z_{s}\right| Z_{1} \mid}-1\right) \cdot\left(4^{\left|Z_{1}\right| Z_{2} \mid}-3^{\left|Z_{1}\right| Z_{2} \mid}\right) \cdot 7^{|X \backslash \bar{D}|} .
$$

Proof: By definition of the given semilattice D we have $Q_{15} \theta_{x l}=\left\{\left\{Z_{7}, Z_{6}, Z_{5}, Z_{4}, Z_{2}, Z_{1}, \breve{D}\right\}\right\}$. If the following equality is hold $D_{1}^{\prime}=\left\{Z_{7}, Z_{6}, Z_{5}, Z_{4}, Z_{2}, Z_{1}, \breve{D}\right\}$, then $\left|I^{*}\left(Q_{15}\right)\right|=\left|I\left(D_{1}^{\prime}\right)\right|$. From this equality and statement (15) of Lemma 2.1 we obtain validity of Lemma 4.5.

The Lemma is proved.
Let us assume that

$$
\begin{aligned}
& k_{4}=\left|I^{*}\left(Q_{9}\right)\right|+\left|I^{*}\left(Q_{10}\right)\right|+\left|I^{*}\left(Q_{11}\right)\right|+\left|I^{*}\left(Q_{12}\right)\right|+\left|I^{*}\left(Q_{13}\right)\right|+\left|I^{*}\left(Q_{14}\right)\right|+\left|I^{*}\left(Q_{15}\right)\right|= \\
& =3^{|X| Z_{2} \mid}+3^{\left|X Z_{4}\right|}+\left(4^{\left|\bar{D} Z_{2}\right|}-3^{|\bar{D}| Z_{2} \mid}\right) \cdot 4^{|X| \bar{D} \mid}+\left(4^{\left|Z_{2}\right| Z_{4} \mid}-3^{\left|Z_{2}\right| Z_{4} \mid}\right) \cdot 4^{|X| Z_{2} \mid}+ \\
& +\left(4^{\left|z_{1}\right| Z_{A} \mid}-3^{\left|Z_{1}\right| Z_{4} \mid}\right) \cdot 4^{\left|X Z_{1}\right|}+\left(4^{|\bar{D}| Z_{4} \mid}-3^{|\check{D}| Z_{4} \mid}\right) \cdot 4^{|X \bar{D}|}+\left(4^{\left|Z_{2}\right| Z_{4} \mid}-3^{\left|Z_{2}\right| Z_{A} \mid}\right) \cdot\left(5^{|\bar{D}| Z_{2} \mid}-4^{|\bar{D}| Z_{2} \mid}\right) \cdot 5^{|X| \bar{D} \mid}+ \\
& +\left(4^{\left|Z_{1}\right| Z_{4} \mid}-3^{\left|Z_{1}\right| Z_{4} \mid}\right) \cdot\left(5^{\left|\bar{D} Z_{1}\right|}-4^{\left|\bar{D} Z_{\mid}\right|}\right) \cdot 5^{|x| \bar{D} \mid}+3^{\left|\left(Z_{2} \cap Z_{1}\right)\right| Z_{4} \mid} \cdot\left(4^{\left|Z_{1}\right| Z_{2} \mid}-3^{\left|Z_{1}\right| Z_{2} \mid}\right) \cdot\left(4^{\left|Z_{2}\right| Z_{1} \mid}-3^{\left|Z_{2}\right| Z_{1} \mid}\right) \cdot 6^{|x| \bar{D} \mid}+ \\
& +\left(2^{\left|Z_{s}\right| Z_{4} \mid}-1\right) \cdot 5^{\left|X Z_{2}\right|}+\left(2^{\left|Z_{j}\right| Z_{4} \mid}-1\right) \cdot\left(6^{|\bar{D}| Z_{2} \mid}-5^{\left|\bar{D} Z_{2}\right|}\right) \cdot 6^{\mid\langle | \bar{D} \mid}+\left(2^{\left|Z_{s}\right| Z_{\mid} \mid}-1\right) \cdot\left(4^{\left|Z_{1}\right| Z_{2} \mid}-3^{\left|Z_{1}\right| Z_{2} \mid}\right) \cdot 7^{|X X \bar{D}|}
\end{aligned}
$$

Theorem 4.2: Let $D \in \Sigma_{2}(X, 8)$ and $Z_{7} \cap Z_{6}=\varnothing, Z_{6} \cap Z_{5}=\varnothing, Z_{7} \cap Z_{3} \neq \varnothing$. If X is a finite set and I_{D} is the set of all idempotent elements of the semigroup $B_{X}(D)$, then $\left|I_{D}\right|=k_{1}+k_{4}$.

Proof: This Theorem immediately follows from the Theorem 4.1.
The Theorem is proved.
Theorem 5.1: Let $D \in \Sigma_{2}(X, 8), Z_{7} \cap Z_{6}=\varnothing, Z_{6} \cap Z_{5}=\varnothing, Z_{7} \cap Z_{3}=\varnothing, Z_{5} \cap Z_{3} \neq \varnothing$ and $\alpha \in B_{X}(D)$. The binary relation α is an idempotent relation of the semmigroup $B_{X}(D)$ iff binary relation α satisfies only one conditions of the Theorem 3.1 and only one conditions of the Theorem 4.1.

Proof: In this case, when $Z_{7} \cap Z_{6}=\varnothing, Z_{6} \cap Z_{5}=\varnothing, Z_{7} \cap Z_{3}=\varnothing, Z_{5} \cap Z_{3} \neq \varnothing$, from the Lemma 2.6 in [6] it follows that diagrams 1-15 given in fig. 1 exhibit all diagrams of $X I$ - subsemilattices of the semilattices D, a quasinormal representation of idempotent elements of the semigroup $B_{X}(D)$, which are defined by these $X I-$ semilattices, may have one of the forms listed above. This Theorem immediately follows from the Theorems 3.1 and 4.1.

The Theorem is proved.
Let us assume that

$$
\begin{aligned}
& k_{5}=\left|I^{*}\left(Q_{9}\right)\right|+\left|I^{*}\left(Q_{10}\right)\right|+\left|I^{*}\left(Q_{11}\right)\right|+\left|I^{*}\left(Q_{12}\right)\right|+\left|I^{*}\left(\Omega_{13}\right)\right|+\left|I^{*}\left(Q_{14}\right)\right|+\left|I^{*}\left(\Omega_{15}\right)\right|= \\
& =3^{|X| Z_{1} \mid}+3^{X\left|Z_{z}\right|}+3^{|X| Z_{2} \mid}+\left(4^{|\bar{D}| Z_{1} \mid}-3^{\left|\bar{D} Z_{1}\right|}\right) \cdot 4^{|X| \bar{D} \mid}+\left(4^{\left|\bar{D} Z_{2}\right|}-3^{|\bar{D}| Z_{2} \mid}\right) \cdot 4^{|x| \bar{D} \mid}+\left(4^{\left|Z_{2}\right| Z_{4} \mid}-3^{\left|Z_{2}\right| Z_{1} \mid}\right) \cdot 4^{|X| Z_{2} \mid}+ \\
& +\left(4^{\left|Z_{1}\right| Z_{4} \mid}-3^{\left|Z_{1}\right| Z_{4} \mid}\right) \cdot 4^{|X| Z_{\mid} \mid}+\left(4^{\left|\bar{D} Z_{4}\right|}-3^{\left|\bar{D} Z_{4}\right|}\right) \cdot 4^{|X| \bar{D} \mid}+\left(4^{\left|z_{2}\right| Z_{4} \mid}-3^{\left|Z_{2} Z_{4}\right|}\right) \cdot\left(5^{\left|\bar{D} Z_{2}\right|}-4^{\left|\bar{D} Z_{2}\right|}\right) \cdot 5^{|X| \bar{D} \mid}+
\end{aligned}
$$

$$
\begin{aligned}
& +\left(2^{\left|z_{3}\right| Z_{2} \mid}-1\right) \cdot\left(4^{\left|z_{2}\right| Z_{1} \mid}-3^{\left|Z_{2} z_{1}\right|}\right) \cdot 7^{|x| \bar{D} \mid}+\left(2^{\left|z_{3}\right| Z_{1} \mid}-1\right) \cdot\left(4^{\left|Z_{1}\right| Z_{2} \mid}-3^{\left|Z_{1}\right| z_{2} \mid}\right) \cdot 7^{|X| \bar{D} \mid}
\end{aligned}
$$

Theorem 5.2: Let $D \in \Sigma_{2}(X, 8)$ and $Z_{7} \cap Z_{6}=\varnothing, Z_{7} \cap Z_{3}=\varnothing, Z_{6} \cap Z_{5}=\varnothing, Z_{5} \cap Z_{3} \neq \varnothing$. If X is a finite set and I_{D} is the set of all idempotent elements of the semigroup $B_{X}(D)$, then $\left|I_{D}\right|=k_{1}+k_{5}$.

Proof: This Theorem immediately follows from the Theorem 5.1.
The Theorem is proved.

Theorem 6.1: Let $D \in \Sigma_{2}(X, 8), Z_{5} \cap Z_{3}=\varnothing$ and $\alpha \in B_{X}(D)$. The Binary relation α is an idempotent relation of the semmigroup $B_{X}(D)$ iff binary relation α satisfies only one conditions of the Theorem 5.1 and only one following condition:
13) $\alpha=\left(Y_{T}^{\alpha} \times T\right) \cup\left(Y_{T}^{\alpha} \times T^{\prime}\right) \cup\left(Y_{T u r^{\alpha}}^{\alpha} \times\left(T \cup T^{\prime}\right)\right) \cup\left(Y_{T^{\alpha}}^{\alpha} \times T^{\prime \prime}\right) \cup\left(Y_{Z} \times Z\right)$, where
$T, T^{\prime}, T^{\prime \prime}, Z \in D,\left(T \cup T^{\prime}\right) \subset Z, T^{\prime} \subset T^{\prime \prime} \subset Z,\left(T \cup T^{\prime}\right) \backslash T^{\prime} \neq \varnothing, T^{\prime} \backslash\left(T \cup T^{\prime}\right) \neq \varnothing, T \backslash T^{\prime} \neq \varnothing, T^{\prime} \backslash T \neq \varnothing$, $Y_{T}^{\alpha}, Y_{T^{\prime}}^{\alpha}, Y_{T^{\prime}}^{\alpha} \notin\{\varnothing\}$ and satisfies the conditions: $Y_{T}^{\alpha} \supseteq T, Y_{T^{\prime}}^{\alpha} \supseteq T^{\prime}, \quad Y_{T^{\prime}}^{\alpha} \cup Y_{T^{\prime}}^{\alpha} \supseteq \mathrm{T}^{\prime \prime}$, $Y_{T^{\star}}^{\alpha} \cap T^{\prime \prime} \neq \varnothing ;$
16) $\alpha=\left(Y_{7}^{\alpha} \times Z_{7}\right) \cup\left(Y_{6}^{\alpha} \times Z_{6}\right) \cup\left(Y_{5}^{\alpha} \times Z_{5}\right) \cup\left(Y_{4}^{\alpha} \times Z_{4}\right) \cup\left(Y_{3}^{\alpha} \times Z_{3}\right) \cup\left(Y_{2}^{\alpha} \times Z_{2}\right) \cup\left(Y_{1}^{\alpha} \times Z_{1}\right) \cup\left(Y_{0}^{\alpha} \times \breve{D}\right)$,
where $Y_{7}^{\alpha}, Y_{6}^{\alpha}, Y_{5}^{\alpha}, Y_{3}^{\alpha} \notin\{\varnothing\}$ and satisfies the conditions:
$Y_{7}^{\alpha} \supseteq Z_{7}, \quad Y_{6}^{\alpha} \supseteq Z_{6}, \quad Y_{7}^{\alpha} \cup Y_{5}^{\alpha} \supseteq Z_{5}, \quad Y_{6}^{\alpha} \cup Y_{3}^{\alpha} \supseteq Z_{3}, \quad Y_{5}^{\alpha} \cap Z_{5} \neq \varnothing, Y_{3}^{\alpha} \cap Z_{3} \neq \varnothing$.
Proof: In this case, when $Z_{5} \cap Z_{3}=\varnothing$, from the Lemma 2.7 in [6] it follows that diagrams 1-16 given in fig. 1 exhibit all diagrams of $X I$ - subsemilattices of the semilattices D, a quasinormal representation of idempotent elements of the semigroup $B_{X}(D)$, which are defined by these $X I$-semilattices, may have one of the forms listed above. The statement 13) immediately follows from the Corollary 13.4.1 in [1], 13.4.1 in [2]. Now we will proof the statement 16). It is easy to see, that the set $D(\alpha)=\left\{Z_{7}, Z_{6}, Z_{5}, Z_{4}, Z_{3}, Z_{2}, Z_{1}, \check{D}\right\}$ is a generating set of the semilattice D. Then the following equalities are hold:

$$
\begin{aligned}
& \ddot{D}(\alpha)_{Z_{7}}=\left\{Z_{7}\right\}, \ddot{D}(\alpha)_{Z_{6}}=\left\{Z_{6}\right\}, \ddot{D}(\alpha)_{z_{5}}=\left\{Z_{7}, Z_{5}\right\}, \ddot{D}(\alpha)_{Z_{4}}=\left\{Z_{7}, Z_{6}, Z_{4}\right\}, \\
& \left.\ddot{D}(\alpha)_{Z_{3}}=\left\{Z_{6}, Z_{3}\right\}, \ddot{D}(\alpha)\right)_{Z_{2}}=\left\{Z_{7}, Z_{6}, Z_{5}, Z_{4}, Z_{2}\right\}, \ddot{D}(\alpha)_{Z_{1}}=\left\{Z_{7}, Z_{6}, Z_{4}, Z_{3}, Z_{1}\right\} .
\end{aligned}
$$

By statement b) of the Theorem 1.2 follows that the following conditions are true:

$$
\begin{aligned}
& Y_{7}^{\alpha} \supseteq Z_{7}, Y_{6}^{\alpha} \supseteq Z_{6}, Y_{7}^{\alpha} \cup Y_{5}^{\alpha} \supseteq Z_{5}, Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{4}^{\alpha} \supseteq Z_{4}, Y_{6}^{\alpha} \cup Y_{3}^{\alpha} \supseteq Z_{3}, \\
& Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{2}^{\alpha} \supseteq Z_{2}, Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{3}^{\alpha} \cup Y_{1}^{\alpha} \supseteq Z_{1} ; \\
& Y_{1}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{4}^{\alpha} \supseteq Z_{7} \cup Z_{6} \cup Y_{4}^{\alpha}=Z_{4} \cup Y_{4}^{\alpha} \supseteq Z_{4}, \\
& \left.Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{2}^{\alpha}=Y_{7}^{\alpha} \cup Y_{5}^{\alpha}\right) \cup\left(Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{4}^{\alpha}\right) \cup Y_{2}^{\alpha} \supseteq \\
& \supseteq Z_{5} \cup Z_{4} \cup Y_{2}^{\alpha}=Z_{2} \cup Y_{2}^{\alpha} \supseteq Z_{2}, \\
& Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{3}^{\alpha} \cup Y_{1}^{\alpha}=\left(Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{4}^{\alpha}\right) \cup\left(Y_{6}^{\alpha} \cup Y_{3}^{\alpha}\right) \cup Y_{1}^{\alpha} \supseteq \\
& \supseteq Z_{4} \cup Z_{3} \cup Y_{1}^{\alpha}=Z_{1} \cup Y_{1}^{\alpha} \supseteq Z_{1},
\end{aligned}
$$

i.e., the inclusions
$Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{4}^{\alpha} \supseteq Z_{4}, Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{2}^{\alpha} \supseteq Z_{2}, Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{3}^{\alpha} \cup Y_{1}^{\alpha} \supseteq Z_{1}$ are always hold. Further, it is to see, that the following conditions are true:

$$
\begin{aligned}
& l\left(\ddot{D}_{Z_{7}}, Z_{7}\right)=\cup\left(\ddot{D}_{Z_{7}} \backslash\left\{Z_{7}\right\}\right)=\varnothing, Z_{7} \backslash l\left(\ddot{D}_{Z_{7}}, Z_{7}\right)=Z_{7} \backslash \varnothing \neq \varnothing ; \\
& l\left(\ddot{D}_{Z_{6}}, Z_{6}\right)=\cup\left(\ddot{D}_{Z_{6}} \backslash\left\{Z_{6}\right\}\right)=\varnothing, Z_{6} \backslash l\left(\ddot{D}_{Z_{6}}, Z_{6}\right)=Z_{6} \backslash \varnothing \neq \varnothing ; \\
& l\left(\ddot{D}_{Z_{5}}, Z_{5}\right)=\cup\left(\ddot{D}_{Z_{5}} \backslash\left\{Z_{5}\right\}\right)=Z_{7}, Z_{5} \backslash l\left(\ddot{D}_{Z_{5}}, Z_{5}\right)=Z_{5} \backslash Z_{7} \neq \varnothing ; \\
& l\left(\ddot{D}_{Z_{3}}, Z_{3}\right)=\cup\left(\ddot{D}_{Z_{3}} \backslash\left\{Z_{3}\right\}\right)=Z_{6}, Z_{3} \backslash l\left(\ddot{D}_{Z_{3}}, Z_{3}\right)=Z_{3} \backslash Z_{6} \neq \varnothing ; \\
& l\left(\ddot{D}_{Z_{4}}, Z_{4}\right)=\cup\left(\ddot{D}_{Z_{4}} \backslash\left\{Z_{4}\right\}\right)=Z_{4}, Z_{4} \backslash l\left(\ddot{D}_{Z_{4}}, Z_{4}\right)=Z_{4} \backslash Z_{4}=\varnothing \text {; } \\
& l\left(\ddot{D}_{Z_{2}}, Z_{2}\right)=\cup\left(\ddot{D}_{Z_{2}} \backslash\left\{Z_{2}\right\}\right)=Z_{2}, Z_{2} \backslash l\left(\ddot{D}_{Z_{2}}, Z_{2}\right)=Z_{2} \backslash Z_{2}=\varnothing ; \\
& l\left(\ddot{D}_{Z_{1}}, Z_{1}\right)=\cup\left(\ddot{D}_{Z_{1}} \backslash\left\{Z_{1}\right\}\right)=Z_{1}, Z_{1} \backslash l\left(\ddot{D}_{Z_{1}}, Z_{1}\right)=Z_{1} \backslash Z_{1}=\varnothing .
\end{aligned}
$$

We have the elements $Z_{7}, Z_{6}, Z_{5}, Z_{3}$ are nonlimiting elements of the sets $\ddot{D}(\alpha)_{Z_{7}}$, $\ddot{D}(\alpha)_{Z_{6}}, \ddot{D}(\alpha)_{Z_{5}}$ and $\ddot{D}(\alpha)_{Z_{3}}$ respectively. By statement c) of the Theorem 1.2 it follows, that the conditions $Y_{7}^{\alpha} \cap Z_{7} \neq \varnothing, Y_{6}^{\alpha} \cap Z_{6} \neq \varnothing, Y_{5}^{\alpha} \cap Z_{5} \neq \varnothing$ and $Y_{3}^{\alpha} \cap Z_{3} \neq \varnothing$ are hold. Since $Z_{7} \subset Z_{5}, Z_{6} \subset Z_{3}$, we have $Y_{5}^{\alpha} \cap Z_{5} \neq \varnothing$ and $Y_{3}^{\alpha} \cap Z_{3} \neq \varnothing$. Therefore the following conditions are hold:

$$
\begin{aligned}
& Y_{7}^{\alpha} \supseteq Z_{7}, Y_{6}^{\alpha} \supseteq Z_{6}, Y_{7}^{\alpha} \cup Y_{5}^{\alpha} \supseteq Z_{5}, Y_{6}^{\alpha} \cup Y_{3}^{\alpha} \supseteq Z_{3}, \\
& Y_{5}^{\alpha} \cap Z_{5} \neq \varnothing, Y_{3}^{\alpha} \cap Z_{3} \neq \varnothing .
\end{aligned}
$$

The Theorem is proved.
Lemma 6.1: Let $D \in \Sigma_{2}(X, 8)$ and $Z_{5} \cap Z_{3}=\varnothing$. If X is a finite set, then the number $\left|I^{*}\left(Q_{9}\right)\right|$ can be calculated by the formula

$$
\left|I^{*}\left(Q_{9}\right)\right|=3^{|X| Z_{4} \mid}+3^{|X| z_{2} \mid}+3^{|X| Z_{1} \mid}+3^{|X \backslash| \overline{\mid} \mid} .
$$

Proof: By definition of the given semilattice D we have

$$
Q_{9} \theta_{x I}=\left\{\left\{Z_{7}, Z_{6}, Z_{4}\right\},\left\{Z_{6}, Z_{5}, Z_{2}\right\},\left\{Z_{7}, Z_{3}, Z_{1}\right\},\left\{Z_{5}, Z_{3}, \breve{D}\right\}\right\} .
$$

If the following equalities are hold
$D_{1}^{\prime}=\left\{Z_{7}, Z_{6}, Z_{4}\right\}, D_{2}^{\prime}=\left\{Z_{6}, Z_{5}, Z_{2}\right\}, D_{3}^{\prime}=\left\{Z_{7}, Z_{3}, Z_{1}\right\}, D_{4}^{\prime}=\left\{Z_{5}, Z_{3}, \check{D}\right\}$, then
$\left|I^{*}\left(Q_{9}\right)\right|=\left|I\left(D_{1}^{\prime}\right)\right|+\left|I\left(D_{2}^{\prime}\right)\right|+\left|I\left(D_{3}^{\prime}\right)\right|+\left|I\left(D_{4}^{\prime}\right)\right|$. From this equality and statement (9) of Lemma 2.1 we obtain validity of Lemma 6.1.

The Lemma is proved.
Lemma 6.2: Let $D \in \Sigma_{2}(X, 8)$ and $Z_{5} \cap Z_{3}=\varnothing$. If X is a finite set, then the number $\left|I^{*}\left(Q_{16}\right)\right|$ can be calculated by the formula

$$
\left|I^{*}\left(Q_{16}\right)\right|=\left(2^{\left|Z_{s}\right| Z_{1} \mid}-1\right) \cdot\left(2^{\left|Z_{3}\right| Z_{2} \mid}-1\right) \cdot 8^{|X| \overline{|x|} \mid} .
$$

Proof: By definition of the given semilattice D we have $Q_{16} \theta_{X I}=\left\{\left\{Z_{7}, Z_{6}, Z_{5}, Z_{4}, Z_{3}, Z_{2}, Z_{1}, \breve{D}\right\}\right\}$. If the following equality is hold $D_{1}^{\prime}=\left\{Z_{7}, Z_{6}, Z_{5}, Z_{4}, Z_{3}, Z_{2}, Z_{1}, \breve{D}\right\}$, then $\left|I^{*}\left(Q_{16}\right)\right|=\left|I\left(D_{1}^{\prime}\right)\right|$. From this equality and statement (16) of Lemma 2.1 we obtain validity of Lemma 6.2.

The Lemma is proved.
Let us assume that

$$
\begin{aligned}
& k_{6}=\left|I^{*}\left(Q_{9}\right)\right|+\left|I^{*}\left(Q_{10}\right)\right|+\left|I^{*}\left(Q_{11}\right)\right|+\left|I^{*}\left(Q_{12}\right)\right|+\left|I^{*}\left(Q_{13}\right)\right|+\left|I^{*}\left(Q_{14}\right)\right|+\left|I^{*}\left(Q_{15}\right)\right|+\left|I^{*}\left(Q_{16}\right)\right|= \\
& =3^{\left|X Z_{\mid}\right|}+3^{|X| Z_{2} \mid}+3^{|X| Z_{4} \mid}+3^{|X| \bar{D} \mid}+\left(4^{|\bar{D}| Z_{\mid} \mid}-3^{|\bar{D}| Z_{\mid} \mid}\right) \cdot 4^{|X| \bar{D} \mid}+\left(4^{|\bar{D}| Z_{2} \mid}-3^{|\bar{D}| Z_{2} \mid}\right) \cdot 4^{|X| \bar{D} \mid}+\left(4^{\left|Z_{2}\right| Z_{4} \mid}-3^{\left|Z_{2}\right| Z_{4} \mid}\right) \cdot 4^{|X| Z_{2} \mid}+
\end{aligned}
$$

$$
\begin{aligned}
& +\left(4^{\left|z_{1}\right| Z_{4} \mid}-3^{\left|z_{1}\right| z_{4} \mid}\right) \cdot\left(5^{\left|\bar{D} z_{\mid}\right|}-4^{\left|\bar{D} z_{\mid}\right|}\right) \cdot 5^{|x| \bar{D} \mid}+3^{\left|\left|z_{2} \cap Z_{1}\right|\right| z_{4} \mid} \cdot\left(4^{\left|z_{1}\right| z_{2} \mid}-3^{\left|Z_{1}\right| z_{2} \mid}\right) \cdot\left(4^{\left|z_{2}\right| z_{1} \mid}-3^{\left|z_{2}\right| Z_{1} \mid}\right) \cdot 6^{|x| \bar{D} \mid}+ \\
& +\left(2^{\left|Z_{s}\right| Z_{4} \mid}-1\right) \cdot 5^{\left|X Z_{2}\right|}+\left(2^{\left|Z_{3}\right| Z_{4} \mid}-1\right) \cdot 5^{|X| Z_{1} \mid}+\left(2^{\left|Z_{3}\right| Z_{2} \mid}-1\right) \cdot 5^{|x| \bar{x} \mid}+\left(2^{\left|Z_{s}\right| Z_{1} \mid}-1\right) \cdot 5^{|x| \overline{0} \mid}+ \\
& +\left(2^{\left|Z_{s}\right| Z_{A} \mid}-1\right) \cdot\left(6^{\left|\bar{D} Z_{2}\right|}-5^{\left|\bar{D} Z_{2}\right|}\right) \cdot 6^{|X| \bar{D} \mid}+\left(2^{Z_{s}\left|Z_{4}\right|}-1\right) \cdot\left(6^{\left|\bar{D} Z_{\mid}\right|}-5^{|\bar{D}| Z_{\mid} \mid}\right) \cdot 6^{|X| \bar{D} \mid}+ \\
& +\left(2^{\left|Z_{3}\right| Z_{2} \mid}-1\right) \cdot\left(4^{Z_{2}\left|Z_{1}\right|}-3^{\left|Z_{2}\right| Z_{1} \mid}\right) \cdot 7^{|X| \bar{D} \mid}+\left(2^{\left|Z_{3}\right| Z_{1} \mid}-1\right) \cdot\left(4^{\left|Z_{1}\right| Z_{2} \mid}-3^{\left|Z_{1}\right| Z_{2} \mid}\right) \cdot 7^{|x| \bar{D} \mid}+\left(2^{\left|Z_{3}\right| Z_{1} \mid}-1\right) \cdot\left(2^{\left|Z_{3}\right| Z_{2} \mid}-1\right) \cdot 8^{|X| \bar{D} \mid}
\end{aligned}
$$

Theorem 6.2: Let $D \in \Sigma_{2}(X, 8)$ and $Z_{5} \cap Z_{3}=\varnothing$. If X is a finite set and I_{D} is the set of all idempotent elements of the semigroup $B_{X}(D)$, then $\left|I_{D}\right|=k_{1}+k_{6}$.

Proof: This Theorem immediately follows from the Theorem 6.1.
The Theorem is proved.

References

[1] Ya. Diasamidze and Sh. Makharadze, Complete Semigroups of Binary Relations, Monograph, Kriter, Turkey, (2013), 1-520.
[2] Ya. Diasamidze and Sh. Makharadze, Complete Semigroups of Binary Relations, Monograph, M., Sputnik+, (2010), 657 (Russian).
[3] Ya. I. Diasamidze, Complete semigroups of binary relations, Journal of Mathematical Sciences, Plenum Publ. Cor., New York, 117(4) (2003), 4271-4319.
[4] Ya. Diasamidze, Sh. Makharadze and N. Rokva, On XI-semilattices of union, Bull. Georg. Nation. Acad. Sci., 2(1) (2008), 16-24.
[5] Ya. Diasamidze, Sh. Makharadze and I. Diasamidze, Idempotents and regular elements of complete semigroups of binary relations, Journal of Mathematical Sciences, Plenum Publ. Cor., New York, 153(4) (2008), 481-499.
[6] N. Tsinaridze, Sh. Makharadze and N. Rokva, Idempotent elements of the semigroup $B_{X}(D)$ defined by semilattices of the class $\Sigma_{2}(X, 8)$, J. of Math. Sci., New York (To appear).

