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Abstract
In this paper, we investigate a new class Θp,λ

ξ1,ξ2
of analytic functions in

the open unit disk. By using the geometry function theory, we discuss the
radius problems between the Θp,λ

ξ1,ξ2
and the convex functions or close-to-convex

functions. Several properties as the sufficient and necessary conditions and
modified-Hadamard product are given.
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1 Introduction

Let Ap be the class of functions of the form

f(z) = zp +
∞∑

n=p+1

anz
n, p ∈ Z+ = {1, 2, 3, ...}, (1)

that are p-valently analytic in the open unit disk U = {z ∈ C : |z| < 1}. If
two functions f1(z) ∈ Ap, f2(z) ∈ Ap and

fi(z) = zp +
∞∑

n=p+1

an,iz
n, i = 1, 2, z ∈ U,
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then we define the f1 ⊕ f2(z) as

f1 ⊕ f2(z) = zp +
∞∑

n=p+1

(an,1 + an,2)z
n, z ∈ U.

Also, let Kp(α) denote the subclass of Ap consisting of f(z) which satisfy

<

(
1 +

zf ′′(z)

f ′(z)

)
> α, (z ∈ U) (2)

for some real α(0 ≤ α < p). A function f(z) ∈ Kp(α) is said to be p-
valently convex of order α in U. We note that K1(α) ≡ K is usual convex class.
Moreover, a function f(z) ∈ Ap is in the class Cp(α) if

<

(
f ′(z)

pzp−1

)
> α, z ∈ U (3)

for some real α(0 ≤ α < 1). C1(0) ≡ C is the close-to-convex class. These are
many results on the classes Kp(α) and Cp(α)(See [1, 2, 8, 9, 10, 13]).

Let Ap(θ) denote the subclass of Ap consisting of functions f(z) with the
coefficients an = |an|ei((n−p)θ+π) (n ≥ p+ 1). Here, we introduce the subclasses
Cp(θ, α) and Kp(θ, α) as follows: Cp(θ, α) = Ap(θ)∩Cp(α), Kp(θ, α) = Ap(θ)∩
Kp(α). In fact, The C1(θ, α) was introduced by Uyanik, Owa [12] and the
K1(θ, α) ≡ K(θ, α) was introduced by Frasin [7].

In some earlier investigations, various interesting subclasses of the class Ap
and Ap(θ) have been studied with different view points(see [3, 4]). Motivated
by the aforementioned works done by Uyanik et al.[11, 12] and Frasin et al.[5,
6, 7], we now introduce the following subclass Θp,λ

ξ1,ξ2,ξ3
of analytic functions:

Definition 1.1 For the functions f(z) ∈ Ap given by (1), we say that

f(z) ∈ Θp,λ
ξ1,ξ2

, if there exists a function g(z) = zp +
∞∑

n=p+1

bnz
n ∈ G such

that ∣∣∣∣∣ξ1z
(
f(z)⊕ g(z)

zp

)′
+ ξ2z

2

(
f(z)⊕ g(z)

zp

)′′∣∣∣∣∣ ≤ λ, z ∈ U, (4)

where ξ1, ξ2 ∈ C, λ > 0, p ∈ Z+ and

G =
{
g(z) ∈ Ap : bp+1 = 0, bp+2 = −1

2
ap+2, (5)

bp+3 = −2

3
ap+3, ..., bn =

( 1

n− p
− 1
)
an, ...

}
.

In the present paper, some properties for Θp,λ
ξ1,ξ2

are given. We discuss the
radius problems for f(z) belonging to Cp(θ, α) or Kp(θ, α) to be in the class

Θp,λ
ξ1,ξ2

, and obtain the modified-Hadamard product results.
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2 Sufficient and Necessary Conditions

Theorem 2.1 If the function f(z) given by (1) satisfies the condition

∞∑
n=p+1

[|ξ1|+ |ξ2|(n− p− 1)]|an| ≤ λ, (6)

then f(z) ∈ Θp,λ
ξ1,ξ2

with a function

g(z) = zp +
∞∑

n=p+1

bnz
n ∈ G,

where ξ1, ξ2 ∈ C, λ > 0 and p∈ Z+ = {1, 2, 3, ...}.

Proof For f(z) ∈ Ap and g(z) ∈ G, using the (5), then we have∣∣∣∣∣ξ1z
(
f(z)⊕ g(z)

zp

)′
+ ξ2z

2

(
f(z)⊕ g(z)

zp

)′′∣∣∣∣∣ (7)

=

∣∣∣∣ ∞∑
n=p+1

[ξ1(n− p) + ξ2(n− p)(n− p− 1)](an + bn)zn−p
∣∣∣∣

≤
∞∑

n=p+1

[|ξ1|(n− p) + |ξ2|(n− p)(n− p− 1)]|an + bn|

=
∞∑

n=p+1

[|ξ1|+ |ξ2|(n− p− 1)]|an|.

It follows from(4), (6) and (7), then f(z) ∈ Θp,λ
ξ1,ξ2

. The proof of the theorem
is complete.

Theorem 2.2 If f(z) = zp +
∞∑

n=p+1

anz
n ∈ Θp,λ

ξ1,ξ2
with a function

g(z) = zp +
∞∑

n=p+1

bnz
n ∈ G,

and arg ξ1 = arg ξ2 = γ and an = |an|ei((n−p)θ)−γ), then we have

∞∑
n=p+1

[|ξ1|+ |ξ2|(n− p− 1)]|an| ≤ λ.
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Proof If f(z) ∈ Θp,λ
ξ1,ξ2

with arg ξ1 = arg ξ2 = γ and an = |an|ei((n−p)θ)−γ),
applying the (5), then we get∣∣∣∣∣ξ1z

(
f(z)⊕ g(z)

zp

)′
+ ξ2z

2

(
f(z)⊕ g(z)

zp

)′′∣∣∣∣∣ = (8)

=

∣∣∣∣ ∞∑
n=p+1

[ξ1(n− p) + ξ2(n− p)(n− p− 1)](an + bn)zn−p
∣∣∣∣

=

∣∣∣∣ ∞∑
n=p+1

[ξ1 + ξ2(n− p− 1)]anz
n−p
∣∣∣∣

=

∣∣∣∣ ∞∑
n=p+1

[|ξ1|+ |ξ2|(n− p− 1)]eiγ|an|ei((n−p)θ−γ)zn−p
∣∣∣∣

=

∣∣∣∣∣
∞∑

n=p+1

[|ξ1|+ |ξ2|(n− p− 1)]|an|ei(n−p)θzn−p
∣∣∣∣∣ ≤ λ

for all z ∈ U. Letting z ∈ U such that z = |z|e−iθ, then we have that∣∣∣∣∣
∞∑

n=p+1

[|ξ1|+ |ξ2|(n− p− 1)]|an|ei(n−p)θzn−p
∣∣∣∣∣ (9)

=
∞∑

n=p+1

[|ξ1|+ |ξ2|(n− p− 1)]|an||z|n−p

Now, taking |z| → 1−, form (8) and (9), it gives the required result. The proof
of the theorem is complete.

3 Radius Problems with Convex and Close-to-

Convex Functions

Working in a similar way as in Uyaǹık, Owa [11, Lemma 3.1] and Frasin [6,
Lemma 4.1], we give the following Lemma 3.1 and Lemma 3.2:

Lemma 3.1 Suppose f(z) = zp +
∞∑

n=p+1

anz
n ∈ Cp(θ, α), then we have

∞∑
n=p+1

n|an| ≤ p(1− α), (0 ≤ α < 1).
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Lemma 3.2 Suppose f(z) = zp +
∞∑

n=p+1

anz
n ∈ Kp(θ, α), then we have

∞∑
n=p+1

n

p
(n− α)|an| 6 p− α, (0 ≤ α < p).

Theorem 3.3 Let f(z) = zp +
∞∑

n=p+1

anz
n ∈ Cp(θ, α) and δ(0 < |δ| < 1)

is a complex number, then 1
δp
f(δz) ∈ Θp,λ

ξ1,ξ2
with a function g(z) ∈ G for

0 < |δ| ≤ |δ0(λ)|, where |δ0(λ)| is the smallest positive root of the equation

|ξ1||δ|
√
p(1− α)(1− |δ|2)

+ |ξ2|
√

1 + |δ|2|δ|2
√
p(1− α)− |ap+1|2 − λ(1− |δ|2)

3
2 = 0.

Proof If f(z) ∈ Cp(θ, α), then we have that

1

δp
f(δz) = zp +

∞∑
n=p+1

anδ
n−pzn.

Applying Theorem 2.1, we need to show that

∞∑
n=p+1

[|ξ1|+ |ξ2|(n− p− 1)]|an||δ|n−p ≤ λ.

By using the Cauchy–Schwarz inequality, we can obtain

∞∑
n=p+1

[|ξ1|+ |ξ2|(n− p− 1)]|an||δ|n−p (10)

≤ |ξ1|
|δ|p

(
∞∑

n=p+1

|δ|2n
) 1

2
(

∞∑
n=p+1

|an|2
) 1

2

+
|ξ2|
|δ|p

(
∞∑

n=p+2

(n− p− 1)2|δ|2n
) 1

2
(

∞∑
n=p+2

|an|2
) 1

2

In fact, Lemma 3.1 implies that

∞∑
n=p+1

|an|2 ≤
∞∑

n=p+1

|an| (11)

≤
∞∑

n=p+1

n|an| ≤ p(1− α),
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So we also have
∞∑

n=p+1

|an|2 ≤ p(1− α)− |an+1|2. (12)

Moreover, putting x = |δ|2, then we have

∞∑
n=p+1

|δ|2n =
∞∑

n=p+1

xn =
xp+1

1− x
(13)

and

∞∑
n=p+2

(n− p− 1)2|δ|2n (14)

=
∞∑

n=p+2

(n− p− 1)2xn =
1 + x

(1− x)3
xp+2.

Following (10)-(14), we can obtain that

∞∑
n=p+1

[|ξ1|+ |ξ2|(n− p− 1)]|an||δ|n−p (15)

≤ |ξ1|
|δ|p

(
∞∑

n=p+1

|δ|2n
) 1

2
(

∞∑
n=p+1

|an|2
) 1

2

+
|ξ2|
|δ|p

(
∞∑

n=p+2

(n− p− 1)2|δ|2n
) 1

2
(

∞∑
n=p+2

|an|2
) 1

2

≤ |ξ1|
|δ|p

(
xp+1

1− x

) 1
2
(
p(1− α)

) 1
2

+
|ξ2|
|δ|p

(
1 + x

(1− x)3
xp+2

) 1
2
(
p(1− α)− |ap+1|2

) 1
2

≤ |ξ1|
|δ|p

(
xp+1

1− x

) 1
2
(
p(1− α)

) 1
2

+
|ξ2|
|δ|p

(
1 + x

(1− x)3
xp+2

) 1
2
(
p(1− α)− |ap+1|2

) 1
2

= |ξ1|
|δ|
√
p(1− α)

(1− |δ|2) 1
2

+ |ξ2|
√

1 + |δ|2|δ|2
√
p(1− α)− |ap+1|2

(1− |δ|2) 3
2

.
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We need to consider the complex number δ(0 < |δ| < 1) such that

|ξ1|
|δ|
√
p(1− α)

(1− |δ|2) 1
2

+ |ξ2|
√

1 + |δ|2|δ|2
√
p(1− α)− |ap+1|2

(1− |δ|2) 3
2

= λ.

Hence, we definite the following function with |δ(λ)| by

F (|δ(λ)|) = |ξ1||δ|
√
p(1− α)(1− |δ|2)

+ |ξ2|
√

1 + |δ|2|δ|2
√
p(1− α)− |ap+1|2 − λ(1− |δ|2)

3
2 .

It is easily to know that F (0) = −λ < 0 and

F (1) =
√

2|ξ2|
√
p(1− α)− |ap+1|2 > 0,

which implies that there exists some δ0(λ) such that F (|δ0(λ)|) = 0(0 <
|δ0(λ)| < 1). The proof of the theorem is complete.

Theorem 3.4 Let f(z) = zp +
∞∑

n=p+1

anz
n ∈ Kp(θ, α) and δ(0 < |δ| < 1)

is a complex number. Then 1
δp
f(δz) ∈ Θp,λ

ξ1,ξ2
with a function g(z) ∈ G for

0 < |δ| ≤ |δ0(λ)|, where |δ0(λ)| is the smallest positive root of the equation

|ξ1||δ|
√
p− α(1− |δ|2) + |ξ2|

√
1 + |δ|2|δ|2

√
p− α− |ap+1|2 − λ(1− |δ|2)

3
2 = 0.

Proof Since f(z) ∈ Kp(θ, α), using Lemma 3.2, we have that

∞∑
n=p+1

n

p
(n− α)|an| 6 p− α,

which leads to

∞∑
n=p+1

|an|2 6
∞∑

n=p+1

(n− p)|an|2 6
∞∑

n=p+1

n

p
(n− α)|an|2 (16)

6
∞∑

n=p+1

n

p
(n− α)|an| 6 p− α.



30 Xiaoli Liu et al.

Hence, from (15), we can also note that

∞∑
n=p+1

[|ξ1|+ |ξ2|(n− p− 1)]|an||δ|n−p (17)

≤ |ξ1|
|δ|p

(
∞∑

n=p+1

|δ|2n
) 1

2
(

∞∑
n=p+1

|an|2
) 1

2

+
|ξ2|
|δ|p

(
∞∑

n=p+2

(n− p− 1)2|δ|2n
) 1

2
(

∞∑
n=p+2

|an|2
) 1

2

≤ |ξ1|
|δ|p

(
xp+1

1− x

) 1
2
(
p− α)

) 1
2

+
|ξ2|
|δ|p

(
1 + x

(1− x)3
xp+2

) 1
2
(
p− α− |ap+1|2

) 1
2

= |ξ1|
|δ|
√
p− α

(1− |δ|2) 1
2

+ |ξ2|
√

1 + |δ|2|δ|2
√
p− α− |ap+1|2

(1− |δ|2) 3
2

Using the same technique as in the proof of Theorem 3.3, we derive the result.
The proof of the theorem is complete.

4 Modified-Hadamard Product

Let f(z) = zp +
∞∑

n=p+1

|an|ei((n−p)θ)−γ)zn, g(z) = zp +
∞∑

n=p+1

|bn|ei((n−p)θ)−γ)zn.

We define modified Hadamard product for the functions f , g as follows:

(f ∗ g)(z) = zp +
∞∑

n=p+1

|an||bn|ei((n−p)θ)−γ)zn, z ∈ U.

Theorem 4.1 If f1(z) = zp+
∞∑

n=p+1

|an,1|ei((n−p)θ)−γ)zn ∈ Θp,λ1
ξ1,ξ2

with g1(z) ∈

G, f2(z) = zp+
∞∑

n=p+1

|an,2|ei((n−p)θ)−γ)zn ∈ Θp,λ2
ξ1,ξ2

with a function g2(z) ∈ G and

arg ξ1 = arg ξ2 = γ , then we have

(f1 ∗ f2)(z) ∈ Θp,λ∗

ξ1,ξ2

with a function g(z) ∈ G, where

λ∗ =
1

|ξ1|
λ1λ2.
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Proof Suppose f1(z) = zp +
∞∑

n=p+1

|an,1|ei((n−p)θ)−γ)zn ∈ Θp,λ1
ξ1,ξ2

, f2(z) =

zp +
∞∑

n=p+1

|an,2|ei((n−p)θ)−γ)zn ∈ Θp,λ2
ξ1,ξ2

and arg ξ1 = arg ξ2 = γ, then from

Theorem 2.2, we have

∞∑
n=p+1

[|ξ1|+ |ξ2|(n− p− 1)]|an,1|
λ1

≤ 1 (18)

and
∞∑

n=p+1

[|ξ1|+ |ξ2|(n− p− 1)]|an,2|
λ2

≤ 1. (19)

Moreover, (18) and (19) imply that

{ ∞∑
n=p+1

[|ξ1|+ |ξ2|(n− p− 1)]|an,1|
λ1

} 1
2 ≤ 1 (20)

and { ∞∑
n=p+1

[|ξ1|+ |ξ2|(n− p− 1)]|an,2|
λ2

} 1
2 ≤ 1. (21)

By using the Holder inequality with (20) and (21), we get

∞∑
n=p+1

{ [|ξ1|+ |ξ2|(n− p− 1)]

λ1

} 1
2
{ [|ξ1|+ |ξ2|(n− p− 1)]

λ2

} 1
2
√
|an,1||an,2| ≤ 1,

so
∞∑

n=p+1

|ξ1|+ |ξ2|(n− p− 1)]
{ 1

λ1

} 1
2
{ 1

λ2

} 1
2
√
|an,1||bn,2| ≤ 1. (22)

In order to obtain the (f ∗ g)(z) ∈ Θp,λ∗

ξ1,ξ2
with a function g(z) ∈ G, we have to

find the corresponding λ∗ such that

∞∑
n=p+1

[|ξ1|+ |ξ2|(n− p− 1)]|an,1||bn,2|
λ∗

≤ 1. (23)

Following (22), then (23) hold true if for any n ≥ p+ 1,

1

λ∗
≤ (

1

λ1
)
1
2 (

1

λ2
)
1
2

1√
|an,1||bn,2|

or

λ∗ ≥ (λ1)
1
2 (λ2)

1
2

√
|an,1||bn,2|. (24)
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In fact, (24) implies that

λ∗ = max{L (n)|L (n) = (λ1)
1
2 (λ2)

1
2

√
|an,1||bn,1|,∀n ≥ 1 + p}.

Furthermore, from (22), it is easy to know that√
|an,1||bn,1| ≤

1

|ξ1|+ |ξ2|(n− p− 1)
(λ1λ2)

1
2 , (25)

since |ξ1| + |ξ2|(n − p − 1) is increasing in n, following (25), then we can see
that

L (n) = (λ1)
1
2 (λ2)

1
2

√
|an,1||bn,1| ≤

1

|ξ1|+ |ξ2|(n− p− 1)
λ1λ2

≤ 1

[|ξ1|+ |ξ2|(n− p− 1)]|n=p+1

λ1λ2 =
1

|ξ1|
λ1λ2.

The proof of the theorem is complete.
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