Gen. Math. Notes, Vol. 26, No. 2, February 2015, pp.23-33
ISSN 2219-7184; Copyright © ICSRS Publication, 2015
www.i-csrs.org
Available free online at http://www.geman.in

On a New Class of Multivalent Functions With Missing Coefficients

Xiaoli Liu ${ }^{1}$ and Liangpeng Xiong ${ }^{2}$
${ }^{1,2}$ The Engineering and Technical College of
ChengDu University of Technology
614000, Leshan, Sichuan, P.R. China
${ }^{1}$ E-mail: xiaoliliu2006@126.com
${ }^{2}$ E-mail: xlpwxf@163.com

(Received: 19-11-14 / Accepted: 7-1-15)

Abstract

In this paper, we investigate a new class $\Theta_{\xi_{1}, \xi_{2}}^{p, \lambda}$ of analytic functions in the open unit disk. By using the geometry function theory, we discuss the radius problems between the $\Theta_{\xi_{1}, \xi_{2}}^{p, \lambda}$ and the convex functions or close-to-convex functions. Several properties as the sufficient and necessary conditions and modified-Hadamard product are given.

Keywords: Multivalent function, Convex function, Cauchy-schwarz inequality, Modified-Hadamard product.

1 Introduction

Let \mathcal{A}_{p} be the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}, \quad p \in \mathbb{Z}^{+}=\{1,2,3, \ldots\} \tag{1}
\end{equation*}
$$

that are p-valently analytic in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$. If two functions $f_{1}(z) \in \mathcal{A}_{p}, f_{2}(z) \in \mathcal{A}_{p}$ and

$$
f_{i}(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n, i} z^{n}, i=1,2, z \in \mathbb{U}
$$

then we define the $f_{1} \oplus f_{2}(z)$ as

$$
f_{1} \oplus f_{2}(z)=z^{p}+\sum_{n=p+1}^{\infty}\left(a_{n, 1}+a_{n, 2}\right) z^{n}, z \in \mathbb{U}
$$

Also, let $\mathcal{K}_{p}(\alpha)$ denote the subclass of \mathcal{A}_{p} consisting of $f(z)$ which satisfy

$$
\begin{equation*}
\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha, \quad(z \in \mathbb{U}) \tag{2}
\end{equation*}
$$

for some real $\alpha(0 \leq \alpha<p)$. A function $f(z) \in \mathcal{K}_{p}(\alpha)$ is said to be p valently convex of order α in \mathbb{U}. We note that $\mathcal{K}_{1}(\alpha) \equiv \mathcal{K}$ is usual convex class. Moreover, a function $f(z) \in \mathcal{A}_{p}$ is in the class $\mathcal{C}_{p}(\alpha)$ if

$$
\begin{equation*}
\Re\left(\frac{f^{\prime}(z)}{p z^{p-1}}\right)>\alpha, \quad z \in \mathbb{U} \tag{3}
\end{equation*}
$$

for some real $\alpha(0 \leq \alpha<1)$. $\mathcal{C}_{1}(0) \equiv \mathcal{C}$ is the close-to-convex class. These are many results on the classes $\mathcal{K}_{p}(\alpha)$ and $\mathcal{C}_{p}(\alpha)$ (See [1, 2, 8, 9, 10, 13]).

Let $\mathcal{A}_{p}(\theta)$ denote the subclass of \mathcal{A}_{p} consisting of functions $f(z)$ with the coefficients $a_{n}=\left|a_{n}\right| e^{i((n-p) \theta+\pi)}(n \geq p+1)$. Here, we introduce the subclasses $\mathcal{C}_{p}(\theta, \alpha)$ and $\mathcal{K}_{p}(\theta, \alpha)$ as follows: $\mathcal{C}_{p}(\theta, \alpha)=\mathcal{A}_{p}(\theta) \cap \mathcal{C}_{p}(\alpha), \quad \mathcal{K}_{p}(\theta, \alpha)=\mathcal{A}_{p}(\theta) \cap$ $\mathcal{K}_{p}(\alpha)$. In fact, The $\mathcal{C}_{1}(\theta, \alpha)$ was introduced by Uyanik, Owa [12] and the $\mathcal{K}_{1}(\theta, \alpha) \equiv \mathcal{K}(\theta, \alpha)$ was introduced by Frasin [7].

In some earlier investigations, various interesting subclasses of the class \mathcal{A}_{p} and $\mathcal{A}_{p}(\theta)$ have been studied with different view points(see [3, 4]). Motivated by the aforementioned works done by Uyanik et al. $[11,12]$ and Frasin et al.[5, $6,7]$, we now introduce the following subclass $\Theta_{\xi_{1}, \xi_{2}, \xi_{3}}^{p, \lambda}$ of analytic functions:

Definition 1.1 For the functions $f(z) \in \mathcal{A}_{p}$ given by (1), we say that $f(z) \in \Theta_{\xi_{1}, \xi_{2}}^{p, \lambda}$, if there exists a function $g(z)=z^{p}+\sum_{n=p+1}^{\infty} b_{n} z^{n} \in \mathcal{G}$ such that

$$
\begin{equation*}
\left|\xi_{1} z\left(\frac{f(z) \oplus g(z)}{z^{p}}\right)^{\prime}+\xi_{2} z^{2}\left(\frac{f(z) \oplus g(z)}{z^{p}}\right)^{\prime \prime}\right| \leq \lambda, z \in \mathbb{U} \tag{4}
\end{equation*}
$$

where $\xi_{1}, \xi_{2} \in \mathbb{C}, \lambda>0, p \in \mathbb{Z}^{+}$and

$$
\begin{align*}
\mathcal{G}=\left\{g(z) \in \mathcal{A}_{p}: b_{p+1}\right. & =0, b_{p+2}=-\frac{1}{2} a_{p+2} \tag{5}\\
b_{p+3} & \left.=-\frac{2}{3} a_{p+3}, \ldots, b_{n}=\left(\frac{1}{n-p}-1\right) a_{n}, \ldots\right\}
\end{align*}
$$

In the present paper, some properties for $\Theta_{\xi_{1}, \xi_{2}}^{p, \lambda}$ are given. We discuss the radius problems for $f(z)$ belonging to $\mathcal{C}_{p}(\theta, \alpha)$ or $\mathcal{K}_{p}(\theta, \alpha)$ to be in the class $\Theta_{\xi_{1}, \xi_{2}}^{p, \lambda}$, and obtain the modified-Hadamard product results.

2 Sufficient and Necessary Conditions

Theorem 2.1 If the function $f(z)$ given by (1) satisfies the condition

$$
\begin{equation*}
\sum_{n=p+1}^{\infty}\left[\left|\xi_{1}\right|+\left|\xi_{2}\right|(n-p-1)\right]\left|a_{n}\right| \leq \lambda \tag{6}
\end{equation*}
$$

then $f(z) \in \Theta_{\xi_{1}, \xi_{2}}^{p, \lambda}$ with a function

$$
g(z)=z^{p}+\sum_{n=p+1}^{\infty} b_{n} z^{n} \in \mathcal{G},
$$

where $\xi_{1}, \xi_{2} \in \mathbb{C}, \lambda>0$ and $p \in \mathbb{Z}^{+}=\{1,2,3, \ldots\}$.
Proof For $f(z) \in \mathcal{A}_{p}$ and $g(z) \in \mathcal{G}$, using the (5), then we have

$$
\begin{align*}
& \left|\xi_{1} z\left(\frac{f(z) \oplus g(z)}{z^{p}}\right)^{\prime}+\xi_{2} z^{2}\left(\frac{f(z) \oplus g(z)}{z^{p}}\right)^{\prime \prime}\right| \tag{7}\\
& =\left|\sum_{n=p+1}^{\infty}\left[\xi_{1}(n-p)+\xi_{2}(n-p)(n-p-1)\right]\left(a_{n}+b_{n}\right) z^{n-p}\right| \\
& \leq \sum_{n=p+1}^{\infty}\left[\left|\xi_{1}\right|(n-p)+\left|\xi_{2}\right|(n-p)(n-p-1)\right]\left|a_{n}+b_{n}\right| \\
& =\sum_{n=p+1}^{\infty}\left[\left|\xi_{1}\right|+\left|\xi_{2}\right|(n-p-1)\right]\left|a_{n}\right| .
\end{align*}
$$

It follows from(4), (6) and (7), then $f(z) \in \Theta_{\xi_{1}, \xi_{2}}^{p, \lambda}$. The proof of the theorem is complete.

Theorem 2.2 If $f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n} \in \Theta_{\xi_{1}, \xi_{2}}^{p, \lambda}$ with a function

$$
g(z)=z^{p}+\sum_{n=p+1}^{\infty} b_{n} z^{n} \in \mathcal{G},
$$

and $\arg \xi_{1}=\arg \xi_{2}=\gamma$ and $a_{n}=\left|a_{n}\right| e^{i((n-p) \theta)-\gamma)}$, then we have

$$
\sum_{n=p+1}^{\infty}\left[\left|\xi_{1}\right|+\left|\xi_{2}\right|(n-p-1)\right]\left|a_{n}\right| \leq \lambda
$$

Proof If $f(z) \in \Theta_{\xi_{1}, \xi_{2}}^{p, \lambda}$ with $\arg \xi_{1}=\arg \xi_{2}=\gamma$ and $a_{n}=\left|a_{n}\right| e^{i((n-p) \theta)-\gamma)}$, applying the (5), then we get

$$
\begin{align*}
& \left|\xi_{1} z\left(\frac{f(z) \oplus g(z)}{z^{p}}\right)^{\prime}+\xi_{2} z^{2}\left(\frac{f(z) \oplus g(z)}{z^{p}}\right)^{\prime \prime}\right|= \tag{8}\\
& =\left|\sum_{n=p+1}^{\infty}\left[\xi_{1}(n-p)+\xi_{2}(n-p)(n-p-1)\right]\left(a_{n}+b_{n}\right) z^{n-p}\right| \\
& =\left|\sum_{n=p+1}^{\infty}\left[\xi_{1}+\xi_{2}(n-p-1)\right] a_{n} z^{n-p}\right| \\
& =\left|\sum_{n=p+1}^{\infty}\left[\left|\xi_{1}\right|+\left|\xi_{2}\right|(n-p-1)\right] e^{i \gamma}\right| a_{n}\left|e^{i((n-p) \theta-\gamma)} z^{n-p}\right| \\
& =\left|\sum_{n=p+1}^{\infty}\left[\left|\xi_{1}\right|+\left|\xi_{2}\right|(n-p-1)\right]\right| a_{n}\left|e^{i(n-p) \theta} z^{n-p}\right| \leq \lambda
\end{align*}
$$

for all $z \in \mathbb{U}$. Letting $z \in \mathbb{U}$ such that $z=|z| e^{-i \theta}$, then we have that

$$
\begin{align*}
& \left|\sum_{n=p+1}^{\infty}\left[\left|\xi_{1}\right|+\left|\xi_{2}\right|(n-p-1)\right]\right| a_{n}\left|e^{i(n-p) \theta} z^{n-p}\right| \tag{9}\\
& =\sum_{n=p+1}^{\infty}\left[\left|\xi_{1}\right|+\left|\xi_{2}\right|(n-p-1)\right]\left|a_{n}\right||z|^{n-p}
\end{align*}
$$

Now, taking $|z| \rightarrow 1^{-}$, form (8) and (9), it gives the required result. The proof of the theorem is complete.

3 Radius Problems with Convex and Close-toConvex Functions

Working in a similar way as in Uyanìk, Owa [11, Lemma 3.1] and Frasin [6, Lemma 4.1], we give the following Lemma 3.1 and Lemma 3.2:

Lemma 3.1 Suppose $f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n} \in \mathcal{C}_{p}(\theta, \alpha)$, then we have

$$
\sum_{n=p+1}^{\infty} n\left|a_{n}\right| \leq p(1-\alpha),(0 \leq \alpha<1)
$$

Lemma 3.2 Suppose $f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n} \in \mathcal{K}_{p}(\theta, \alpha)$, then we have

$$
\sum_{n=p+1}^{\infty} \frac{n}{p}(n-\alpha)\left|a_{n}\right| \leqslant p-\alpha,(0 \leq \alpha<p)
$$

Theorem 3.3 Let $f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n} \in \mathcal{C}_{p}(\theta, \alpha)$ and $\delta(0<|\delta|<1)$ is a complex number, then $\frac{1}{\delta^{p}} f(\delta z) \in \Theta_{\xi_{1}, \xi_{2}}^{p, \lambda}$ with a function $g(z) \in \mathcal{G}$ for $0<|\delta| \leq\left|\delta_{0}(\lambda)\right|$, where $\left|\delta_{0}(\lambda)\right|$ is the smallest positive root of the equation

$$
\begin{aligned}
& \left|\xi_{1}\right||\delta| \sqrt{p(1-\alpha)}\left(1-|\delta|^{2}\right) \\
& +\left.\left|\xi_{2}\right| \sqrt{1+|\delta|^{2}} \delta \delta\right|^{2} \sqrt{p(1-\alpha)-\left|a_{p+1}\right|^{2}}-\lambda\left(1-|\delta|^{2}\right)^{\frac{3}{2}}=0
\end{aligned}
$$

Proof If $f(z) \in \mathcal{C}_{p}(\theta, \alpha)$, then we have that

$$
\frac{1}{\delta^{p}} f(\delta z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} \delta^{n-p} z^{n}
$$

Applying Theorem 2.1, we need to show that

$$
\sum_{n=p+1}^{\infty}\left[\left|\xi_{1}\right|+\left|\xi_{2}\right|(n-p-1)\right]\left|a_{n}\right||\delta|^{n-p} \leq \lambda
$$

By using the Cauchy-Schwarz inequality, we can obtain

$$
\begin{align*}
& \sum_{n=p+1}^{\infty}\left[\left|\xi_{1}\right|+\left|\xi_{2}\right|(n-p-1)\right]\left|a_{n}\right||\delta|^{n-p} \tag{10}\\
& \leq \frac{\left|\xi_{1}\right|}{|\delta|^{p}}\left(\sum_{n=p+1}^{\infty}|\delta|^{2 n}\right)^{\frac{1}{2}}\left(\sum_{n=p+1}^{\infty}\left|a_{n}\right|^{2}\right)^{\frac{1}{2}} \\
& +\frac{\left|\xi_{2}\right|}{|\delta|^{p}}\left(\sum_{n=p+2}^{\infty}(n-p-1)^{2}|\delta|^{2 n}\right)^{\frac{1}{2}}\left(\sum_{n=p+2}^{\infty}\left|a_{n}\right|^{2}\right)^{\frac{1}{2}}
\end{align*}
$$

In fact, Lemma 3.1 implies that

$$
\begin{align*}
\sum_{n=p+1}^{\infty}\left|a_{n}\right|^{2} & \leq \sum_{n=p+1}^{\infty}\left|a_{n}\right| \tag{11}\\
& \leq \sum_{n=p+1}^{\infty} n\left|a_{n}\right| \leq p(1-\alpha)
\end{align*}
$$

So we also have

$$
\begin{equation*}
\sum_{n=p+1}^{\infty}\left|a_{n}\right|^{2} \leq p(1-\alpha)-\left|a_{n+1}\right|^{2} \tag{12}
\end{equation*}
$$

Moreover, putting $x=|\delta|^{2}$, then we have

$$
\begin{equation*}
\sum_{n=p+1}^{\infty}|\delta|^{2 n}=\sum_{n=p+1}^{\infty} x^{n}=\frac{x^{p+1}}{1-x} \tag{13}
\end{equation*}
$$

and

$$
\begin{align*}
& \sum_{n=p+2}^{\infty}(n-p-1)^{2}|\delta|^{2 n} \tag{14}\\
& =\sum_{n=p+2}^{\infty}(n-p-1)^{2} x^{n}=\frac{1+x}{(1-x)^{3}} x^{p+2} .
\end{align*}
$$

Following (10)-(14), we can obtain that

$$
\begin{align*}
& \sum_{n=p+1}^{\infty}\left[\left|\xi_{1}\right|+\left|\xi_{2}\right|(n-p-1)\right]\left|a_{n}\right||\delta|^{n-p} \tag{15}\\
& \leq \frac{\left|\xi_{1}\right|}{|\delta|^{p}}\left(\sum_{n=p+1}^{\infty}|\delta|^{2 n}\right)^{\frac{1}{2}}\left(\sum_{n=p+1}^{\infty}\left|a_{n}\right|^{2}\right)^{\frac{1}{2}} \\
& +\frac{\left|\xi_{2}\right|}{|\delta|^{p}}\left(\sum_{n=p+2}^{\infty}(n-p-1)^{2}|\delta|^{2 n}\right)^{\frac{1}{2}}\left(\sum_{n=p+2}^{\infty}\left|a_{n}\right|^{2}\right)^{\frac{1}{2}} \\
& \leq \frac{\left|\xi_{1}\right|}{|\delta|^{p}}\left(\frac{x^{p+1}}{1-x}\right)^{\frac{1}{2}}(p(1-\alpha))^{\frac{1}{2}} \\
& +\frac{\left|\xi_{2}\right|}{|\delta|^{p}}\left(\frac{1+x}{(1-x)^{3}} x^{p+2}\right)^{\frac{1}{2}}\left(p(1-\alpha)-\left|a_{p+1}\right|^{2}\right)^{\frac{1}{2}} \\
& \leq \frac{\left|\xi_{1}\right|}{|\delta|^{p}}\left(\frac{x^{p+1}}{1-x}\right)^{\frac{1}{2}}(p(1-\alpha))^{\frac{1}{2}} \\
& +\frac{\left|\xi_{2}\right|}{|\delta|^{p}}\left(\frac{1+x}{(1-x)^{3}} x^{p+2}\right)^{\frac{1}{2}}\left(p(1-\alpha)-\left|a_{p+1}\right|^{2}\right)^{\frac{1}{2}} \\
& = \\
& =\left|\xi_{1}\right| \frac{|\delta| \sqrt{p(1-\alpha)}}{\left(1-|\delta|^{2}\right)^{\frac{1}{2}}}+\left|\xi_{2}\right| \frac{\sqrt{1+|\delta|^{2}}|\delta|^{2} \sqrt{p(1-\alpha)-\left|a_{p+1}\right|^{2}}}{\left(1-|\delta|^{2}\right)^{\frac{3}{2}}}
\end{align*}
$$

On a New Class of Multivalent Functions...

We need to consider the complex number $\delta(0<|\delta|<1)$ such that

$$
\left|\xi_{1}\right| \frac{|\delta| \sqrt{p(1-\alpha)}}{\left(1-|\delta|^{2}\right)^{\frac{1}{2}}}+\left|\xi_{2}\right| \frac{\sqrt{1+|\delta|^{2}}|\delta|^{2} \sqrt{p(1-\alpha)-\left|a_{p+1}\right|^{2}}}{\left(1-|\delta|^{2}\right)^{\frac{3}{2}}}=\lambda
$$

Hence, we definite the following function with $|\delta(\lambda)|$ by

$$
\begin{aligned}
F(|\delta(\lambda)|) & =\left|\xi_{1}\right||\delta| \sqrt{p(1-\alpha)}\left(1-|\delta|^{2}\right) \\
& +\left|\xi_{2}\right| \sqrt{1+|\delta|^{2}}|\delta|^{2} \sqrt{p(1-\alpha)-\left|a_{p+1}\right|^{2}}-\lambda\left(1-|\delta|^{2}\right)^{\frac{3}{2}}
\end{aligned}
$$

It is easily to know that $F(0)=-\lambda<0$ and

$$
F(1)=\sqrt{2}\left|\xi_{2}\right| \sqrt{p(1-\alpha)-\left|a_{p+1}\right|^{2}}>0
$$

which implies that there exists some $\delta_{0}(\lambda)$ such that $F\left(\left|\delta_{0}(\lambda)\right|\right)=0(0<$ $\left.\left|\delta_{0}(\lambda)\right|<1\right)$. The proof of the theorem is complete.

Theorem 3.4 Let $f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n} \in \mathcal{K}_{p}(\theta, \alpha)$ and $\delta(0<|\delta|<1)$ is a complex number. Then $\frac{1}{\delta^{p}} f(\delta z) \in \Theta_{\xi_{1}, \xi_{2}}^{p, \lambda}$ with a function $g(z) \in \mathcal{G}$ for $0<|\delta| \leq\left|\delta_{0}(\lambda)\right|$, where $\left|\delta_{0}(\lambda)\right|$ is the smallest positive root of the equation
$\left|\xi_{1}\right||\delta| \sqrt{p-\alpha}\left(1-|\delta|^{2}\right)+\left|\xi_{2}\right| \sqrt{1+|\delta|^{2}}|\delta|^{2} \sqrt{p-\alpha-\left|a_{p+1}\right|^{2}}-\lambda\left(1-|\delta|^{2}\right)^{\frac{3}{2}}=0$.

Proof Since $f(z) \in \mathcal{K}_{p}(\theta, \alpha)$, using Lemma 3.2, we have that

$$
\sum_{n=p+1}^{\infty} \frac{n}{p}(n-\alpha)\left|a_{n}\right| \leqslant p-\alpha
$$

which leads to

$$
\begin{align*}
\sum_{n=p+1}^{\infty}\left|a_{n}\right|^{2} & \leqslant \sum_{n=p+1}^{\infty}(n-p)\left|a_{n}\right|^{2} \leqslant \sum_{n=p+1}^{\infty} \frac{n}{p}(n-\alpha)\left|a_{n}\right|^{2} \tag{16}\\
& \leqslant \sum_{n=p+1}^{\infty} \frac{n}{p}(n-\alpha)\left|a_{n}\right| \leqslant p-\alpha .
\end{align*}
$$

Hence, from (15), we can also note that

$$
\begin{align*}
& \sum_{n=p+1}^{\infty}\left[\left|\xi_{1}\right|+\left|\xi_{2}\right|(n-p-1)\right]\left|a_{n}\right||\delta|^{n-p} \tag{17}\\
& \leq \frac{\left|\xi_{1}\right|}{|\delta|^{p}}\left(\sum_{n=p+1}^{\infty}|\delta|^{2 n}\right)^{\frac{1}{2}}\left(\sum_{n=p+1}^{\infty}\left|a_{n}\right|^{2}\right)^{\frac{1}{2}} \\
& +\frac{\left|\xi_{2}\right|}{|\delta|^{p}}\left(\sum_{n=p+2}^{\infty}(n-p-1)^{2}|\delta|^{2 n}\right)^{\frac{1}{2}}\left(\sum_{n=p+2}^{\infty}\left|a_{n}\right|^{2}\right)^{\frac{1}{2}} \\
& \left.\leq \frac{\left|\xi_{1}\right|}{|\delta|^{p}}\left(\frac{x^{p+1}}{1-x}\right)^{\frac{1}{2}}(p-\alpha)\right)^{\frac{1}{2}} \\
& +\frac{\left|\xi_{2}\right|}{|\delta|^{p}}\left(\frac{1+x}{(1-x)^{3}} x^{p+2}\right)^{\frac{1}{2}}\left(p-\alpha-\left|a_{p+1}\right|^{2}\right)^{\frac{1}{2}} \\
& =\left|\xi_{1}\right| \frac{|\delta| \sqrt{p-\alpha}}{\left(1-|\delta|^{2}\right)^{\frac{1}{2}}}+\left|\xi_{2}\right| \frac{\sqrt{1+|\delta|^{2}}|\delta|^{2} \sqrt{p-\alpha-\left|a_{p+1}\right|^{2}}}{\left(1-|\delta|^{2}\right)^{\frac{3}{2}}}
\end{align*}
$$

Using the same technique as in the proof of Theorem 3.3, we derive the result. The proof of the theorem is complete.

4 Modified-Hadamard Product

Let $f(z)=z^{p}+\sum_{n=p+1}^{\infty}\left|a_{n}\right| e^{i((n-p) \theta)-\gamma)} z^{n}, g(z)=z^{p}+\sum_{n=p+1}^{\infty}\left|b_{n}\right| e^{i((n-p) \theta)-\gamma)} z^{n}$. We define modified Hadamard product for the functions f, g as follows:

$$
(f * g)(z)=z^{p}+\sum_{n=p+1}^{\infty}\left|a_{n}\right|\left|b_{n}\right| e^{i((n-p) \theta)-\gamma)} z^{n}, z \in \mathbb{U} .
$$

Theorem 4.1 If $f_{1}(z)=z^{p}+\sum_{n=p+1}^{\infty}\left|a_{n, 1}\right| e^{i((n-p) \theta)-\gamma)} z^{n} \in \Theta_{\xi_{1}, \xi_{2}}^{p, \lambda_{1}}$ with $g_{1}(z) \in$ $\mathcal{G}, f_{2}(z)=z^{p}+\sum_{n=p+1}^{\infty}\left|a_{n, 2}\right| e^{i((n-p) \theta)-\gamma)} z^{n} \in \Theta_{\xi_{1}, \xi_{2}}^{p, \lambda_{2}}$ with a function $g_{2}(z) \in \mathcal{G}$ and $\arg \xi_{1}=\arg \xi_{2}=\gamma$, then we have

$$
\left(f_{1} * f_{2}\right)(z) \in \Theta_{\xi_{1}, \xi_{2}}^{p, \lambda *}
$$

with a function $g(z) \in \mathcal{G}$, where

$$
\lambda^{*}=\frac{1}{\left|\xi_{1}\right|} \lambda_{1} \lambda_{2}
$$

Proof Suppose $f_{1}(z)=z^{p}+\sum_{n=p+1}^{\infty}\left|a_{n, 1}\right| e^{i((n-p) \theta)-\gamma)} z^{n} \in \Theta_{\xi_{1}, \xi_{2}}^{p, \lambda_{1}}, f_{2}(z)=$ $z^{p}+\sum_{n=p+1}^{\infty}\left|a_{n, 2}\right| e^{i((n-p) \theta)-\gamma)} z^{n} \in \Theta_{\xi_{1}, \xi_{2}}^{p, \lambda_{2}}$ and $\arg \xi_{1}=\arg \xi_{2}=\gamma$, then from Theorem 2.2, we have

$$
\begin{equation*}
\sum_{n=p+1}^{\infty} \frac{\left[\left|\xi_{1}\right|+\left|\xi_{2}\right|(n-p-1)\right]\left|a_{n, 1}\right|}{\lambda_{1}} \leq 1 \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=p+1}^{\infty} \frac{\left[\left|\xi_{1}\right|+\left|\xi_{2}\right|(n-p-1)\right]\left|a_{n, 2}\right|}{\lambda_{2}} \leq 1 \tag{19}
\end{equation*}
$$

Moreover, (18) and (19) imply that

$$
\begin{equation*}
\left\{\sum_{n=p+1}^{\infty} \frac{\left[\left|\xi_{1}\right|+\left|\xi_{2}\right|(n-p-1)\right]\left|a_{n, 1}\right|}{\lambda_{1}}\right\}^{\frac{1}{2}} \leq 1 \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{\sum_{n=p+1}^{\infty} \frac{\left[\left|\xi_{1}\right|+\left|\xi_{2}\right|(n-p-1)\right]\left|a_{n, 2}\right|}{\lambda_{2}}\right\}^{\frac{1}{2}} \leq 1 \tag{21}
\end{equation*}
$$

By using the Holder inequality with (20) and (21), we get

$$
\sum_{n=p+1}^{\infty}\left\{\frac{\left[\left|\xi_{1}\right|+\left|\xi_{2}\right|(n-p-1)\right]}{\lambda_{1}}\right\}^{\frac{1}{2}}\left\{\frac{\left[\left|\xi_{1}\right|+\left|\xi_{2}\right|(n-p-1)\right]}{\lambda_{2}}\right\}^{\frac{1}{2}} \sqrt{\left|a_{n, 1}\right|\left|a_{n, 2}\right|} \leq 1
$$

so

$$
\begin{equation*}
\left.\sum_{n=p+1}^{\infty}\left|\xi_{1}\right|+\left|\xi_{2}\right|(n-p-1)\right]\left\{\frac{1}{\lambda_{1}}\right\}^{\frac{1}{2}}\left\{\frac{1}{\lambda_{2}}\right\}^{\frac{1}{2}} \sqrt{\left|a_{n, 1}\right|\left|b_{n, 2}\right|} \leq 1 \tag{22}
\end{equation*}
$$

In order to obtain the $(f * g)(z) \in \Theta_{\xi_{1}, \xi_{2}}^{p, \lambda *}$ with a function $g(z) \in \mathcal{G}$, we have to find the corresponding λ^{*} such that

$$
\begin{equation*}
\sum_{n=p+1}^{\infty} \frac{\left[\left|\xi_{1}\right|+\left|\xi_{2}\right|(n-p-1)\right]\left|a_{n, 1}\right|\left|b_{n, 2}\right|}{\lambda^{*}} \leq 1 \tag{23}
\end{equation*}
$$

Following (22), then (23) hold true if for any $n \geq p+1$,

$$
\frac{1}{\lambda^{*}} \leq\left(\frac{1}{\lambda_{1}}\right)^{\frac{1}{2}}\left(\frac{1}{\lambda_{2}}\right)^{\frac{1}{2}} \frac{1}{\sqrt{\left|a_{n, 1}\right|\left|b_{n, 2}\right|}}
$$

or

$$
\begin{equation*}
\lambda^{*} \geq\left(\lambda_{1}\right)^{\frac{1}{2}}\left(\lambda_{2}\right)^{\frac{1}{2}} \sqrt{\left|a_{n, 1}\right|\left|b_{n, 2}\right|} \tag{24}
\end{equation*}
$$

In fact, (24) implies that

$$
\lambda^{*}=\max \left\{\mathscr{L}(n) \left\lvert\, \mathscr{L}(n)=\left(\lambda_{1}\right)^{\frac{1}{2}}\left(\lambda_{2}\right)^{\frac{1}{2}} \sqrt{\left|a_{n, 1}\right|\left|b_{n, 1}\right|}\right., \forall n \geq 1+p\right\}
$$

Furthermore, from (22), it is easy to know that

$$
\begin{equation*}
\sqrt{\left|a_{n, 1}\right|\left|b_{n, 1}\right|} \leq \frac{1}{\left|\xi_{1}\right|+\left|\xi_{2}\right|(n-p-1)}\left(\lambda_{1} \lambda_{2}\right)^{\frac{1}{2}} \tag{25}
\end{equation*}
$$

since $\left|\xi_{1}\right|+\left|\xi_{2}\right|(n-p-1)$ is increasing in n, following (25), then we can see that

$$
\begin{aligned}
\mathscr{L}(n) & =\left(\lambda_{1}\right)^{\frac{1}{2}}\left(\lambda_{2}\right)^{\frac{1}{2}} \sqrt{\left|a_{n, 1}\right|\left|b_{n, 1}\right|} \leq \frac{1}{\left|\xi_{1}\right|+\left|\xi_{2}\right|(n-p-1)} \lambda_{1} \lambda_{2} \\
& \leq \frac{1}{\left.\left[\left|\xi_{1}\right|+\left|\xi_{2}\right|(n-p-1)\right]\right|_{n=p+1}} \lambda_{1} \lambda_{2}=\frac{1}{\left|\xi_{1}\right|} \lambda_{1} \lambda_{2} .
\end{aligned}
$$

The proof of the theorem is complete.
Acknowledgements: This research was supported by Supported by Scientific Research Fund of Sichuan Provincial Education Department of China(Grant no.14ZB0364).

References

[1] W.G. Atshan and T.K. Mohammed, On a subclass of univalent functions defined by multiplier transformations, Gen. Math. Notes, 22(1) (2014), 71-85.
[2] E. Deniz, On p-valently close-to-convex, starlike and convex functions, Hacettepe Journal of Mathematics and Statistics, 41(2012), 635-642.
[3] J. Dziok, A unified class of analytic functions with fixed argument of coefficients, Acta Mathematica Scientia, 31(B) (2011), 1357-1366.
[4] J. Dziok and H.M. Srivastava, A unified class of analytic functions with varying argument of coefficients, Eur. J. Pure Appl. Math., 2(2009), 302324.
[5] B.A. Frasin, Radius problem for certain class of analytic functions, International Journal of Nonlinear Science, 16(1) (2013), 92-96.
[6] B.A. Frasin and J.L. Liu, Radius problems for certain classes of analytic functions, Analele Universităţii de Vest, Timişoara, Seria MatematicaInformatica, LI(1) (2013), 37-45.
[7] B.A. Frasin, New subclasses of analytic functions, Journal of Inequalities and Applications, 24(2014), 1-10.
[8] H. Irmak and R.K. Raina, The starlikeness and convexity of multivalent functions involving certain inequalities, Rev. Mat. Complut, 16(2) (2003), 391-398.
[9] H.M. Srivastava and M.K. Aouf, A certain fractional derivative operator and its applications to a new class of analytic and multivalent functions with negative coefficients I, J Math Anal Appl, 171(1992), 1-13.
[10] H.M. Srivastava and A.K. Mishra, Applications of fractional calculus to parabolic starlike and uniformly convex functions, Comput. Math. Appl, 39(2000), 57-69.
[11] N. Uyanik, S. Owa and E. Kadioğlu, Some properties of functions associated with close-to-convex and starlike of order α, Appl. Math. Comput, 216(2010), 381-387.
[12] N. Uyanik and S. Owa, New extensions for classes of analytic functions associated with close-to-convex and starlike of order α, Mathematical and Computer Modelling, 54(2011), 359-366.
[13] L.P. Xiong, X.D. Feng and J.L. Zhang, Fekete-szegö inequality for generalized subclasses of univalent functions, Journal of Mathematical Inequalities, 8(3) (2014), 643-659.

