

Gen. Math. Notes, Vol. 26, No. 2, February 2015, pp.23-33 ISSN 2219-7184; Copyright ©ICSRS Publication, 2015 www.i-csrs.org Available free online at http://www.geman.in

On a New Class of Multivalent Functions With Missing Coefficients

Xiaoli Liu¹ and Liangpeng Xiong²

^{1,2}The Engineering and Technical College of ChengDu University of Technology 614000, Leshan, Sichuan, P.R. China
¹E-mail: xiaoliliu2006@126.com
²E-mail: xlpwxf@163.com

(Received: 19-11-14 / Accepted: 7-1-15)

Abstract

In this paper, we investigate a new class $\Theta_{\xi_1,\xi_2}^{p,\lambda}$ of analytic functions in the open unit disk. By using the geometry function theory, we discuss the radius problems between the $\Theta_{\xi_1,\xi_2}^{p,\lambda}$ and the convex functions or close-to-convex functions. Several properties as the sufficient and necessary conditions and modified-Hadamard product are given.

Keywords: Multivalent function, Convex function, Cauchy-schwarz inequality, Modified-Hadamard product.

1 Introduction

Let \mathcal{A}_p be the class of functions of the form

$$f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n, \quad p \in \mathbb{Z}^+ = \{1, 2, 3, ...\},$$
(1)

that are *p*-valently analytic in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$. If two functions $f_1(z) \in \mathcal{A}_p$, $f_2(z) \in \mathcal{A}_p$ and

$$f_i(z) = z^p + \sum_{n=p+1}^{\infty} a_{n,i} z^n, i = 1, 2, z \in \mathbb{U},$$

then we define the $f_1 \oplus f_2(z)$ as

$$f_1 \oplus f_2(z) = z^p + \sum_{n=p+1}^{\infty} (a_{n,1} + a_{n,2}) z^n, z \in \mathbb{U}.$$

Also, let $\mathcal{K}_p(\alpha)$ denote the subclass of \mathcal{A}_p consisting of f(z) which satisfy

$$\Re\left(1 + \frac{zf''(z)}{f'(z)}\right) > \alpha, \quad (z \in \mathbb{U})$$
⁽²⁾

for some real $\alpha(0 \leq \alpha < p)$. A function $f(z) \in \mathcal{K}_p(\alpha)$ is said to be *p*-valently convex of order α in \mathbb{U} . We note that $\mathcal{K}_1(\alpha) \equiv \mathcal{K}$ is usual convex class. Moreover, a function $f(z) \in \mathcal{A}_p$ is in the class $\mathcal{C}_p(\alpha)$ if

$$\Re\left(\frac{f'(z)}{pz^{p-1}}\right) > \alpha, \quad z \in \mathbb{U}$$
(3)

for some real $\alpha(0 \leq \alpha < 1)$. $C_1(0) \equiv C$ is the close-to-convex class. These are many results on the classes $\mathcal{K}_p(\alpha)$ and $\mathcal{C}_p(\alpha)$ (See [1, 2, 8, 9, 10, 13]).

Let $\mathcal{A}_p(\theta)$ denote the subclass of \mathcal{A}_p consisting of functions f(z) with the coefficients $a_n = |a_n|e^{i((n-p)\theta+\pi)}$ $(n \ge p+1)$. Here, we introduce the subclasses $\mathcal{C}_p(\theta, \alpha)$ and $\mathcal{K}_p(\theta, \alpha)$ as follows: $\mathcal{C}_p(\theta, \alpha) = \mathcal{A}_p(\theta) \cap \mathcal{C}_p(\alpha)$, $\mathcal{K}_p(\theta, \alpha) = \mathcal{A}_p(\theta) \cap \mathcal{K}_p(\alpha)$. In fact, The $\mathcal{C}_1(\theta, \alpha)$ was introduced by Uyanik, Owa [12] and the $\mathcal{K}_1(\theta, \alpha) \equiv \mathcal{K}(\theta, \alpha)$ was introduced by Frasin [7].

In some earlier investigations, various interesting subclasses of the class \mathcal{A}_p and $\mathcal{A}_p(\theta)$ have been studied with different view points(see [3, 4]). Motivated by the aforementioned works done by Uyanik et al.[11, 12] and Frasin et al.[5, 6, 7], we now introduce the following subclass $\Theta_{\xi_1,\xi_2,\xi_3}^{p,\lambda}$ of analytic functions:

Definition 1.1 For the functions $f(z) \in \mathcal{A}_p$ given by (1), we say that $f(z) \in \Theta_{\xi_1,\xi_2}^{p,\lambda}$, if there exists a function $g(z) = z^p + \sum_{n=p+1}^{\infty} b_n z^n \in \mathcal{G}$ such that

$$\left|\xi_1 z \left(\frac{f(z) \oplus g(z)}{z^p}\right)' + \xi_2 z^2 \left(\frac{f(z) \oplus g(z)}{z^p}\right)''\right| \le \lambda, z \in \mathbb{U},\tag{4}$$

where $\xi_1, \xi_2 \in \mathbb{C}, \lambda > 0, p \in \mathbb{Z}^+$ and

$$\mathcal{G} = \left\{ g(z) \in \mathcal{A}_p : b_{p+1} = 0, b_{p+2} = -\frac{1}{2}a_{p+2}, \\ b_{p+3} = -\frac{2}{3}a_{p+3}, \dots, b_n = \left(\frac{1}{n-p} - 1\right)a_n, \dots \right\}.$$
(5)

In the present paper, some properties for $\Theta_{\xi_1,\xi_2}^{p,\lambda}$ are given. We discuss the radius problems for f(z) belonging to $\mathcal{C}_p(\theta,\alpha)$ or $\mathcal{K}_p(\theta,\alpha)$ to be in the class $\Theta_{\xi_1,\xi_2}^{p,\lambda}$, and obtain the modified-Hadamard product results.

2 Sufficient and Necessary Conditions

Theorem 2.1 If the function f(z) given by (1) satisfies the condition

$$\sum_{n=p+1}^{\infty} [|\xi_1| + |\xi_2|(n-p-1)]|a_n| \le \lambda,$$
(6)

then $f(z) \in \Theta_{\xi_1,\xi_2}^{p,\lambda}$ with a function

$$g(z) = z^p + \sum_{n=p+1}^{\infty} b_n z^n \in \mathcal{G},$$

where $\xi_1, \ \xi_2 \in \mathbb{C}, \ \lambda > 0 \ and \ p \in \mathbb{Z}^+ = \{1, 2, 3, ... \}.$

Proof For $f(z) \in \mathcal{A}_p$ and $g(z) \in \mathcal{G}$, using the (5), then we have

$$\left| \xi_{1} z \left(\frac{f(z) \oplus g(z)}{z^{p}} \right)' + \xi_{2} z^{2} \left(\frac{f(z) \oplus g(z)}{z^{p}} \right)'' \right|$$

$$= \left| \sum_{n=p+1}^{\infty} [\xi_{1}(n-p) + \xi_{2}(n-p)(n-p-1)](a_{n}+b_{n})z^{n-p} \right|$$

$$\leq \sum_{n=p+1}^{\infty} [|\xi_{1}|(n-p) + |\xi_{2}|(n-p)(n-p-1)]|a_{n} + b_{n}|$$

$$= \sum_{n=p+1}^{\infty} [|\xi_{1}| + |\xi_{2}|(n-p-1)]|a_{n}|.$$
(7)

It follows from (4), (6) and (7), then $f(z) \in \Theta_{\xi_1,\xi_2}^{p,\lambda}$. The proof of the theorem is complete.

Theorem 2.2 If $f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n \in \Theta_{\xi_1,\xi_2}^{p,\lambda}$ with a function $g(z) = z^p + \sum_{n=p+1}^{\infty} b_n z^n \in \mathcal{G},$

and $\arg \xi_1 = \arg \xi_2 = \gamma$ and $a_n = |a_n| e^{i((n-p)\theta) - \gamma)}$, then we have

$$\sum_{n=p+1}^{\infty} [|\xi_1| + |\xi_2|(n-p-1)]|a_n| \le \lambda.$$

Proof If $f(z) \in \Theta_{\xi_1,\xi_2}^{p,\lambda}$ with $\arg \xi_1 = \arg \xi_2 = \gamma$ and $a_n = |a_n|e^{i((n-p)\theta)-\gamma)}$, applying the (5), then we get

$$\left| \xi_{1} z \left(\frac{f(z) \oplus g(z)}{z^{p}} \right)' + \xi_{2} z^{2} \left(\frac{f(z) \oplus g(z)}{z^{p}} \right)'' \right| =$$
(8)
$$= \left| \sum_{n=p+1}^{\infty} [\xi_{1}(n-p) + \xi_{2}(n-p)(n-p-1)](a_{n}+b_{n})z^{n-p} \right|$$
$$= \left| \sum_{n=p+1}^{\infty} [\xi_{1} + \xi_{2}(n-p-1)]a_{n}z^{n-p} \right|$$
$$= \left| \sum_{n=p+1}^{\infty} [|\xi_{1}| + |\xi_{2}|(n-p-1)]e^{i\gamma}|a_{n}|e^{i((n-p)\theta-\gamma)}z^{n-p} \right|$$
$$= \left| \sum_{n=p+1}^{\infty} [|\xi_{1}| + |\xi_{2}|(n-p-1)]|a_{n}|e^{i(n-p)\theta}z^{n-p} \right| \leq \lambda$$

for all $z \in \mathbb{U}$. Letting $z \in \mathbb{U}$ such that $z = |z|e^{-i\theta}$, then we have that

$$\left|\sum_{n=p+1}^{\infty} [|\xi_1| + |\xi_2|(n-p-1)]|a_n|e^{i(n-p)\theta}z^{n-p}\right|$$
(9)
= $\sum_{n=p+1}^{\infty} [|\xi_1| + |\xi_2|(n-p-1)]|a_n||z|^{n-p}$

Now, taking $|z| \to 1^-$, form (8) and (9), it gives the required result. The proof of the theorem is complete.

3 Radius Problems with Convex and Close-to-Convex Functions

Working in a similar way as in Uyanik, Owa [11, Lemma 3.1] and Frasin [6, Lemma 4.1], we give the following Lemma 3.1 and Lemma 3.2:

Lemma 3.1 Suppose
$$f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n \in \mathcal{C}_p(\theta, \alpha)$$
, then we have
$$\sum_{n=p+1}^{\infty} n|a_n| \le p(1-\alpha), (0 \le \alpha < 1).$$

Lemma 3.2 Suppose $f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n \in \mathcal{K}_p(\theta, \alpha)$, then we have $\sum_{n=p+1}^{\infty} \frac{n}{p} (n-\alpha) |a_n| \leq p - \alpha, (0 \leq \alpha < p).$

Theorem 3.3 Let $f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n \in \mathcal{C}_p(\theta, \alpha)$ and $\delta(0 < |\delta| < 1)$ is a complex number, then $\frac{1}{\delta^p} f(\delta z) \in \Theta_{\xi_1,\xi_2}^{p,\lambda}$ with a function $g(z) \in \mathcal{G}$ for $0 < |\delta| \le |\delta_0(\lambda)|$, where $|\delta_0(\lambda)|$ is the smallest positive root of the equation

$$\begin{aligned} &|\xi_1||\delta|\sqrt{p(1-\alpha)}(1-|\delta|^2) \\ &+ |\xi_2|\sqrt{1+|\delta|^2}|\delta|^2\sqrt{p(1-\alpha)-|a_{p+1}|^2} - \lambda(1-|\delta|^2)^{\frac{3}{2}} = 0. \end{aligned}$$

Proof If $f(z) \in \mathcal{C}_p(\theta, \alpha)$, then we have that

$$\frac{1}{\delta^p}f(\delta z) = z^p + \sum_{n=p+1}^{\infty} a_n \delta^{n-p} z^n.$$

Applying Theorem 2.1, we need to show that

$$\sum_{n=p+1}^{\infty} [|\xi_1| + |\xi_2|(n-p-1)]|a_n||\delta|^{n-p} \le \lambda.$$

By using the Cauchy–Schwarz inequality, we can obtain

$$\sum_{n=p+1}^{\infty} [|\xi_1| + |\xi_2|(n-p-1)]|a_n||\delta|^{n-p}$$

$$\leq \frac{|\xi_1|}{|\delta|^p} \left(\sum_{n=p+1}^{\infty} |\delta|^{2n}\right)^{\frac{1}{2}} \left(\sum_{n=p+1}^{\infty} |a_n|^2\right)^{\frac{1}{2}}$$

$$+ \frac{|\xi_2|}{|\delta|^p} \left(\sum_{n=p+2}^{\infty} (n-p-1)^2 |\delta|^{2n}\right)^{\frac{1}{2}} \left(\sum_{n=p+2}^{\infty} |a_n|^2\right)^{\frac{1}{2}}$$
(10)

In fact, Lemma 3.1 implies that

$$\sum_{n=p+1}^{\infty} |a_n|^2 \le \sum_{n=p+1}^{\infty} |a_n|$$

$$\le \sum_{n=p+1}^{\infty} n|a_n| \le p(1-\alpha),$$
(11)

So we also have

$$\sum_{n=p+1}^{\infty} |a_n|^2 \le p(1-\alpha) - |a_{n+1}|^2.$$
(12)

Moreover, putting $x = |\delta|^2$, then we have

$$\sum_{n=p+1}^{\infty} |\delta|^{2n} = \sum_{n=p+1}^{\infty} x^n = \frac{x^{p+1}}{1-x}$$
(13)

and

$$\sum_{n=p+2}^{\infty} (n-p-1)^2 |\delta|^{2n}$$
(14)
= $\sum_{n=p+2}^{\infty} (n-p-1)^2 x^n = \frac{1+x}{(1-x)^3} x^{p+2}.$

Following (10)-(14), we can obtain that

$$\begin{split} &\sum_{n=p+1}^{\infty} \left[|\xi_{1}| + |\xi_{2}|(n-p-1)] |a_{n}| |\delta|^{n-p} \\ &\leq \frac{|\xi_{1}|}{|\delta|^{p}} \left(\sum_{n=p+1}^{\infty} |\delta|^{2n} \right)^{\frac{1}{2}} \left(\sum_{n=p+1}^{\infty} |a_{n}|^{2} \right)^{\frac{1}{2}} \\ &+ \frac{|\xi_{2}|}{|\delta|^{p}} \left(\sum_{n=p+2}^{\infty} (n-p-1)^{2} |\delta|^{2n} \right)^{\frac{1}{2}} \left(\sum_{n=p+2}^{\infty} |a_{n}|^{2} \right)^{\frac{1}{2}} \\ &\leq \frac{|\xi_{1}|}{|\delta|^{p}} \left(\frac{x^{p+1}}{1-x} \right)^{\frac{1}{2}} \left(p(1-\alpha) \right)^{\frac{1}{2}} \\ &+ \frac{|\xi_{2}|}{|\delta|^{p}} \left(\frac{1+x}{(1-x)^{3}} x^{p+2} \right)^{\frac{1}{2}} \left(p(1-\alpha) - |a_{p+1}|^{2} \right)^{\frac{1}{2}} \\ &\leq \frac{|\xi_{1}|}{|\delta|^{p}} \left(\frac{x^{p+1}}{1-x} \right)^{\frac{1}{2}} \left(p(1-\alpha) \right)^{\frac{1}{2}} \\ &+ \frac{|\xi_{2}|}{|\delta|^{p}} \left(\frac{1+x}{(1-x)^{3}} x^{p+2} \right)^{\frac{1}{2}} \left(p(1-\alpha) - |a_{p+1}|^{2} \right)^{\frac{1}{2}} \\ &= |\xi_{1}| \frac{|\delta|\sqrt{p(1-\alpha)}}{(1-|\delta|^{2})^{\frac{1}{2}}} + |\xi_{2}| \frac{\sqrt{1+|\delta|^{2}} |\delta|^{2} \sqrt{p(1-\alpha) - |a_{p+1}|^{2}}}{(1-|\delta|^{2})^{\frac{3}{2}}}. \end{split}$$

We need to consider the complex number $\delta(0 < |\delta| < 1)$ such that

$$|\xi_1| \frac{|\delta|\sqrt{p(1-\alpha)}}{(1-|\delta|^2)^{\frac{1}{2}}} + |\xi_2| \frac{\sqrt{1+|\delta|^2}|\delta|^2\sqrt{p(1-\alpha)-|a_{p+1}|^2}}{(1-|\delta|^2)^{\frac{3}{2}}} = \lambda.$$

Hence, we definite the following function with $|\delta(\lambda)|$ by

$$F(|\delta(\lambda)|) = |\xi_1| |\delta| \sqrt{p(1-\alpha)} (1-|\delta|^2) + |\xi_2| \sqrt{1+|\delta|^2} |\delta|^2 \sqrt{p(1-\alpha) - |a_{p+1}|^2} - \lambda (1-|\delta|^2)^{\frac{3}{2}}.$$

It is easily to know that $F(0) = -\lambda < 0$ and

$$F(1) = \sqrt{2}|\xi_2|\sqrt{p(1-\alpha) - |a_{p+1}|^2} > 0,$$

which implies that there exists some $\delta_0(\lambda)$ such that $F(|\delta_0(\lambda)|) = 0(0 < |\delta_0(\lambda)| < 1)$. The proof of the theorem is complete.

Theorem 3.4 Let $f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n \in \mathcal{K}_p(\theta, \alpha)$ and $\delta(0 < |\delta| < 1)$ is a complex number. Then $\frac{1}{\delta^p} f(\delta z) \in \Theta_{\xi_1,\xi_2}^{p,\lambda}$ with a function $g(z) \in \mathcal{G}$ for $0 < |\delta| \le |\delta_0(\lambda)|$, where $|\delta_0(\lambda)|$ is the smallest positive root of the equation

$$|\xi_1||\delta|\sqrt{p-\alpha}(1-|\delta|^2) + |\xi_2|\sqrt{1+|\delta|^2}|\delta|^2\sqrt{p-\alpha-|a_{p+1}|^2} - \lambda(1-|\delta|^2)^{\frac{3}{2}} = 0.$$

Proof Since $f(z) \in \mathcal{K}_p(\theta, \alpha)$, using Lemma 3.2, we have that

$$\sum_{n=p+1}^{\infty} \frac{n}{p} (n-\alpha) |a_n| \leqslant p - \alpha,$$

which leads to

$$\sum_{n=p+1}^{\infty} |a_n|^2 \leqslant \sum_{n=p+1}^{\infty} (n-p)|a_n|^2 \leqslant \sum_{n=p+1}^{\infty} \frac{n}{p}(n-\alpha)|a_n|^2$$

$$\leqslant \sum_{n=p+1}^{\infty} \frac{n}{p}(n-\alpha)|a_n| \leqslant p-\alpha.$$
(16)

Hence, from (15), we can also note that

$$\sum_{n=p+1}^{\infty} [|\xi_{1}| + |\xi_{2}|(n-p-1)]|a_{n}||\delta|^{n-p}$$

$$\leq \frac{|\xi_{1}|}{|\delta|^{p}} \left(\sum_{n=p+1}^{\infty} |\delta|^{2n}\right)^{\frac{1}{2}} \left(\sum_{n=p+1}^{\infty} |a_{n}|^{2}\right)^{\frac{1}{2}}$$

$$+ \frac{|\xi_{2}|}{|\delta|^{p}} \left(\sum_{n=p+2}^{\infty} (n-p-1)^{2}|\delta|^{2n}\right)^{\frac{1}{2}} \left(\sum_{n=p+2}^{\infty} |a_{n}|^{2}\right)^{\frac{1}{2}}$$

$$\leq \frac{|\xi_{1}|}{|\delta|^{p}} \left(\frac{x^{p+1}}{1-x}\right)^{\frac{1}{2}} \left(p-\alpha\right)^{\frac{1}{2}}$$

$$+ \frac{|\xi_{2}|}{|\delta|^{p}} \left(\frac{1+x}{(1-x)^{3}}x^{p+2}\right)^{\frac{1}{2}} \left(p-\alpha-|a_{p+1}|^{2}\right)^{\frac{1}{2}}$$

$$= |\xi_{1}| \frac{|\delta|\sqrt{p-\alpha}}{(1-|\delta|^{2})^{\frac{1}{2}}} + |\xi_{2}| \frac{\sqrt{1+|\delta|^{2}}|\delta|^{2}\sqrt{p-\alpha-|a_{p+1}|^{2}}}{(1-|\delta|^{2})^{\frac{3}{2}}}$$

$$(17)$$

Using the same technique as in the proof of Theorem 3.3, we derive the result. The proof of the theorem is complete.

4 Modified-Hadamard Product

Let $f(z) = z^p + \sum_{n=p+1}^{\infty} |a_n| e^{i((n-p)\theta) - \gamma)} z^n$, $g(z) = z^p + \sum_{n=p+1}^{\infty} |b_n| e^{i((n-p)\theta) - \gamma)} z^n$. We define modified Hadamard product for the functions f, g as follows:

$$(f * g)(z) = z^p + \sum_{n=p+1}^{\infty} |a_n| |b_n| e^{i((n-p)\theta) - \gamma)} z^n, z \in \mathbb{U}.$$

Theorem 4.1 If $f_1(z) = z^p + \sum_{n=p+1}^{\infty} |a_{n,1}| e^{i((n-p)\theta)-\gamma)} z^n \in \Theta_{\xi_1,\xi_2}^{p,\lambda_1}$ with $g_1(z) \in \mathcal{G}$, $f_2(z) = z^p + \sum_{n=p+1}^{\infty} |a_{n,2}| e^{i((n-p)\theta)-\gamma)} z^n \in \Theta_{\xi_1,\xi_2}^{p,\lambda_2}$ with a function $g_2(z) \in \mathcal{G}$ and $\arg \xi_1 = \arg \xi_2 = \gamma$, then we have

$$(f_1 * f_2)(z) \in \Theta^{p,\lambda^*}_{\xi_1,\xi_2}$$

with a function $g(z) \in \mathcal{G}$, where

$$\lambda^* = \frac{1}{|\xi_1|} \lambda_1 \lambda_2.$$

Proof Suppose $f_1(z) = z^p + \sum_{n=p+1}^{\infty} |a_{n,1}| e^{i((n-p)\theta)-\gamma)} z^n \in \Theta_{\xi_1,\xi_2}^{p,\lambda_1}, f_2(z) = z^p + \sum_{n=p+1}^{\infty} |a_{n,2}| e^{i((n-p)\theta)-\gamma)} z^n \in \Theta_{\xi_1,\xi_2}^{p,\lambda_2}$ and $\arg \xi_1 = \arg \xi_2 = \gamma$, then from Theorem 2.2, we have

$$\sum_{n=p+1}^{\infty} \frac{[|\xi_1| + |\xi_2|(n-p-1)]|a_{n,1}|}{\lambda_1} \le 1$$
(18)

and

$$\sum_{n=p+1}^{\infty} \frac{[|\xi_1| + |\xi_2|(n-p-1)]|a_{n,2}|}{\lambda_2} \le 1.$$
(19)

Moreover, (18) and (19) imply that

$$\left\{\sum_{n=p+1}^{\infty} \frac{[|\xi_1| + |\xi_2|(n-p-1)]|a_{n,1}|}{\lambda_1}\right\}^{\frac{1}{2}} \le 1$$
(20)

and

$$\left\{\sum_{n=p+1}^{\infty} \frac{\left[|\xi_1| + |\xi_2|(n-p-1)\right]|a_{n,2}|}{\lambda_2}\right\}^{\frac{1}{2}} \le 1.$$
(21)

By using the Holder inequality with (20) and (21), we get

$$\sum_{n=p+1}^{\infty} \left\{ \frac{[|\xi_1| + |\xi_2|(n-p-1)]}{\lambda_1} \right\}^{\frac{1}{2}} \left\{ \frac{[|\xi_1| + |\xi_2|(n-p-1)]}{\lambda_2} \right\}^{\frac{1}{2}} \sqrt{|a_{n,1}||a_{n,2}|} \le 1,$$

 \mathbf{SO}

$$\sum_{n=p+1}^{\infty} |\xi_1| + |\xi_2|(n-p-1)] \left\{ \frac{1}{\lambda_1} \right\}^{\frac{1}{2}} \left\{ \frac{1}{\lambda_2} \right\}^{\frac{1}{2}} \sqrt{|a_{n,1}||b_{n,2}|} \le 1.$$
(22)

In order to obtain the $(f * g)(z) \in \Theta_{\xi_1,\xi_2}^{p,\lambda^*}$ with a function $g(z) \in \mathcal{G}$, we have to find the corresponding λ^* such that

$$\sum_{n=p+1}^{\infty} \frac{[|\xi_1| + |\xi_2|(n-p-1)]|a_{n,1}||b_{n,2}|}{\lambda^*} \le 1.$$
(23)

Following (22), then (23) hold true if for any $n \ge p+1$,

r

$$\frac{1}{\lambda^*} \le \left(\frac{1}{\lambda_1}\right)^{\frac{1}{2}} \left(\frac{1}{\lambda_2}\right)^{\frac{1}{2}} \frac{1}{\sqrt{|a_{n,1}||b_{n,2}|}}$$
$$\lambda^* \ge (\lambda_1)^{\frac{1}{2}} (\lambda_2)^{\frac{1}{2}} \sqrt{|a_{n,1}||b_{n,2}|}.$$
(24)

or

In fact, (24) implies that

$$\lambda^* = \max\{\mathscr{L}(n) | \mathscr{L}(n) = (\lambda_1)^{\frac{1}{2}} (\lambda_2)^{\frac{1}{2}} \sqrt{|a_{n,1}| |b_{n,1}|}, \forall n \ge 1 + p\}.$$

Furthermore, from (22), it is easy to know that

$$\sqrt{|a_{n,1}||b_{n,1}|} \le \frac{1}{|\xi_1| + |\xi_2|(n-p-1)} (\lambda_1 \lambda_2)^{\frac{1}{2}}, \tag{25}$$

since $|\xi_1| + |\xi_2|(n-p-1)$ is increasing in *n*, following (25), then we can see that

$$\mathscr{L}(n) = (\lambda_1)^{\frac{1}{2}} (\lambda_2)^{\frac{1}{2}} \sqrt{|a_{n,1}||b_{n,1}|} \le \frac{1}{|\xi_1| + |\xi_2|(n-p-1)} \lambda_1 \lambda_2$$
$$\le \frac{1}{[|\xi_1| + |\xi_2|(n-p-1)]|_{n=p+1}} \lambda_1 \lambda_2 = \frac{1}{|\xi_1|} \lambda_1 \lambda_2.$$

The proof of the theorem is complete.

Acknowledgements: This research was supported by Supported by Scientific Research Fund of Sichuan Provincial Education Department of China(Grant no.14ZB0364).

References

- W.G. Atshan and T.K. Mohammed, On a subclass of univalent functions defined by multiplier transformations, *Gen. Math. Notes*, 22(1) (2014), 71-85.
- [2] E. Deniz, On p-valently close-to-convex, starlike and convex functions, Hacettepe Journal of Mathematics and Statistics, 41(2012), 635-642.
- [3] J. Dziok, A unified class of analytic functions with fixed argument of coefficients, *Acta Mathematica Scientia*, 31(B) (2011), 1357-1366.
- [4] J. Dziok and H.M. Srivastava, A unified class of analytic functions with varying argument of coefficients, *Eur. J. Pure Appl. Math.*, 2(2009), 302-324.
- [5] B.A. Frasin, Radius problem for certain class of analytic functions, *International Journal of Nonlinear Science*, 16(1) (2013), 92-96.
- [6] B.A. Frasin and J.L. Liu, Radius problems for certain classes of analytic functions, Analele Universității de Vest, Timişoara, Seria Matematica-Informatica, LI(1) (2013), 37-45.

- [7] B.A. Frasin, New subclasses of analytic functions, Journal of Inequalities and Applications, 24(2014), 1-10.
- [8] H. Irmak and R.K. Raina, The starlikeness and convexity of multivalent functions involving certain inequalities, *Rev. Mat. Complut*, 16(2) (2003), 391-398.
- [9] H.M. Srivastava and M.K. Aouf, A certain fractional derivative operator and its applications to a new class of analytic and multivalent functions with negative coefficients I, J Math Anal Appl, 171(1992), 1-13.
- [10] H.M. Srivastava and A.K. Mishra, Applications of fractional calculus to parabolic starlike and uniformly convex functions, *Comput. Math. Appl*, 39(2000), 57-69.
- [11] N. Uyanik, S. Owa and E. Kadioğlu, Some properties of functions associated with close-to-convex and starlike of order α , Appl. Math. Comput, 216(2010), 381-387.
- [12] N. Uyanik and S. Owa, New extensions for classes of analytic functions associated with close-to-convex and starlike of order α , *Mathematical and Computer Modelling*, 54(2011), 359-366.
- [13] L.P. Xiong, X.D. Feng and J.L. Zhang, Fekete-szegö inequality for generalized subclasses of univalent functions, *Journal of Mathematical Inequalities*, 8(3) (2014), 643-659.