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Abstract 

     The main objective of this paper is to derive a solution of   a generalized 
fractional Volterra integral equation involving K 4 -function with the help of the 
Sumudu transform. Several special cases are also mentioned. 
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1 Introduction and Definitions 
 
Fractional Calculus represents a generalization of the ordinary differentiation and 
integration to arbitrary order. During the last three decades the subject has been 
widely used in the various fields of science and engineering. Many applications of 
Fractional Calculus can be found in Turbulence and Fluid Dynamics, Stochastic 
Dynamical System, Plasma Physics and Controlled Thermonuclear Fusion, Non-
linear Control Theory, Image Processing, Non-linear Biological Systems and 
Astrophysics. The Mittag-Leffler function has gained importance and popularity 
during the last one decade due mainly  to its applications in the solution of  
fractional-order differential, integral and difference equations arising in certain 
problems of mathematical, physical, biological and engineering sciences. This 
function is introduced and studied by Mittag-Leffler[8,9] in terms of the power 
series 
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A generalization of this series in the following form 
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has been studied by several authors notably by Mittag-Leffler[8,9],Wiman[3], 
Agrawal[20], Humbert and Agrawal[18] and Dzrbashjan[15,16,17]. It is shown in 
[19] that the function defined by (1.1) and (1.2) are both entire functions of order 

1=ρ and type .1=σ A detailed account  of the basic properties  of these two 
functions  are given in the third volume  of Bateman manuscript project[1] and an 
account of their various properties  can be found in [16,21].  
 
The F-function of Robotnov and Hartley [22] is defined by the power series 
 

0,
))1((

],[
0

1)1(

>
+Γ

=∑
∞

=

−+

q
qn

xaxaF
n

qnn

q                                                                         ( )3.1   

 
This function effect the direct solution of the fundamental linear fractional order 
differential equation. 
Recently, the interest in the R- and G-functions of Lorenzo-Hartley[4,5] and their 
popularity  have sharply increased in view of their  important role and 
applications in Fractional Calculus and related integral and differential equations 
of fractional order. 
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The R- and the G-functions (but not the Meijer’s G-function) introduced by 
Lorenzo-Hartley[4] are defined by the power series 
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where 0)( >− βαγR  and   )(γ

n
 is the Pochhammer’s symbol given by  
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Particular cases: 
 
If we put 0=c  in above equations (1.4) and (1.5 ), we get 
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The Riemann-Liouville operator of fractional integral of order υ  is given by  
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provided that the integral exists.  
 
The Riemann-Liouville operator of fractional derivative of order υ  is defined 
[2,10,11,12] in the following form  
 

)1(,
)(

)(

)(

1
)}({

0 1 nndt
tx

tf

dx

dxfD
x

nn

n

x <<−
−Γ

= ∫ −+ υ
υ υ

υ                                          ( )9.1  

 
provided that the integral exists.  
 

,
))1((

)(
],,[

0

1)1(

, ∑
∞

=

−−+

−+Γ
−=

n

qnn

q
qn

cxaxcaR ν

ν

ν



18                                                                            Kishan Sharma et al. 

Watugala[7] introduced a new integral transform, called the Sumudu transform 
defined for the functions of exponential order, over the set of the functions, 
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For further details of this transform, please see([6,14]). 
 
The K 4 -function[13] is defined as  
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where 0)( >− βαγR  and pia ni ,...,2,1,)( = and njb )( qj ,...,2,1, = are the 
Pochhammer symbols. 
 
Particularly for 0=c , equation(1.11) reduces into the following form 
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Further details of this function are given by [13]. 
In order to prove our main results, we shall required the following lemma stated  
below: 
 
Lemma 1.1. The Sumudu transform of the K 4 -function defined  by (1.12)  is 
given by 
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provided that 0)( >− βαγR . 
 
Proof. 
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Using (1.10) and (1.12) and evaluating the inner integral, we arrive at the result 
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This proves (1.1). 
 

2 Solution of the Generalized Fractional Volterra 
Integral Equation 
 
Theorem 2.1. The Volterra type integral equation 
 

∫=− τλ ξκτ
0

 )()}({ hhDx 1(4

);(:)0,),(,,(

aK
qpaγβα

,…, )();,...,1; τηξξ fdbba qp +                ( )1.2  

 
has its solution given explicitly by 
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where C∈≤≤ ηγβακτ ,,,,;10 and 0)( >− βαγR . 
 
Proof. Now taking the Sumudu transform on both the sides of (2.1) and then  
using the inverse  Sumudu transform and Lemma1.1, we obtain 
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where C∈≤≤ ηγβακτ ,,,,;10 and 0)( >− βαγR . 
 
If we put 0== sr  in (2.1), we get[23] 
Corollary 2.1. The Volterra type integral equation 
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has its solution given explicitly by 
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where ],[,, ξγβα aG  is given by (1.7) and 

C∈≤≤ ηγβακτ ,,,,;10 and .0)(),(),( >− βαβα RRR  
If we take 1=γ  in Cor.(2.1), we get[23] 
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Corollary 2.2. The Volterra type integral equation 
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has its solution given explicitly by 
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where ],[, ξβα aR is given by (1.6) and .0)(),(),( >− βαβα RRR  

If we set 1,0 == γβ  and replace a  by a−  in Cor.(2.1), we arrive[23] at 
 
Corollary 2.3. The Volterra  type integral equation 
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has its solution given explicitly by 
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where ],[ ξα aF −  is the F-function defined by Robotnov and Hartley[22] 
and .0)( >αR  
 

Conclusion 
 
In this paper, we have presented a solution of  a generalized fractional Volterra  
integral equation involving K 4 -function  with the help of  the Sumudu transform.  
It is expected that some of the results derived in this survey may find  applications 
in the solution of certain fractional order differential and integral equations arising 
problems of physical sciences and engineering areas. 
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