Gen. Math. Notes, Vol. 5, No. 1, July 2011, pp. 15-26
ISSN 2219-7184; Copyright © ICSRS Publication, 2011
www.i-csrs.org
Available free online at http://www.geman.in

Certain Properties of Mixed Super Quasi Einstein Manifolds

Ram Nivas ${ }^{1}$ and Anmita Bajpai ${ }^{2}$
${ }^{1}$ Department of Mathematics \& Astronomy
University of Lucknow, Lucknow-226007 (India)
E-mail: rnivas.lu@gmail.com
${ }^{2}$ Department of Mathematics \& Astronomy
University of Lucknow, Lucknow-226007 (India)
E-mail: anmitabajpai @ yahoo.com

(Received: 20-5-11 /Accepted: 29-6-11)

Abstract

In this paper we have defined mixed super quasi-Einstein manifold $M S(Q E)_{n}$ which is more generalized form of Einstein manifold, quasi -Einstein manifold, generalized quasi-Einstein manifold and super quasi -Einstein manifold . In this paper it has been shown that $M S(Q E)_{n}(n>3)$ is a $M S(Q C)_{n}$ if it is conformally flat. Moreover, it is shown that $M S(Q C)_{n}(n>3)$ is a conformally flat $M S(Q E)_{n}$ and an example of mixed super quasi Einstein manifold is also given. Properties of the curvature tensor in a conformally flat, projectively flat and conharmonically flat manifold have been discussed.

It has also been shown that a totally umbilical hypersurface of a conharmonically flat $M S(Q E)_{n}(n>3)$ is a manifold of mixed super quasi-constant curvature.

Keywords: Quasi- Einstein manifolds, Mixed super quasi-Einstein manifolds, Projectively flat, Conharmonically flat, Totally umbilical.

1 Preliminaries

A non-flat Riemannian manifold $\left(M^{n}, g\right)(n \geq 3)$ is called quasi Einstein manifold if its Ricci tensor S of type $(0,2)$ is not identically zero and satisfies

$$
\begin{equation*}
S(X, Y)=a g(X, Y)+b A(X) A(Y) \tag{1.1}
\end{equation*}
$$

where a, b are scalars $b \neq 0$ and A is a non-zero 1 -form such that

$$
\begin{equation*}
g(X, U)=A(X), \quad \forall X \quad \text { tangents to } M^{n} \tag{1.2}
\end{equation*}
$$

and U is a unit vector field. In such case a, b are called the associated 1-forms and U the generator of the manifold. Such an n-dimensional manifold is denoted by $(Q E)_{n}$.
The notion of mixed generalized quasi Einstein manifold was introduced by A.Bhattacharya, T.De and D.Debnath in their paper [1].A non- flat Riemannian manifold $\left(M^{n}, g\right)(n \geq 3)$ is called mixed generalized quasi Einstein manifold if the Ricci tensor S of type $(0,2)$ is not identically zero and satisfies

$$
\begin{align*}
S(X, Y)= & a g(X, Y)+b A(X) A(Y)+c B(X) B(Y) \tag{1.3}\\
& +d[A(X) B(Y)+A(Y) B(X)]
\end{align*}
$$

where a, b, c, d are scalars, $b \neq 0, c \neq 0, d \neq 0$ and A, B are two non-zero 1-forms such that

$$
\begin{equation*}
g(X, U)=A(X), \quad g(X, V)=B(X), \quad \forall X \text { tangents to } M^{n} \tag{1.4}
\end{equation*}
$$

and

$$
g(U, V)=0
$$

where U, V are unit vector fields. In such a case $a . b, c, d$ are called associated scalars, A, B the associated 1 -forms and U, V the generators of the manifold. Such n-dimensional manifold is denoted by $M G(Q E)_{n}$.
As a further generalization of quasi-Einstein manifold we introduce the notion of mixed super quasi-Einstein manifold. A non flat Riemannian manifold $\left(M^{n}, g\right)(n \geq 3)$ will be called a mixed super quasi-Einstein manifold if its Ricci tensor S of type $(0,2)$ is not identically zero and satisfies the condition

$$
\begin{align*}
S(X, Y)= & a g(X, Y)+b A(X) A(Y)+c B(X) B(Y) \tag{1.5}\\
& +d[A(X) B(Y)+A(Y) B(X)]+e D(X, Y)
\end{align*}
$$

where a, b, c, d, e are scalars and $b \neq 0, c \neq 0, d \neq 0, e \neq 0 . A, B$ are 'two non zero 1-forms such that (1.4) is satisfied , U, V mutually orthogonal unit vector fields and D is a symmetric $(0,2)$ type of tensor field with zero trace and satisfies

$$
\begin{equation*}
D(X, U)=0, \quad \forall X \text { tangents to } M^{n} . \tag{1.6}
\end{equation*}
$$

In such a case a, b, c, d, e are called associated scalars . A, B the associated 1-forms U, V the generators and D the associated tensor of the manifold. Such an n-dimensional manifold will be denoted by $M S(Q E)_{n}$.
Chen and Yano [2] introduced the notion of a manifold of quasi constant curvature. According to them a non-flat Riemannian manifold $\left(M^{n}, g\right)(n>2)$ is said to be of quasi -constant curvature if its curvature tensor ' R of type $(0,4)$ satisfies the condition

$$
\begin{align*}
R(X, Y, Z, W) & =a[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)] \tag{1.7}\\
& +b[g(Y, Z) A(X) A(W)-g(X, Z) A(Y) A(W)
\end{align*}
$$

$$
+g(X, W) A(Y) A(Z)-g(Y, W) A(X) A(Z)]
$$

where a, b are scalars of which $b \neq 0$ and A is a non zero 1 -form defined by (1.2) and U a unit vector field. In such a case a, b are called the associated scalars, A is called the associated 1 form and U the generator of the manifold. Such an n-dimensional manifold is denoted by the symbol $(Q C)_{n}$.
The idea of mixed generalised quasi-constant curvature was introduced by Bhatt, De and Debnath in their paper [1].
Let us call a non-flat Riemannian manifold $\left(M^{n}, g\right)(n \geq 3)$ a manifold of mixed super quasiconstant curvature if its curvature tensor ${ }^{\prime} R$ of type $(0,4)$ satisfies

$$
\begin{align*}
R(X, Y, Z, W)= & a[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)] \tag{1.8}\\
+ & b[g(Y, Z) A(X) A(W)-g(X, Z) A(Y) A(W) \\
& +g(X, W) A(Y) A(Z)-g(Y, W) A(X) A(Z)] \\
+ & +[g(Y, Z) B(X) B(W)-g(X, Z) B(Y) B(W) \\
& +g(X, W) B(Y) B(Z)-g(Y, W) B(X) B(Z)] \\
& +d[g(Y, Z)\{A(X) B(W)+A(W) B(X)\} \\
& -g(X, Z)\{A(Y) B(W)+A(W) B(Y)\} \\
& +g(X, W)\{A(Y) B(Z)+A(Z) B(Y)\} \\
& -g(Y, W)\{A(X) B(Z)+A(Z) B(X)\}] \\
& +e[g(Y, Z) D(X, W)-g(X, Z) D(Y, W) \\
& +g(X, W) D(Y, Z)-g(Y, W) D(X, Z)]
\end{align*}
$$

where a, b, c, d, e are scalars such that $b \neq 0, c \neq 0, d \neq 0, e \neq 0$ and A, B are two non-zero1- forms defined by(1.4), U, V being two unit vector fields such that $g(U, V)=0$ and D is a symmetric tensor of type $(0,2)$ defined as (1.6). Such an n-dimensional manifold shall be denoted by the symbol $M S(Q C)_{n}$.
If in (1.8) $e=0$ then the manifold becomes a manifold of mixed generalized quasi-constant curvature $M S(Q C)_{n}$.

2 Some Results on Mixed Super Quasi Einstein manifold $M S(Q E)_{n}$

We consider an $M S(Q E)_{n}(n>2)$ with associated scalars $a, b, c, d, e(b \neq 0, c \neq 0, d \neq o, e \neq 0)$ associated 1-forms A, B generators U, V and associated symmetric $(0,2)$ tensor field D.
Then equations (1.4),(1.5) and (1.6) will hold good. Since U, V are mutually orthogonal unit vector fields, we have

$$
\begin{equation*}
g(U, U)=1, \quad g(V, V)=1, \quad g(U, V)=0 \tag{2.1}
\end{equation*}
$$

Further
(2.2) $\quad \operatorname{trace} \mathrm{D}=0$ and $D(X, U)=0, \quad D(X, V)=0 \quad \forall X$ tangents to M^{n}.

By virtue of the equation (1.4), we can write the equation (2.1) in the form

$$
\begin{equation*}
A(U)=1, \quad B(V)=1, \quad A(V)=0, \quad B(U)=0 \tag{2.3}
\end{equation*}
$$

Now contracting (1.5) over X and Y we get

$$
r=n a+b+c, \quad \text { where } r \text { denotes the scalar curvature. }
$$

Again from (1.5) we get

$$
\begin{gathered}
S(U, U)=a+b, \quad S(V, V)=a+c+e D(V, V) \\
S(U, V)=d
\end{gathered}
$$

Let L and l be the symmetric endomorphisms of the tangent space at each point corresponding to the Ricci tensor S and the associated tensor D respectively. Then

$$
g(L X, Y)=S(X, Y)
$$

And

$$
\begin{equation*}
g(l X, Y)=D(X, Y) \tag{2.4}
\end{equation*}
$$

In an n-dimensional $(n>2)$ Riemannian manifold the quasi-conformal curvature tensor is defined as

$$
\begin{align*}
& C(X, Y, Z, W)=a_{1}^{\prime} R(X, Y, Z, W) \tag{2.5}\\
& \qquad \begin{array}{l}
+b_{1}[S(Y, Z) g(X, W)-S(X, Z) g(Y, W) \\
\\
\quad+g(Y, Z) S(X, W)-g(X, Z) S(Y, W)] \\
-\frac{r}{n}\left[\frac{a_{1}}{n-1}+2 b_{1}\right][g(Y, Z) g(X, W)-g(X, Z) g(Y, W)]
\end{array}
\end{align*}
$$

where

$$
g(C(X, Y) Z, W)=' C(X, Y, Z, W)
$$

If $a_{1}=1, \quad b_{1}=\frac{-1}{n-2}$ then (2.5) takes the form of conformal curvature tensor, where

$$
\begin{align*}
& C(X, Y, Z, W)=' R(X, Y, Z, W) \tag{2.6}\\
& +\frac{-1}{(n-2)}[S(Y, Z) g(X, W)-S(X, Z) g(Y, W) \\
& \quad+g(Y, Z) S(X, W)-g(X, Z) S(Y, W)] \\
& -\frac{r}{(n-1)(n-2)}[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)]
\end{align*}
$$

The conharmonic curvature tensor in an n-dimensional Riemannian manifold ($n>2$) is defined as

$$
\begin{align*}
& H(X, Y, Z, W)= R(X, Y, Z, W) \tag{2.7}\\
&-\frac{1}{(n-2)}[S(Y, Z) g(X, W)-S(X, Z) g(Y, W) \\
&+g(Y, Z) S(X, W)-g(X, Z) S(Y, W)]
\end{align*}
$$

The projective curvature tensor in an n-dimensional Riemannian manifold ($n>2$) is defined as

$$
\begin{align*}
' P(X, Y, Z, W) & =' R(X, Y, Z, W) \tag{2.8}\\
& -\frac{1}{(n-1)}[S(Y, Z) g(X, W)-S(X, Z) g(Y, W)]
\end{align*}
$$

3 Conformally Flat $M S(Q E)_{n}(n>3)$

In this section we consider a conformally flat $M S(Q E)_{n}(n>3)$ and it has been shown that such a $M S(Q E)_{n}$ is a $M S(Q C)_{n}$.

It is clear that [4] in a conformally flat Riemannian manifold $\left(M^{n}, g\right)(n>3)$ the curvature tensor ' R of type $(0,4)$ has the following form :

$$
\begin{align*}
' R(X, Y, Z, W)= & \frac{1}{(n-2)}[S(Y, Z) g(X, W)-S(X, Z) g(Y, W) \tag{3.1}\\
& +g(Y, Z) S(X, W)-g(X, Z) S(Y, W)] \\
& -\frac{r}{(n-1)(n-2)}[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)]
\end{align*}
$$

where R is defined earlier.
Now using (1.5) we can express (3.1) as follows

$$
\begin{align*}
& R(X, Y, Z, W)= a_{1}[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)] \tag{3.2}\\
&+b_{1}[g(Y, Z) A(X) A(W)-g(X, Z) A(Y) A(W) \\
&+g(X, W) A(Y) A(Z)-g(Y, W) A(X) A(Z)] \\
&+c_{1}[g(Y, Z) B(X) B(W)-g(X, Z) B(Y) B(W) \\
&+g(X, W) B(Y) B(Z)-g(Y, W) B(X) B(Z)] \\
&+ d_{1}[g(Y, Z)\{A(X) B(W)+A(W) B(X)\} \\
&-g(X, Z)\{A(Y) B(W)+A(W) B(Y)\} \\
&+g(X, W)\{A(Y) B(Z)+A(Z) B(Y)\} \\
&-g(Y, W)\{A(X) B(Z)+A(Z) B(X)\}] \\
&+ e_{1}[g(Y, Z) D(X, W)-g(X, Z) D(Y, W) \\
&+g(X, W) D(Y, Z)-g(Y, W) D(X, Z)]
\end{align*}
$$

where

$$
a_{1}=\frac{2 a(n-1)-r}{(n-1)(n-2)}, \quad b_{1}=\frac{b}{(n-2)}, \quad c_{1}=\frac{c}{(n-2)},
$$

$$
d_{1}=\frac{d}{(n-2)}, \quad e_{1}=\frac{e}{(n-2)} .
$$

In view of (1.8) it follows from (3.2) that the manifold under consideration is a $M S(Q C)_{n}\left(b_{1} \neq 0, c_{1} \neq 0, d_{1} \neq 0, e_{1} \neq 0\right)$. Therefore we have the following theorem:

Theorem 1: Every conformally flat $M S(Q E)_{n}(n>3)$ is a $M S(Q C)_{n}$.
Also, we proved that every $\operatorname{MS}(Q C)_{n}(n \geq 3)$ is a $M S(Q E)_{n}$. Contracting (1.8) over Y and Z we get

$$
\begin{align*}
S(X, W) & =[a(n-1)+b+c] g(X, W)+b(n-2) A(X) A(W) \tag{3.3}\\
& +c(n-2) B(X) B(W)+d(n-2)[A(X) B(W)+A(W) B(X)] \\
& +e(n-2) D(X, W)
\end{align*}
$$

In virtue of (1.5), it follows that a $M S(Q C)_{n}(n \geq 3)$ is a $M S(Q E)_{n}$. (Since $b \neq 0, c \neq 0, d \neq 0, e \neq 0)$.

Again contracting (3.3) over X and W, we have

$$
\begin{equation*}
r=(n-1)(n a+2 b+2 c) \tag{3.4}
\end{equation*}
$$

In a Riemannian manifold $\left(M^{n}, g\right)(n>3)$ the conformal curvature tensor C of type $(0,4)$ has the following form :

$$
\begin{align*}
C(X, Y, Z, W)= & R(X, Y, Z, W) \tag{3.5}\\
& -\frac{1}{(n-2)}[S(Y, Z) g(X, W)-S(X, Z) g(Y, W) \\
& +g(Y, Z) S(X, W)-g(X, Z) S(Y, W)] \\
& +\frac{r}{(n-1)(n-2)}[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)]
\end{align*}
$$

Using (1.8), (3.3) and (3.4) it follows from (3.5) that

$$
C(X, Y, Z, W)=0
$$

i.e the manifold under consideration is conformally flat. Thus we can state the following theorem:

Theorem 2: Every $M S(Q C)_{n}(n \geq 3)$ is a $M S(Q E)_{n}$ while every $M S(Q C)_{n}(n>3)$ is a conformally flat $M S(Q E)_{n}$.

Example: A manifold of mixed super quasi constant curvature is a mixed super quasi Einstein manifold.

4 Projectively Flat $M S(Q E)_{n}(n>2)$

Let R be the curvature tensor of type $(1,3)$ of a projectively flat $M S(Q E)_{n}(n>2)$. Then from (2.8) we have

$$
\begin{equation*}
R(X, Y, Z, W)=\frac{1}{(n-1)}[g(X, W) S(Y, Z)-g(Y, W) S(X, Z)] \tag{4.1}
\end{equation*}
$$

where R is defined earlier .
From (1.5) and (4.1) we have

$$
\begin{align*}
R(X, Y, Z, W) & =a_{2}[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)] \tag{4.2}\\
& +b_{2}[g(X, W) A(Y) A(Z)-g(Y, W) A(X) A(Z)] \\
& +c_{2}[g(X, W) B(Y) B(Z)-g(Y, W) B(X) B(Z)] \\
& +d_{2}[g(X, W)\{A(Y) B(Z)+A(Z) B(Y)\} \\
& \quad-g(Y, W)\{A(X) B(Z)+A(Z) B(X)\}] \\
& +e_{2}[g(X, W) D(Y, Z)-g(Y, W) D(X, Z)]
\end{align*}
$$

where

$$
a_{2}=\frac{a}{(n-1)}, \quad b_{2}=\frac{b}{(n-1)}, \quad c_{2}=\frac{c}{(n-1)}, \quad d_{2}=\frac{d}{(n-1)}, \quad e_{2}=\frac{e}{(n-1)} .
$$

Let U^{\perp} be the $(n-1)$ distribution orthogonal to U in a projectively flat $M S(Q E)_{n}$. Then $g(X, U)=0$ if $X \in U^{\perp}$.

Hence from (4.2) we have the following properties of R

$$
\begin{align*}
R(X, Y, Z) & =a_{2}[g(Y, Z) X-g(X, Z) Y] \tag{4.3}\\
& +c_{2}[B(Y) B(Z) X-B(X) B(Z) Y] \\
& +e_{2}[D(Y, Z) X-D(X, Z) Y]
\end{align*}
$$

when $X, Y, Z \in U^{\perp}$ and $a_{2}=\frac{a}{(n-1)}, \quad c_{2}=\frac{c}{(n-1)}, \quad e_{2}=\frac{e}{(n-1)}$. Also

$$
\begin{equation*}
R(X, U, U)=a_{2} X, \quad \text { when } X \in U^{\perp} \tag{4.4}
\end{equation*}
$$

Therefore we can state the following theorem:
Theorem 3: A projectively flat $M S(Q E)_{n}(n>2)$ is a manifold of mixed super quasi constant cuvature and the curvature tensor R of type $(1,3)$ satisfies the properties given by (4.3) and (4.4).

5 Conharmonically Flat $M S(Q E)_{n}(n>3)$

Let R be the curvature tensor of type $(1,3)$ of a Conharmonically flat $M S(Q E)_{n}(n>3)$. Then from (2.7) we have

$$
\begin{align*}
R(X, Y, Z, W)=\frac{1}{(n-2)}[& S(Y, Z) g(X, W)-S(X, Z) g(Y, W) \tag{5.1}\\
& +g(Y, Z) S(X, W)-g(X, Z) S(Y, W)]
\end{align*}
$$

where ' R is defined earlier .
From (1.5) and (5.1) we have

$$
\begin{align*}
R(X, Y, Z, W)= & a_{3}[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)] \tag{5.2}\\
+ & b_{3}[g(Y, Z) A(X) A(W)-g(X, Z) A(Y) A(W) \\
& +g(X, W) A(Y) A(Z)-g(Y, W) A(X) A(Z)] \\
+ & c_{3}[g(Y, Z) B(X) B(W)-g(X, Z) B(Y) B(W) \\
& +g(X, W) B(Y) B(Z)-g(Y, W) B(X) B(Z)] \\
+ & d_{3}[g(Y, Z)\{A(X) B(W)+A(W) B(X)\} \\
& -g(X, Z)\{A(Y) B(W)+A(W) B(Y)\} \\
& +g(X, W)\{A(Y) B(Z)+A(Z) B(Y)\} \\
& -g(Y, W)\{A(X) B(Z)+A(Z) B(X)\}] \\
+ & e_{3}[g(Y, Z) D(X, W)-g(X, Z) D(Y, W) \\
& +g(X, W) D(Y, Z)-g(Y, W) D(X, Z)]
\end{align*}
$$

where $a_{3}=\frac{2 a}{(n-2)}, \quad b_{3}=\frac{b}{(n-2)}, \quad c_{3}=\frac{c}{(n-2)}, \quad d_{3}=\frac{d}{(n-2)}, \quad e_{3}=\frac{e}{(n-2)}$.
Let U^{\perp} be the $(n-1)$ distribution orthogonal to U in a conharmonically flat $M S(Q E)_{n}(n>3)$.
Then $g(X, U)=0$ if $X \in U^{\perp}$.

Hence from (5.2) we get the following properties of R

$$
\begin{align*}
R(X, Y, Z)= & a_{3}[X g(Y, Z)-Y g(X, Z)] \tag{5.3}\\
& +c_{3}[X B(Y) B(Z)-Y B(X) B(Z) \\
& +g(Y, Z) B(X) V-g(X, Z) B(Y) V] \\
& +d_{3}[g(Y, Z) U B(X)-g(X, Z) U B(Y)] \\
+ & e_{3}[X D(Y, Z)-Y D(X, Z) \\
& +g(Y, Z) l X-g(X, Z) l Y]
\end{align*}
$$

when $X, Y, Z \in U^{\perp}$ and $a_{3}=\frac{2 a}{(n-2)}, \quad c_{3}=\frac{c}{(n-2)}, \quad d_{3}=\frac{d}{(n-2)}, \quad e_{3}=\frac{e}{(n-2)}$. Also

$$
\begin{equation*}
R(X, U, U)=a_{3} X+c_{3} B(X) V+d_{3} B(X) U+e_{3} l X, \quad \text { where } X \in U^{\perp} . \tag{5.4}
\end{equation*}
$$

Therefore we can state the following theorem:
Theorem 4: A conharmonically flat $M S(Q E)_{n}(n>3)$ is a manifold of mixed super quasi constant curvature and the curvature tensor R of type $(1,3)$ satisfies the property given by (5.3) and (5.4).

6 Totally Umbilical Hypersurfaces of a Conharmonically Flat

$M S(Q E)_{n}(n>3)$
In this section we consider a hypersurface $\left(\bar{M}^{n-1}, \bar{g}\right)$ of a conharmonically flat $M S(Q E)_{n}(n>3)$ and denote its curvature tensor of the hypersurface by \bar{R}. Then we have the following theorem of Gauss [4].

$$
\begin{align*}
g(R(X, Y, Z), W)= & \bar{g}(\bar{R}(X, Y, Z), W)-\bar{g}[h(X, W), h(Y, Z)] \tag{6.1}\\
& +\bar{g}[h(Y, W), h(X, Z)]
\end{align*}
$$

where R is the curvature tensor of $M S(Q E)_{n}, \bar{g}$ is the metric tensor of the hypersurface and h is the second fundamental form of the hypersurface and X, Y, Z, W are vector fields tangent to the hypersurface.

If $\quad h(X, Y)=\bar{g}(X, Y) \mu$
where μ is mean curvature of \bar{M}, then hypersurface is said to be totally umbilical [7].
Let us suppose that hypersurface \bar{M} under consideration is totally umbilical then using (5.2) we can express (6.1) as follows

$$
\begin{align*}
& \bar{g}(\bar{R}(X, Y, Z), W)= g(R(X, Y, Z), W)+\bar{g}[h(X, W), h(Y, Z)] \tag{6.2}\\
&-\bar{g}[h(Y, W), h(X, Z)] \\
&=\left(a_{3}+|\mu|^{2}\right)[\bar{g}(Y, Z) \bar{g}(X, W)-\bar{g}(X, Z) \bar{g}(Y, W)] \\
&+b_{3}[\bar{g}(X, W) A(Y) A(Z)-\bar{g}(Y, W) A(X) A(Z)
\end{align*}
$$

$$
\begin{gathered}
+\quad \bar{g}(Y, Z) A(X) A(W)-\bar{g}(X, Z) A(Y) A(W)] \\
+c_{3}[\bar{g}(X, W) B(Y) B(Z)-\bar{g}(Y, W) B(X) B(Z) \\
+\quad+\bar{g}(Y, Z) B(X) B(W)-\bar{g}(X, Z) B(Y) B(W)] \\
+d_{3}[\bar{g}(X, W)\{A(Y) B(Z)+A(Z) B(Y)\} \\
\quad-\bar{g}(Y, W)\{A(X) B(Z)+A(Z) B(X)\} \\
+\bar{g}(Y, Z)\{A(X) B(W)+A(W) B(X)\} \\
-\bar{g}(X, Z)\{A(Y) B(W)+A(W) B(Y)\}] \\
+e_{3}[\bar{g}(X, W) D(Y, Z)-\bar{g}(Y, W) D(X, Z) \\
+\bar{g}(Y, Z) D(X, W)-\bar{g}(X, Z) D(Y, W)]
\end{gathered}
$$

where $a_{3}=\frac{2 a}{n-2}, \quad b_{3}=\frac{b}{n-2}, \quad c_{3}=\frac{c}{n-2}, \quad d_{3}=\frac{d}{n-2}, \quad e_{3}=\frac{e}{n-2}$.
In virtue of (1.8) it follows from (6.2) that the hypersurface under consideration is mixed super quasi constant curvature. Hence we have the following theorem:

Theorem 5: A totally umbilical hypersurface of a conharmonically flat $\operatorname{MS}(Q E)_{n}(n>3)$ is a manifold of mixed super quasi constant curvature.

7 Necessary Condition for the Validity of the Relation $\mathrm{R}(\mathrm{X}, \mathrm{Y}) . \mathrm{S}=0$

In a $M S(Q E)_{n}$ we can write

$$
\begin{equation*}
[R(X, Y) \cdot S](Z, W)=-S(R(X, Y) Z, W)-S(Z, R(X, Y) W) \tag{7.1}
\end{equation*}
$$

Making use of the equation (1.5), we can write (1.7) as

$$
\begin{aligned}
& {[R(X, Y) . S](Z, W)=}- \\
&+c g(R(X, Y) Z, W)+b A(R(X, Y) Z) A(W) \\
&+d A(W) B(R(X, Y) Z)+e D(R(X, Y) Z, W)] \\
&- {[a g(Z, R(X, Y) W)+b A(Z) A(R(X, Y) W)} \\
&+c B(Z) B(R(X, Y) W)+d A(Z) B(R(X, Y) W) \\
&+d A(R(X, Y) W) B(Z)+e D(Z, R(X, Y) W)] \\
&=- {[b A(R(X, Y) Z) A(W)+c B(R(X, Y) Z) B(W)} \\
&+d A(R(X, Y) Z) B(W)+d A(W) B(R(X, Y) Z) \\
&+e D(R(X, Y) Z, W)] \\
&-[b A(Z) A(R(X, Y) W)+c B(Z) B(R(X, Y) W) \\
&+d A(Z) B(R(X, Y) W)+d A(R(X, Y) W) B(Z) \\
&+e D(Z, R(X, Y) W)]
\end{aligned}
$$

In general $\mathrm{R}(\mathrm{X}, \mathrm{Y}) . \mathrm{S}=0$ does not hold good. The necessary condition for the validity of the relation $\mathrm{R}(\mathrm{X}, \mathrm{Y}) . \mathrm{S}=0$ for any vector fields X and Y is

$$
\begin{align*}
& \quad b A(R(X, Y) Z) A(W)+c B(R(X, Y) Z) B(W) \tag{7.2}\\
& +d A(R(X, Y) Z) B(W)+d A(W) B(R(X, Y) Z) \\
& +e D(R(X, Y) Z, W)]+b A(Z) A(R(X, Y) W) \\
& + \\
& + \\
& +d B(Z) B(R(X(X, Y) W)+d A(Z) B(R(X, Y) W) \\
& +d A) B(Z)+e D(Z, R(X, Y) W)=0
\end{align*}
$$

Putting $W=U$ in (7.2) we get

$$
\begin{equation*}
b A(R(X, Y) Z)+d B(R(X, Y) Z)-e A(R(X, Y) l Z)=0 \tag{7.3}
\end{equation*}
$$

Therefore we can state the following theorem:
Theorem 6: In a $M S(Q E)_{n}$ the necessary condition for the validity of the relation $R(X, Y) . S=0$ is given by equation (7.3).

8 Necessary Condition for the Validity of the Relation $R(X, Y) . D=0$

$$
\begin{align*}
{[R(X, Y) \cdot D](Z, W) } & =D(R(X, Y) Z, W)+D(R(X, Y) W, Z) \tag{8.1}\\
& =g(l R(X, Y) Z, W)+g(l R(X, Y) W, Z) \quad(\text { using }(2.4))
\end{align*}
$$

It is clear from equation (8.1) that in the $M S(Q E)_{n}$ the relation $R(X, Y) \cdot D=0$ does not hold good.
Therefore necessary condition for the validity of the relation $\mathrm{R}(\mathrm{X}, \mathrm{Y}) . \mathrm{D}=0$ for any vector fields X and Y is

$$
\begin{equation*}
g(l R(X, Y) Z, W)+g(l R(X, Y) W, Z)=0 \tag{8.2}
\end{equation*}
$$

Putting $W=U$ in (8.2) we have

$$
\begin{array}{lc}
& g(l R(X, Y) Z, U)+g(l R(X, Y) U, Z)=0 \\
\text { or, } & g(R(X, Y) U, l Z)=0 \\
\text { or, } & -g(R(X, Y) l Z, U)=0
\end{array} \quad \text { (using(1.6)) }
$$

From above equation it follows that

$$
\begin{equation*}
A(R(X, Y) l Z)=0 \tag{8.3}
\end{equation*}
$$

Therefore we can state the following theorem:
Theorem7: In a $M S(Q E)_{n}$ the necessary condition for the validity of the relation $R(X, Y) . D=0$ is given by equation (8.3).

9 Physical Interpretation

P.Chakraborti, M.Bandyopadhyay and M.Barua in [9] and S.Guha in [10] found that a perfect fluid space- time satisfying Einstein's equation without cosmological constant is a 4-dimensional semi-Riemannian quasi-Einstein manifold and a non-viscous fluid space time admitting heat flux satisfying Einstein's equation without cosmological constant is a 4-dimensional semiRiemannian generalized quasi-Einstein manifold .
The importance of $M S(Q E)_{n}$ is that such a four dimensional semi-Riemannian manifold is relevant to the study of general relativistic viscous fluid space- time admitting heat flux, where U is taken as the velocity vector field of the fluid, V is taken as the heat flux vector field and D as the anisotropic pressure tensor of the fluid.
The energy momentum tensor of type $(0,2)$ in [8] representing the matter distribution of a viscous fluid space-time admitting heat flux is of the form

$$
\begin{align*}
T(X, Y)= & (\sigma+\rho)\{A(X) A(Y)+B(X) B(Y)\} \tag{9.1}\\
& +\rho g(X, Y)+[A(X) B(Y)+A(Y) B(X)]+D(X, Y)
\end{align*}
$$

where σ, ρ denote the density and isotropic pressure and D denotes the anisotropic pressure tensor of the fluid, U is the unit time like velocity vector field of the fluid such that $g(X, U)=A(X)$ and V is the heat flux vector field such that $g(X, V)=B(X), U$ and V being mutually orthogonal.Then

$$
g(U, U)=-1, \quad g(V, V)=1, \quad g(\mathrm{U}, \mathrm{~V})=0
$$

$D(X, Y)=D(Y, X)$
trace $D=O$ and

$$
\begin{equation*}
D(X, U)=0 \quad \forall X \tag{9.3}
\end{equation*}
$$

Now, Einstein's equation without cosmological constant is of the form [11]

$$
\begin{equation*}
S(X, Y)-\frac{1}{2} r g(X, Y)=k T(X, Y) \tag{9.4}
\end{equation*}
$$

where k is the gravitational constant.
Using equations (9.1) and (9.4) we get

$$
\begin{aligned}
S(X, Y)-\frac{1}{2} r g(X, Y)= & k(\sigma+\rho)\{A(X) A(Y)+B(X) B(Y)\} \\
& +k \rho g(X, Y)+k[A(X) B(Y)+A(Y) B(X)]+k D(X, Y)
\end{aligned}
$$

Therefore

$$
\begin{align*}
S(X, Y)= & \left(k \rho+\frac{1}{2} r\right) g(X, Y)+k(\sigma+\rho)\{A(X) A(Y)+B(X) B(Y)\} \tag{9.5}\\
& +k[A(X) B(Y)+A(Y) B(X)]+k D(X, Y)
\end{align*}
$$

Using (9.2), (9.3) and (9.5) we get

$$
\begin{align*}
& S(U, U)=\frac{k}{2}(\sigma+3 \rho) \tag{9.6}\\
& S(V, V)=\frac{k}{2}(\sigma+\rho)+k D(V, V) \tag{9.7}\\
& S(U, V)=-k \tag{9.8}
\end{align*}
$$

Solving equations (9.6), (9.7) and (9.8) we get

$$
\begin{equation*}
\sigma=\frac{S(U, U)}{S(U, V)}-3 \frac{S(V, V)}{S(U, V)}-3 D(V, V) \tag{9.9}
\end{equation*}
$$

And

$$
\begin{equation*}
\rho=-\frac{S(U, U)}{S(U, V)}+\frac{S(V, V)}{S(U, V)}+D(V, V) \tag{9.10}
\end{equation*}
$$

Therefore we can state the following theorem:
Theorem 8: In a viscous fluid space-time admitting heat flux with an anisotropic tensor field D and satisfying Einstein's equation without cosmological constant the energy density and the isotropic pressure are given by (9.9) and (9.10) respectively.

References

[1] A. Bhattacharya, T. De and D. Debnath, Mixed generalized quasi-Einstein manifold and some properties, Analele Stiintifice Ale Universitatii "AL.I.CUZA" Din Iasi (S.N) Mathematica Tomul LIII, f.1., (2007).
[2] B. Chen and Yano, Hypersurfaces of a conformally flat space, Tensor, N.S., 26 (1972), 315-321.
[3] B.O' Neill, Semi Riemannian Geometry, Academic Press Inc., (1983).
[4] K. Yano and M. Kon, Structures on Manifold, World Scientific, (1984).
[5] K. Yano and S. Sawaki, Riemannian manifolds admitting a conformal transformation group, J. Diff. Geom., 2 (1968), 161-184.
[6] M.C. Chaki, On generalized quasi-Einstein manifolds, Publications Mathematicae, Debrecen, 58 (2001), 683-691.
[7] M.C. Chaki and R.K. Maity, On quasi Einstein manifolds, Publications Mathematicae, Debrecen, 57 (2000), 297-306.
[8] M. Novello and M.J. Reboucas, The stability of a rotating universe, The Astrophysics Journal, 225 (1978), 719-724.
[9] P. Chakraborti, M. Bandyopadhyay and B. Barua, Some results of a generalized quasi Einstein manifold, Tensor, N.S., 67 (2006), 108-111.
[10] S. Guha, On quasi-Einstein and generalized quasi-Einstein manifolds, Facta Universitatis Series, Mechanics, Automatic Control and Robotics, 3 (2003), 821-842.
[11] T.J. Willmore, Differential Geometry, Clarendron Press, Oxford, (1958).

