

Gen. Math. Notes, Vol. 24, No. 1, September 2014, pp.25-39 ISSN 2219-7184; Copyright ©ICSRS Publication, 2014 www.i-csrs.org Available free online at http://www.geman.in

Fuzzy rw-Connectedness and Fuzzy

rw-Disconnectedness in Fuzzy

Topological Spaces

A. Vadivel¹ and P. Revathi²

^{1,2}Department of Mathematics (FEAT), Annamalai University Annamalainagar, Tamil Nadu-608 002 ¹E-mail: avmaths@gmail.com ²E-mail: revathip76@gmail.com

(Received: 22-2-14 / Accepted: 24-5-14)

Abstract

In this paper, using the concept of fuzzy rw-open set we shall define various notions of fuzzy rw-connectedness and fuzzy rw-disconnectedness in fuzzy topological spaces and some of their properties and characterizations of such spaces are also investigated.

Keywords: Fuzzy rw-connected, fuzzy super rw-connected, fuzzy strongly rw-connected, extremally fuzzy rw-disconnectedness, totally fuzzy rw-disconnectedness.

1 Introduction and Preliminaries

Fuzzy relations were first introduced by Lofti A. Zadeh in 1971 [22]. Fuzzy sets have application in applied fields such as information [17], control [18, 19] and pattern recognition [13, 16]. This concept has been applied by many authors to several branches of mathematics particuarly in the fields such as fuzzy numbers [5], fuzzy groups [20], fuzzy topological groups [7], *L*-fuzzy sets [9], fuzzy linear spaces [10], fuzzy algebra [12] fuzzy vector spaces [14] and fuzzy proximity space [15]. One of the applications was the study of fuzzy topological spaces [4] introduced and studied by chang in 1968. Ever since the introducting of fuzzy topological spaces notions like fuzzy regular open [1] and

fuzzy regular semiopen [21] were extended from general topological structures.

The concept of rw-open sets and fuzzy rw-open sets was introduced and studied by Wali [21] motivated us to study on fuzzy rw-connectedness in fuzzy topological space. In this paper, using the concept of fuzzy rw-open sets. We shall defined varies notions of fuzzy rw-connectedness and rw-disconnectedness in fuzzy topological spaces and some of their properties and characterization of such spaces and also investigated.

Throughtout the paper I will denote the unit interval [0, 1] of the real line R. X, Y, Z will be nonempty sets. The symbols $\lambda, \mu, \gamma, \eta \ldots$ are used to denote fuzzy sets and all other symbols have their usual meaning unless explicitly stated.

Definition 1.1. A fuzzy set λ in a fts (X, τ) is said to be fuzzy regular open set [1] if $int(cl\lambda) = \lambda$ and a fuzzy regular closed set if $cl(int(\lambda)) = \lambda$, (iii) fuzzy regular semi open [23] if there exists fuzzy regular open set σ in X such that $\sigma \leq \alpha \leq cl(\sigma)$.

Definition 1.2. A fts (X,T) is said to be fuzzy connected [11] if it has no proper fuzzy clopen set. Otherwise it is called fuzzy disconnected.

Definition 1.3. A fuzzy set λ in fts (X,T) is proper if $\lambda \neq 0$ and $\lambda \neq 1$.

Definition 1.4. A fts (X,T) is called fuzzy super connected [6] if it has no proper fuzzy regular open set.

Definition 1.5. A fts (X,T) is called fuzzy strongly connected [6] if it has no non-zero fuzzy closed sets λ and μ such that $\lambda + \mu \leq 1$.

Definition 1.6. A fts (X,T) is said to be fuzzy extremally disconnected [2] if $\lambda \in T$ implies $Cl(\lambda) \in T$.

Definition 1.7. A fts (X,T) is said to be fuzzy totally disconnected [2] if and only if for every pair of fuzzy points p, q with $p \neq q$ in (X,T) there exists non-zero fuzzy open sets λ, μ such that $\lambda + \mu = 1, \lambda$ contains p and μ contains q. Suppose $A \subset X$. A is said to be a fuzzy totally disconnected subset of X if A as a fuzzy subspace of (X,T) is fuzzy totally disconnected.

Definition 1.8. Let (X,T) be fts and Y be an ordinary subset of X. Then $T/Y = \{\lambda/Y : \lambda \in T\}$ is a fuzzy topology on Y and is called the induced or relative fuzzy topology. The pair (Y,T/Y) is called a fuzzy subspace [8] of (X,T). (Y,T/Y) is called fuzzy open (fuzzy closed) subspace if the characteristic function of Y viz., χ_Y is fuzzy open (fuzzy closed).

Definition 1.9. A fuzzy set λ in a fts (X, τ) is said to be a fuzzy regular weakly closed set (briefly, frw-closed) [21] if $cl(\lambda) \leq \mu$, whenever $\lambda \leq \mu$ and μ is fuzzy regular semi-open in X.

From this definition it is clear that λ is fuzzy rw-open $\Leftrightarrow 1 - \lambda$ is fuzzy rw-closed. Also we define $\lambda_0 = \bigvee \{\delta \mid \delta \leq \lambda, \delta \text{ is fuzzy } rw$ -open $\}, \underline{\lambda} = \wedge \{\delta \mid \delta \geq \lambda, \delta \text{ is fuzzy } rw$ -closed $\}$. λ_0 and $\underline{\lambda}$ are called fuzzy rw-interior and fuzzy rw-closed fuzzy rw-closed is called fuzzy rw-clopen.

It is easy to verify the following relations between fuzzy rw-interior and fuzzy rw-closure: (a) $1 - \lambda_0 = (\underline{1 - \lambda})$, (b) $1 - \underline{\lambda} = (1 - \lambda)_0$ where λ is any fuzzy set in (X, T).

We shall denote the class of all fuzzy rw-open sets of the fuzzy topological space (X, T) by FRWO(X, T).

2 Fuzzy *rw*-Connectedness

Definition 2.1. A fuzzy topological space (X, T) is said to be fuzzy rw-connected if (X, T) has no proper fuzzy set λ which is both fuzzy rw-open and fuzzy rw-closed.

Proposition 2.1. A fuzzy topological space (X,T) is fuzzy rw-connected \Leftrightarrow it has no non-zero fuzzy rw-open sets λ_1 and λ_2 such that $\lambda_1 + \lambda_2 = 1$.

Proof. If such λ_1 and λ_2 exist, then λ_1 is a proper fuzzy set which is both fuzzy rw-open and fuzzy rw-closed. To prove the converse suppose that (X, T) is not fuzzy rw-connected. Then it has a proper fuzzy set λ_1 (say) which is both fuzzy rw-open and fuzzy rw-closed. Now put $\lambda_2 = 1 - \lambda_1$. Then λ_2 is a fuzzy rw-open set such that $\lambda_2 \neq 0$ and $\lambda_1 + \lambda_2 = 1$.

Corollary 2.1. A fuzzy topological space (X, T) is fuzzy rw-connected \Leftrightarrow it has no non-zero fuzzy sets λ_1 and λ_2 such that $\lambda_1 + \lambda_2 = \underline{\lambda_1} + \underline{\lambda_2} = \lambda_1 + \underline{\lambda_2} = 1$.

Definition 2.2. If $A \subset X$, then A is said to be fuzzy rw-connected subset of (X,T) when (A,T/A) is fuzzy rw-connected as a fuzzy subspace of (X,T).

Proposition 2.2. Let A be a fuzzy rw-connected subset of X and λ_1 and λ_2 be non-zero fuzzy rw-open sets in (X,T) such that $\lambda_1 + \lambda_2 = 1$. Then either $\lambda_1/A = 1$ or $\lambda_2/A = 1$.

Proof. Follows from proposition 2.1.

Proposition 2.3. Let (A, T/A) be a fuzzy subspace of the fuzzy topological space (X,T) and let λ be a fuzzy set in A. Further let δ be the fuzzy set in X defined as

$$\delta(x) = \begin{cases} \lambda(x) & \text{if } x \in A \\ 0 & \text{if } x \in X \setminus A \end{cases}$$

Then $(\underline{\lambda})_{T/A} = (\underline{\delta})_{T/A}$ where $(\underline{\lambda})_{T/A}$ is the fuzzy rw- closure of λ with respect to T/A and $(\underline{\delta})_T$ is the fuzzy rw-closure of δ with respect to T.

Definition 2.3. Fuzzy sets λ_1 and λ_2 in a fuzzy topological space (X,T) are said to be fuzzy rw-separated if $\underline{\lambda}_1 + \lambda_2 \leq 1$ and $\lambda_1 + \underline{\lambda}_2 \leq 1$.

Proposition 2.4. Let $\{A_k\}_{k \in \Gamma}$ be a family of fuzzy *rw*-connected subsets of (X,T) such that for each $k, \ell \in \Gamma$ and $k \neq \ell, \chi_{A_k}$ and χ_{A_ℓ} are not fuzzy *rw*-separated from each other. Then $\bigcup_{k \in \Gamma} A_k$ is a fuzzy *rw*-connected subset of (X,T)

(X,T).

Proof. Suppose $Y = \bigcup_{k \in \Gamma} A_k$ is not fuzzy rw-connected subset of (X, T). Then there exist non zero fuzzy rw-open sets δ and σ in Y such that $\delta + \sigma = 1$. Fix $k_0 \in \Gamma$. Then A_{k_0} is a fuzzy rw-connected subset of Y as it is so in (X, T). Then by Proposition 2.2., either $\delta_{A_{k_0}} = 1$ or $\sigma_{A_{k_0}} = 1$. Without loss of generality we can assume that

$$\delta/A_{k_0} = 1 = \chi_{A_{k_0}}/A_{k_0} \tag{i}$$

Define two fuzzy sets λ_1 and λ_2 in X as follows:

$$\lambda_1(x) = \begin{cases} \delta(x) & \text{if } x \in Y, \\ 0 & \text{if } x \in X \setminus Y; \\ \lambda_2(x) = \begin{cases} \sigma(x) & \text{if } x \in Y, \\ 0 & \text{if } x \in X \setminus Y. \end{cases}$$

Then by Proposition 2.3.,

$$(\underline{\delta})_{T/Y} = (\underline{\lambda}_1)_T / Y \text{ and } (\underline{\sigma})_{T/Y} = (\underline{\lambda}_2)_T / Y$$
 (*ii*)

Now (i) implies that

$$\chi_{A_{k_0}} \leq \lambda_1 \text{ and so } \underline{\chi_{A_{k_0}}} \leq \underline{\lambda_1}$$
 (iii)

Let $k \in \Gamma - \{k_0\}$. Since A_k is a fuzzy rw- connected subset of Y either $\delta/A_k = 1$ or $\sigma/A_k = 1$. We shall show that $\chi_{A_k}/A_k \neq \sigma/A_k$. Suppose that $\chi_{A_k}/A_k = \sigma/A_k$.

Then

$$\chi_{A_k} \le \lambda_2 \text{ and hence } \chi_{A_k} \le \underline{\lambda_2}$$
 (iv)

Since $\delta + \sigma = \underline{\delta} + \sigma = \delta + \underline{\sigma} = 1$, $\lambda_1 + \underline{\lambda_2} \leq 1$ and $\underline{\lambda_1} + \lambda_2 \leq 1$ (by (ii) and definitions of λ_1 and λ_2). Now (iii) and (iv) imply that

$$\underline{\chi_{A_{k_0}}} + \chi_{A_k} \leq \underline{\lambda_1} + \lambda_2 \leq 1 \text{ and } \chi_{A_{k_0}} + \underline{\chi_{A_k}} \leq \lambda_1 + \underline{\lambda_2} \leq 1.$$

This gives a contradiction as $\chi_{A_{k_0}}$ and χ_{A_k} are not rw- separated from each other. This contradiction shows that $\chi_{A_k}/A_k \neq \sigma/A_k$ and hence $\chi_{A_k}/A_k = \delta/A_k$ for $k \in \Gamma$ implies $\delta = \chi_{A_k}/Y$. But $\delta + \sigma = 1$. So $\sigma(x) = 0$ for all $x \in Y$. That is $\sigma = 0$, which is a contradiction since $\sigma \neq 0$. So our assumption is wrong. Hence the proposition is proved.

Corollary 2.2. Let $\{A_k\}_{k\in\Gamma}$ be a family of fuzzy rw-connected subsets of a fuzzy topological space (X,T) and $\bigcap_{k\in\Gamma} A_k \neq \phi$. Then $\bigcup_{k\in\Gamma} A_k$ is a fuzzy rw-connected subset of (X,T).

Corollary 2.3. If $\{A_n\}_{n=1}^{\infty}$ is a sequence of fuzzy rw-connected subsets of a fuzzy topological space (X,T) such that χ_{A_n} and $\chi_{A_{n+1}}$ are not fuzzy rwseparated from each other for $n = 1, 2, 3, \cdots$, then $\bigcup_{n=1}^{\infty} A_n$ is a fuzzy rwconnected subset of (X,T).

The following proposition is easy to establish.

Proposition 2.5. Let A and B be subsets of a fuzzy topological space (X,T) such that $\chi_A \leq \chi_B \leq \underline{\chi}_A$. If A is a fuzzy rw-connected subset of (X,T), then B is also a fuzzy rw-connected subset of (X,T).

3 Fuzzy Super *rw*-Connectedness

Definition 3.1. A fuzzy set λ in a fuzzy topological space (X, T) is called fuzzy rw-regular open set if $\lambda = (\underline{\lambda})_0$.

Definition 3.2. A fuzzy topological space (X,T) is called fuzzy super rwconnected if there is no proper fuzzy rw-regular open set.

In the following proposition we give several characterizations of fuzzy super rw-connected spaces.

Proposition 3.1. The following are equivalent for a fuzzy topological space (X,T).

- 1. (X,T) is fuzzy super rw-connected.
- 2. $\underline{\lambda} = 1$ whenever λ is any non-zero fuzzy rw- open set in (X, T).
- 3. $\lambda_0 = 0$ whenever λ is a fuzzy rw-closed set in (X, T) such that $\lambda \neq 1$.
- 4. (X,T) does not have non-zero fuzzy rw-open sets λ_1 and λ_2 such that $\lambda_1 + \lambda_2 \leq 1$.
- 5. (X, T) does not have non-zero fuzzy sets λ_1 and λ_2 such that $\underline{\lambda_1} + \lambda_2 = \lambda_1 + \lambda_2 = 1$.
- 6. (X,T) does not have fuzzy closed sets δ_1 and δ_2 such that $\delta_1 + \delta_2 \ge 1$.

Definition 3.3. A subset A of a fuzzy topological space (X,T) is called fuzzy super rw- connected subset of (X,T) if it is fuzzy super rw- connected topological space as a fuzzy subspace of (X,T).

Definition 3.4. Let (X,T) be a fuzzy topological space. If $A \subset Y \subset X$, then A is a fuzzy super rw-connected subset of $(X,T) \Leftrightarrow$ it is a fuzzy super rwconnected subset of the fuzzy subspace (Y,T/Y) of (X,T).

Proposition 3.2. Let A be a fuzzy super rw-connected subset of a fuzzy topological space (X,T). If there exists fuzzy rw-closed sets δ_1 and δ_2 in X such that $(\delta_1)_0 + \delta_2 = \delta_1 + (\delta_2)_0 = 1$, then $\delta_1/A = 1$ or $\delta_2/A = 1$.

Proof. Suppose that A is not a fuzzy super rw-connected space. Then there exists fuzzy rw-closed sets δ_1 , δ_2 in X such that

 $\delta_1/A \neq 0, \ \delta_2/A \neq 0,$ and $\delta_1/A + \delta_2/A \leq 1,$

Then X is not a fuzzy super rw-connected space, a contradication.

Proposition 3.3. Let (X,T) be a fuzzy topological space and $A \subset X$ be a fuzzy super rw- connected subset of X such that χ_A is fuzzy rw-open set in X. If λ is a fuzzy regular rw-open set in (X,T), then either $\chi_A \leq \lambda$ or $\chi_A \leq 1-\lambda$.

Proof. Follows from proposition 3.2.

Proposition 3.4. Let $\{A_k\}_{k\in\Gamma}$ be a family of subsets of a fuzzy topological space (X,T) such that each χ_{A_k} is fuzzy rw-open. If $\bigcap_{k\in\Gamma} A_k \neq \phi$ and each A_k is a fuzzy super rw-connected subset of X, then $\bigcup_{k\in\Gamma} A_k$ is also a fuzzy super rw-connected subset of (X,T).

Proposition 3.5. If A and B are subsets of a fuzzy topological space (X,T)and $\chi_A \leq \chi_B \leq \underline{\chi_A}$ and if A is a fuzzy super rw- connected subset of (X,T), then so is B.

Proposition 3.6. Let (X,T) and (Y,S) be any two fuzzy super rw-connected spaces. Assume (X,T) and (Y,S) are product related. Then $(X \times Y, T \times S)$ is a fuzzy super rw-connected space.

Proof. Let (X, T) and (Y, S) be fuzzy super *rw*-connected topological spaces. Assume (X, T) and (Y, S) are product related. Suppose now that $(X \times Y, T \times S)$ is not fuzzy super *rw*- connected. Then there exists $\lambda_1, \lambda_2 \in FRWO(X, T)$ and $\eta_1, \eta_2 \in FRWO(Y, S)$ such that

$$\lambda_1 \times \eta_1 \neq 0, \ \lambda_2 \times \eta_2 \neq 0$$

and

$$(\lambda_1 \times \eta_1)(x, y) + (\lambda_2 \times \eta_2)(x, y) \le 1 \text{ for every } (x, y) \in X \times Y$$
 (i)

As (X, T) and (Y, S) are product related $\lambda_1 \times \eta_1$ and $\lambda_2 \times \eta_2$ are fuzzy *rw*-open sets in $(X \times Y, T \times S)$.

Now $\lambda_1 \times \eta_1 = P_X^{-1}(\lambda_1) \wedge P_Y^{-1}(\eta_1)$; P_X is the projection map of $X \times Y$ onto X etc., So min $\{(\lambda_1(x), \eta_1(y)\} + \min\{(\lambda_2(x), \eta_2(y)\} \le 1 \text{ for every } (x, y) \in X \times Y.$ Now from (i) we have that for any $(x, y) \in X \times Y$ either (i) $\lambda_1(x) + \lambda_2(x) \leq 1$ or (ii) $\lambda_1(x) + \eta_1(y) \le 1$ or (iii) $\eta_1(y) + \lambda_2(x) \le 1$ or (iv) $\eta_1(y) + \eta_2(y) \le 1$. Now $\lambda_1 \wedge \lambda_2 \in FRWO(X,T)$ and $\eta_1 \wedge \eta_2 \in FRWO(Y,S)$. As (X,T) and (Y,S)are fuzzy super rw- connected topological spaces, if $\lambda_1 \wedge \lambda_2 \neq 0, \eta_1 \wedge \eta_2 \neq 0$, then there exists $x_1 \in X$ and $y_1 \in Y$ such that $(\lambda_1 \wedge \lambda_2)(x_1) > 1/2$ and $(\eta_1 \wedge \eta_2)(y_1) > \frac{1}{2}$. So $\lambda_1(x_1) > \frac{1}{2}, \lambda_2(x_1) > \frac{1}{2}, \eta_1(y_1) > \frac{1}{2}, \eta_2(y_1) > \frac{1}{2}$. Therefore, if $x = x_1, y = y_1$ then none of the above four possibilities will be true. If $\lambda_1 \wedge \lambda_2 = 0$, then for each $x \in X$ either $\lambda_1(x) = 0$ or $\lambda_2(x) = 0$. So for every $x \in X, \lambda_1(x) + \lambda_2(x) \leq 1$. Note that $\lambda_1 \neq 0, \lambda_2 \neq 0$ as both $\lambda_1 \times \eta_1 \neq 0$ and $\lambda_2 \times \eta_2 \neq 0$, which implies that (X,T) is not fuzzy super *rw*-connected. Similarly, $\eta_1 \wedge \eta_2 = 0$ will imply that (Y, S) is not fuzzy super rw- connected. This gives a contradiction as both (X,T) and (Y,S) are fuzzy super rw- connected spaces. So our assumption that $(X \times Y, T \times S)$ is not fuzzy super *rw*-connected is wrong.

4 Fuzzy Strongly *rw*-Connectedness

Definition 4.1. A fuzzy topological space (X,T) is said to be fuzzy strongly rw- connected if it has no non-zero fuzzy rw- closed sets λ and μ such that $\lambda + \mu \leq 1$.

If (X, T) is not fuzzy strongly rw- connected, then it is called fuzzy weakly rw-connected.

Proposition 4.1. (X,T) is fuzzy strongly rw-connected \Leftrightarrow it has no non-zero fuzzy rw-open sets λ_1 and λ_2 such that $\lambda_1 \neq 1, \lambda_2 \neq 1$ and $\lambda_1 + \lambda_2 \geq 1$.

Proposition 4.2. Let (A, T/A) be a fuzzy subspace of a fuzzy strongly rwconnected space (X, T). Then A is fuzzy strongly rw-connected \Leftrightarrow for any fuzzy rw-open sets λ_1 and λ_2 in $(X, T), \chi_A \leq \lambda_1 + \lambda_2$ implies either $\chi_A \leq \lambda_1$ or $\chi_A \leq \lambda_2$.

Proof. If A is not a fuzzy strongly rw-connected subset of X, then there exist fuzzy rw-closed sets f and k in X such that (i) $f/A \neq 0$ (ii) $k/A \neq 0$ and (iii) $f/A + k/A \leq 1$. If we put $\lambda_1 = 1 - f$ and $\lambda_2 = 1 - k$ then $\lambda_1/A = 1 - f/A$, $\lambda_2/A = 1 - k/A$. So (i), (ii) and (iii) imply that $\chi_A \leq \lambda_1 + \lambda_2$ but $\chi_A \not\leq \lambda_1$ and $\chi_A \not\leq \lambda_2$. Conversely if there exist fuzzy rw-open sets λ_1 and λ_2 such that $\chi_A \leq \lambda_1 + \lambda_2$ but $\chi_A \not\leq \lambda_1$ and $\chi_A \not\leq \lambda_2$ then $\lambda_1/A \neq 1, \lambda_2/A \neq 1$ and $\lambda_1/A + \lambda_2/A \geq 1$. So A is not fuzzy strongly rw-connected.

Proposition 4.3. Let (X,T) be a fuzzy strongly rw- connected space. Let A be a subset of (X,T) such that χ_A is fuzzy rw- closed in (X,T). Then A is fuzzy strongly rw- connected sub set of (X,T).

Proof. Suppose that A is not so. Then there exist fuzzy rw-closed sets f and k in X such that (i) $f/A \neq 0$ (ii) $k/A \neq 0$ and (iii) $f/A + k/A \leq 1$. (iii) implies that $(f \land \chi_A) + (K \land \chi_A) \leq 1$ where by (i) and (ii) $f \land \chi_A \neq 0$, $k \land \chi_A \neq 0$. So X is not fuzzy strongly rw-connected, which is a contradiction.

Regarding the product of fuzzy strongly rw-connected spaces we prove the following.

Proposition 4.4. Let (X,T) and (Y,S) be fuzzy strongly rw-connected spaces. Assume (X,T) and (Y,S) are product related. Then $(X \times Y, T \times S)$ is a fuzzy strongly rw-connected space.

Proof. Let (X,T) and (Y,S) be fuzzy strongly rw-connected spaces such that (X,T) and (Y,S) are product related. We claim that $(X \times Y, T \times S)$ is fuzzy strongly rw- connected. Suppose not. Since members of $Frwo(X \times Y, T \times S)$ are precisely of the type (by Theorem 1.5 of [3]) " $\lambda \times \delta$ " where $\lambda \in Frwo(X,T), \delta \in Frwo(Y,S)$, there exist non-zero fuzzy sets $\lambda_1, \lambda_3 \in Frwo(X,T)$ and $\lambda_2, \lambda_4 \in Frwo(Y,S)$ such that $\lambda_1 \times \lambda_2 \neq 1, \lambda_3 \times \lambda_4 \neq 1$ and for every $x \in X, y \in Y$,

$$\min\{\lambda_1(x), \lambda_2(y)\} + \min\{\lambda_3(x), \lambda_4(y)\} \ge 1.$$

$$(1)$$

Clearly $\lambda_1 \vee \lambda_3 \in Frwo(X,T)$ and $\lambda_2 \vee \lambda_4 \in Frwo(Y,S)$. Given that (X,T) and (Y,S) are fuzzy strongly *rw*-connected, so if $\lambda_1 \vee \lambda_3 \neq 1$, and $\lambda_2 \vee \lambda_4 \neq 1$, then there is $x_1 \in X$ and $y_1 \in Y$ such that $(\lambda_1 \vee \lambda_3)(x_1) < \frac{1}{2}$ and $(\lambda_2 \vee \lambda_4)(y_1) < \frac{1}{2}$ which implies $\lambda_1(x_1) < \frac{1}{2}, \lambda_3(x_1) < \frac{1}{2}, \lambda_2(y_1) < \frac{1}{2}$ and $\lambda_4(y_1) < \frac{1}{2}$. So for $x = x_1$ and $y = y_1$, (1) does not hold. If $\lambda_1 \vee \lambda_3 = 1$, then for each $x \in X$,

$$\lambda_1(x) = 1 \text{ or } \lambda_3(x) = 1.$$
(2)

Now we show that $\lambda_1 \neq 1$. Suppose $\lambda_1 = 1$. Then $\lambda_1 \times \lambda_2 \neq 1$ and (Y, S) is fuzzy strongly rw -connected implies that there exists $y_0 \in Y$ such that $\lambda_2(y_0) < \frac{1}{2}$. Now $\lambda_3 \times \lambda_4 \neq 1$. So either $\lambda_3 \neq 1$ or $\lambda_4 \neq 1$.

Case 1: If $\lambda_3 \neq 1$, then as (X,T) is fuzzy strongly rw -connected there is $x_0 \in X$ such that $\lambda_3(x_0) < \frac{1}{2}$. So for $x = x_0, y = y_0$, (1) is not true.

Case 2: If $\lambda_4 \neq 1$, then since $\lambda_2 \neq 1$ and (Y, S) is fuzzy strongly rw connected there is $y_1 \in Y$ such that $\lambda_2(y_1) + \lambda_4(y_1) < 1$. So for any $x \in X$ and $y = y_1$,

 $\min\{\lambda_1(x), \lambda_2(y)\} + \min\{\lambda_3(x), \lambda_4(y)\} \le \lambda_2(y_1) + \lambda_4(y_1) < 1.$

This is a contradiction because of (1). Thus $\lambda_1 = 1$ is not possible. Similarly, we can prove that $\lambda_3 \neq 1$. By (2) $\lambda_1 + \lambda_3 \geq 1$. So (X, T) is not fuzzy strongly *rw*-connected, which is a contradiction. Therefore $\lambda_1 \vee \lambda_3 = 1$ is not possible. Similarly, we can show that $\lambda_2 \vee \lambda_4 = 1$ is not possible. This proves that our assumption is wrong. Hence the proposition is proved.

Example 4.1 The following example [6] shows that an infinite product of fuzzy strongly rw-connected spaces need not be fuzzy strongly rw-connected. Let $X_n = [0, 1], n = 1, 2, \cdots$ and $T_n = \left\{0, 1, \frac{n}{2(n+1)}\right\}, n = 1, 2, \cdots$. Clearly (X_n, T_n) is fuzzy strongly rw-connected for all $n = 1, 2, \cdots$. Let T be the product fuzzy topology on $X = \prod_{n=1}^{\infty} X_n$. Then (X, T) is not strongly fuzzy rw-connected, since T contains a member $\bigvee_{n=1}^{\infty} P_n^{-1}(\lambda_n) \neq 1$ such that $\bigvee_{n=1}^{\infty} P_n^{-1}(\lambda_n)(x) = \frac{1}{2}$ for $x \in X$, where $\lambda_n = \frac{n}{2(n+1)}$ and $P_n : X \to X_n$ is the projection mapping.

Definition 4.2. Let (X,T) and (Y,S) be any two fuzzy topological spaces and let $F : (X,T) \to (Y,S)$ be a mapping. For each $\alpha \in I^Y$, the fuzzy dual F^* of F is defined as $F^*(\alpha) = \sup\{\beta \in I^X, \alpha \not\leq F(\beta)\}.$

Definition 4.3. A mapping F from a fuzzy topological space (X, τ) to another fuzzy topological space (Y, S) is called fuzzy upper^{*} (lower^{*}) rw-continuous iff for every fuzzy open (closed) set λ in Y, the set $\mu \in I^X$ such that $F(\mu) \leq \lambda$ is fuzzy rw-open (closed) in X. **Proposition 4.5.** Let $F : (X,T) \to (Y,S)$ be any mapping from a fuzzy topological space (X,T) to another fuzzy topological space (Y,S). Then the following are equivalent.

- 1. For $\lambda \in I^Y$, the subsets $\{A_\beta\}_{\beta \in \Gamma}$ with $\chi_{A_\beta} = F^*(\beta)$ such that $\beta \leq \lambda$ are fuzzy rw-connected.
- 2. For every pair of fuzzy sets (λ_1, λ_2) in $(X \times X, T(X \times X))$, there exists a fuzzy rw-connected subset C with $\chi_C \leq \lambda_1$ or $\chi_C \leq \lambda_2$ such that $F(\mu) \leq F(\lambda_1) \leq F(\lambda_1) \lor F(\lambda_2)$ for all $\mu \geq \chi_C$.
- 3. For every pair of fuzzy sets (λ_1, λ_2) in $(X \times X, T(X \times X))$, the subset A such that $F(\chi_A) \leq F(\lambda_1) \vee F(\lambda_2)$ is fuzzy rw-connected.

Proof. (a) \Rightarrow (c): Let $\lambda = F(\lambda_1) \vee F(\lambda_2)$ and let $\{A_\beta\}_{\beta \in \Gamma}$ be subsets with $\chi_{A_\beta} = F^*(\beta)$ for all $\beta \leq \lambda$.

Let $\mu = \bigwedge \chi_{A_{\beta}}$ $\Leftrightarrow \mu \leq F^{*}(\beta)$ for all $\beta \leq \lambda$ \Leftrightarrow for those $\mu, \beta \not\leq F(\gamma)$, for all $\beta \leq \lambda, \gamma \leq F^{*}(\beta)$ \Leftrightarrow for those $\mu, F(\gamma) \leq F(\lambda_{1}) \vee F(\lambda_{2})$ \Leftrightarrow for those $\mu, F(\mu) \leq F(\lambda_{1}) \vee F(\lambda_{2})$ $\Leftrightarrow \mu = \chi_{A}$ such that $F(\chi_{A}) \leq F(\lambda_{1}) \vee F(\lambda_{2})$

Thus, $\bigwedge \chi_{A_{\beta}} = \chi_A$ with $F(\chi_A) \leq F(\lambda_1) \vee F(\lambda_2)$ $\Rightarrow A = \bigcap A_{\beta}$ with $F(\chi_A) \leq F(\lambda_1) \vee F(\lambda_2)$.

Hence (c) follows.

(c) \Rightarrow (b): Let C be a subset such that if $F(\eta) \leq F(\lambda_1) \vee F(\lambda_2)$ then $\eta \geq \chi_C$. Clearly $\chi_C \leq \lambda_1$ or $\chi_C \leq \lambda_2$ and C is fuzzy rw-connected.

(b) \Rightarrow (a): For any $\lambda \in I^Y$, let *D* be a subset with $\chi_D = \bigwedge \chi_{A_\beta} = \bigwedge F^*(\beta)$ for all $\beta \leq \lambda$ and $\chi_D \leq \gamma_1$ or $\chi_D \leq \gamma_2$. Then $\alpha \not\leq F(\gamma_1)$ for all $\alpha \leq \lambda$ and $\alpha \not\leq F(\gamma_2)$ for all $\alpha \leq \lambda$.

So $\alpha \not\leq F(\gamma_1) \lor F(\gamma_2)$ for all $\alpha \leq \lambda$. By hypothesis there exists a fuzzy *rw*connected subset *C* such that $\chi_C \leq \gamma_1$ or $\chi_C \leq \gamma_2$ with $F(\eta) \leq F(\gamma_1) \lor F(\gamma_2)$ for all $\chi_C \leq \eta$. Therefore, for any $\alpha \leq \lambda$, $\alpha \not\leq F(\eta)$ we have $\eta \leq F^*(\alpha)$ for all $\alpha \leq \lambda$. Thus $\eta \leq \bigwedge F^*(\alpha) = \chi_D$. Hence $\chi_C \leq \chi_D$. Therefore, *D* is fuzzy *rw*-connected.

Proposition 4.6. Let F be a mapping from a fuzzy topological space (X, T) to another fuzzy topological space (Y, S). Then

(a) F is fuzzy upper*rw continuous iff Λ{F*(α) : α ≤ λ} is fuzzy rw-open in X for fuzzy closed set λ in Y.
(b) F is fuzzy lower*rw continuous iff Λ{F*(α) : α ≤ μ} is fuzzy rw-closed in X for fuzzy open set μ in Y.

Proof. Consider λ is fuzzy closed in Y. $1 - \lambda$ is fuzzy open in Y. F is fuzzy upper*rw-continuous $\Leftrightarrow \mu \in I^X$ such that $F(\mu) \leq 1 - \lambda$ is fuzzy rw-open in X.

 $\Leftrightarrow \{\mu \in I^X \text{ such that } \gamma \not\leq F(\mu)\} \text{ is fuzzy } rw\text{-open for any } \gamma \leq \lambda. \\ \Leftrightarrow \bigwedge \{\mu \in I^X \text{ such that } \gamma \not\leq F(\mu), \gamma \leq \lambda\} \text{ is fuzzy } rw\text{-open.} \\ \Leftrightarrow \bigwedge \{F^*(\gamma), \gamma \leq \lambda\} \text{ is fuzzy } rw\text{-open for any fuzzy closed set } \lambda \text{ in } Y. \\ \text{(b) The proof is similar to (a).}$

5 Extremally Fuzzy *rw*-Disconnectedness

Definition 5.1. Let (X,T) be a fuzzy topological space. (X,T) is said to be extremally fuzzy rw-disconnected $\Leftrightarrow \underline{\lambda}$ is fuzzy rw -open for every $\lambda \in Frwo(X,T)$.

Using the techniques adopted in [2] we present the characterizations and properties of these spaces as follows:-

Proposition 5.1. For any fuzzy topological space (X,T) the following are equivalent.

- (a) (X,T) is extremally fuzzy rw-disconnected.
- (b) For each fuzzy rw -closed set λ, λ_0 is fuzzy rw -closed.
- (c) For each fuzzy rw-open set λ , we have $\underline{\lambda} + (1 \underline{\lambda}) = 1$.
- (d) For every pair of fuzzy rw- open sets λ, δ in (X, T) with $\underline{\lambda} + \delta = 1$, we have $\underline{\lambda} + \underline{\delta} = 1$.

Proof. (a) \Rightarrow (b). Let λ be any fuzzy rw-closed set. We claim λ_0 is fuzzy rw-closed. Now $1 - \lambda_0 = \underline{1 - \lambda}$. Since λ is fuzzy rw-closed $, 1 - \lambda$ is fuzzy rw-open and $1 - \lambda_0 = (\underline{1 - \lambda})$ and by (a) we get $(\underline{1 - \lambda})$ is fuzzy rw- open. That is λ_0 is fuzzy rw-closed.

(b) \Rightarrow (c). Suppose that λ is any fuzzy *rw*-open set. Now $1 - \underline{\lambda} = (1 - \lambda)_0$. Therefore

$$\underline{\lambda} + \underline{(1 - \underline{\lambda})} = \underline{\lambda} + \underline{(1 - \lambda)}_{0}$$
$$= \underline{\lambda} + (1 - \lambda)_{0} \qquad [by(b)]$$
$$= \underline{\lambda} + (1 - \underline{\lambda}) = 1.$$

A. Vadivel et al.

(c) \Rightarrow (d). Suppose λ and δ be any two fuzzy rw-open sets in (X, T) such that

$$\underline{\lambda} + \delta = 1. \tag{1}$$

Then by (c),

$$\underline{\lambda} + \underline{(1 - \underline{\lambda})} = 1 = \underline{\lambda} + \delta \Rightarrow \delta = \underline{(1 - \underline{\lambda})}.$$

But from (1) $\delta = 1 - \underline{\lambda}$ and $1 - \underline{\lambda} = (1 - \underline{\lambda})$. That is $1 - \underline{\lambda}$ is fuzzy *rw*-closed and so $\underline{\delta} = 1 - \underline{\lambda}$. That is $\underline{\delta} + \underline{\lambda} = 1$.

(d) \Rightarrow (a). Let λ be any fuzzy rw-open set in (X, T) and put $\delta = 1 - \underline{\lambda}$. From the construction of δ it follows that $\underline{\lambda} + \delta = 1$. Therefore by (d) we have $\underline{\lambda} + \underline{\delta} = 1$ and hence $\underline{\lambda}$ is fuzzy rw-open in (X, T). That is (X, T) is extremally fuzzy rw-disconnected.

6 Totally Fuzzy *rw*-Disconnectedness

Definition 6.1. A fuzzy topological space (X, T) is said to be totally fuzzy rwdisconnected \Leftrightarrow for every pair of fuzzy points p, q in X, there exist non-zero fuzzy rw-open sets λ, δ such that $\lambda + \delta = 1$, λ contains p and δ contains q. Suppose $A \subset X$. A is said to be totally fuzzy rw-disconnected subset of X if (A, T/A) as a fuzzy subspace of (X, T) is totally fuzzy rw-disconnected.

Proposition 6.1. The maximal fuzzy rw-connected subsets of a totally fuzzy rw-disconnected space (X,T) are singleton sets.

Proof. Let (Y, T/Y) be a subspace of (X, T). It suffices to show that (Y, T/Y) is totally fuzzy *rw*-disconnected whenever it contains more than one point. Let x_1 and x_2 be any two distinct points in Y. Define

$$p: Y \to I \text{ as } p(x) = \begin{cases} \frac{1}{3} & x = x_1 \\ 0 & \text{otherwise} \end{cases}$$

and

$$q: Y \to I \text{ as } q(x) = \begin{cases} \frac{2}{3} & x = x_2 \\ 0 & \text{otherwise} \end{cases}$$

Clearly p and q are distinct fuzzy points in Y. Also define

$$p^{\#}: X \to I \text{ as } p^{\#}(x) = \begin{cases} \frac{1}{3} & x = x_1 \\ 0 & \text{otherwise} \end{cases}$$

36

and

$$q^{\#}: X \to I \text{ as } q^{\#}(x) = \begin{cases} \frac{2}{3} & x = x_2 \\ 0 & \text{otherwise} \end{cases}$$

Clearly, $p^{\#}$ and $q^{\#}$ are two distinct fuzzy points in X such that $p^{\#}/Y = p$ and $q^{\#}/Y = q$. Since (X, T) is totally fuzzy rw-disconnected space there exists non-zero fuzzy rw-open sets λ, δ in (X, T) such that λ contains $p^{\#}, \delta$ contains $q^{\#}$ and $\lambda + \delta = 1$. Then $\lambda_1 = \lambda/Y, \delta_1 = \delta/Y$ are non-zero fuzzy rw-open sets in (Y, T/Y) such that $\lambda_1 + \delta_1 = 1$, λ_1 contains p and δ_1 contains q. This shows that (Y, T/Y) is totally fuzzy rw-disconnected.

Proposition 6.2. Every fuzzy subspace of a totally fuzzy rw-disconnected space is totally fuzzy rw-disconnected.

Proposition 6.3. Let (X,T) be a fuzzy rw-open \mathbf{T}_1 - space. If (X,T) has a base whose members are fuzzy rw-clopen, then (X,T) is totally fuzzy rw-disconnected.

Proposition 6.4. Let (X,T) be fuzzy rw-open compact and fuzzy rw-open \mathbf{T}_1 -space. Then (X,T) is totally fuzzy rw-disconnected $\Leftrightarrow (X,T)$ has a base whose members are fuzzy rw-clopen.

Acknowledgements: The authors would like to thank the reviewers for their valuable comments and helpful suggestions for improvement of the original manuscript.

References

- K.K. Azad, On fuzzy semi continuity, fuzzy almost continuity and fuzzy weekly continuity, J. Math. Anal. Appl., 82(1981), 14.
- [2] G. Balasubramanian, Fuzzy disconnectedness and its stronger forms, Indian J. Pure Appl. Math., 24(1) (1993), 27-30.
- [3] A.S.B. Shahna, On fuzzy strong semi-continuity and fuzzy pre-continuity, Fuzzy Sets and Systems, 44(1991), 303-308.
- [4] C.L. Chang, Fuzzy topological spaces, J. Math Anal. Appl., 24(1968), 182-190.
- [5] P.D. Filev and R.R. Yager, Operations on fuzzy numbers via fuzzy reasoning, *Fuzzy Sets and Systems*, 91(1997), 137-142.

- [6] U.V. Fatteh and D.S. Bassan, Fuzzy connectedness and its stronger forms, J. Math. Anal. Appl., 111(1985), 449-464.
- [7] D.N. Foster, Fuzzy topological groups, J. Math. Anal. Appl., 67(1979), 549-569.
- [8] M.H. Ghanim, E.E. Kerre and A.S. Mashour, Separation axioms, subspaces and sums in fuzzy topology, J. Math. Anal. Appl., 102(1984), 189-202.
- [9] J.A. Goguen, L-fuzzy sets, J. Math. Anal. Appl., 18(1) (1967), 145-174.
- [10] W.X. Gu and T. Lu, Fuzzy sets, fuzzy linear spaces, Fuzzy Sets and Systems, 49(3) (1992), 377-380.
- [11] B. Hutton, Normality in fuzzy topological spaces, J. Math. Anal. Appl., 50(1975), 74-79.
- [12] A.K. Kandel and W.J. Byatt, Fuzzy sets, fuzzy algebra and fuzzy statistics, Proc. IEEE, 66(12) (1978), 1619-1639.
- [13] A. Kandel, A Fuzzy Techniques in Pattern Recognition, John Wiley, New York, (1982).
- [14] A.K. Katsaras and D.B. Liu, Fuzzy vector spaces and fuzzy topological vector spaces, J. Math. Anal. Appl., 58(1977), 135-146.
- [15] A.K. Katsars, Fuzzy proximity spaces, J. Math. Anal. Appl., 68(1979), 100-110.
- [16] H.K. Kwan and Y. Cai, A fuzzy neural network and its applications to pattern recognition, *IEEE Trans. on Fuzzy Systems*, 2(3) (1994), 185-193.
- [17] P. Smets, The degree of belief in fuzzy event, *Inform. Sci.*, 25(1981), 1-19.
- [18] M. Sugeno, An introductory survey of fuzzy control, Inform. Sci., 36(1985), 59-83.
- [19] R.R. Yager and P.D. Filev, Generalizing the modeling of fuzzy logic controllers by parametrized aggregation operators, *Fuzzy Sets and Systems*, 70(1995), 303-313.
- [20] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35(3) (1971), 512-517.
- [21] R.S. Wali and S.S. Benchalli, Some topics in general and fuzzy topological spaces, *Ph. D Thesis*, Karnatak University Dharwd, (2006).
- [22] L.A. Zadeh, Fuzzy sets, Inform and Control, 8(1965), 338-353.

[23] A.N. Zahren, Fuzzy reguar semiopen sets and S-closed spaces, J. Fuzzy Math., 2(1994), 579-586.