Gen. Math. Notes, Vol. 21, No. 1, March 2014, pp.27-42
ISSN 2219-7184; Copyright © ICSRS Publication, 2014
www.i-csrs.org
Available free online at http://www.geman.in

Regular Elements of the Complete Semigroups of Binary Relations of the Class $\sum_{8}(X, 7)$

Didem Yeşil Sungur ${ }^{1}$ and Neşet Aydin ${ }^{2}$
${ }^{1,2}$ Canakkale Onsekiz Mart University, Art and Science Faculty Department of Mathematics, Canakkale-Turkey
${ }^{1}$ E-mail: dyesil@comu.edu.tr
${ }^{2}$ E-mail: neseta@comu.edu.tr

(Received: 6-1-14 / Accepted: 17-2-14)

Abstract

In this paper, let $Q=\left\{T_{6}, T_{5}, T_{4}, T_{3}, T_{2}, T_{1}, T_{0}\right\}$ be a subsemilattice of $X-$ semilattice of unions D where $T_{6} \subset T_{4} \subset T_{3} \subset T_{1} \subset T_{0}, T_{6} \subset T_{4} \subset T_{3} \subset$ $T_{2} \subset T_{0}, T_{5} \subset T_{4} \subset T_{3} \subset T_{1} \subset T_{0}, T_{5} \subset T_{4} \subset T_{3} \subset T_{2} \subset T_{0}, T_{2} \backslash T_{1} \neq \emptyset$, $T_{1} \backslash T_{2} \neq \emptyset, T_{5} \backslash T_{6} \neq \emptyset, T_{6} \backslash T_{5} \neq \emptyset, T_{2} \cup T_{1}=T_{0}, T_{6} \cup T_{5}=T_{4}$, then we characterize each element of the class $\sum_{8}(X, 7)$ which is isomorphic to Q by means of the characteristic family of sets, the characteristic mapping and the generate set of Q. Moreover, we describe the construction of regular elements α of $B_{X}(D)$ satisfying $V(D, \alpha)=Q$. Additionally, we find the number of these regular elements, when X is finite.

Keywords: Semigroups, Binary relations, Regular elements.

1 Introduction

Representations of partially ordered semigroups by binary relations were first considered by Zaretskii [1]. In [2] Zareckii proved that a binary relation α is a regular element of B_{X} if and only if $V(\alpha)(=V(P(X), \alpha))$ is a completely distributive lattice. Further, criteria for regularity were given by Markowsky [3] and Schein [4]. Then, Diasamidze proved that, a binary relation α is a regular element of B_{X} iff $V\left(X^{*}, \alpha\right) \subseteq V(D, \alpha)$ and $V(D, \alpha)$ is complete $X I$ - semilattice of unions in [5]. So, Diasamidze extend Zaretskii's theorem and give an intrinsic characterization of regularity since if $D=P(X)$ then $B_{X}(D)=B_{X}$
and $V(\alpha)(=V(P(X), \alpha))$ is a completely distributive lattice. Therefore, Diasamidze generate systematic rules for understanding the structure of semigroups of binary relations and characterization of regular elements of these semigroups in $[5-9]$. In general, he studied semigroups but, in particular, he investigates complete semigroups of the binary relations.

In this paper, we take in particular, $Q=\left\{T_{6}, T_{5}, T_{4}, T_{3}, T_{2}, T_{1}, T_{0}\right\}$ subsemilattice of X-semilattice of unions D where the elements $T_{i}{ }^{\prime}$ s, $i=0,1, \ldots, 6$ are satisfying the following properties, $T_{6} \subset T_{4} \subset T_{3} \subset T_{1} \subset T_{0}, T_{6} \subset T_{4} \subset$ $T_{3} \subset T_{2} \subset T_{0}, T_{5} \subset T_{4} \subset T_{3} \subset T_{1} \subset T_{0}, T_{5} \subset T_{4} \subset T_{3} \subset T_{2} \subset T_{0}, T_{2} \backslash T_{1} \neq \emptyset$, $T_{1} \backslash T_{2} \neq \emptyset, T_{5} \backslash T_{6} \neq \emptyset, T_{6} \backslash T_{5} \neq \emptyset, T_{2} \cup T_{1}=T_{0}, T_{6} \cup T_{5}=T_{4}$. We will investigate the properties of regular element $\alpha \in B_{X}(D)$ satisfying $V(D, \alpha)=Q$. Moreover, we will calculate the number of these regular elements of $B_{X}(D)$ for a finite set X.

As general, we also characterize the elements of the class $\sum_{8}(X, 7)$. This class is the complete X-semilattice of unions every elements of which are isomorphic to Q. So, we characterize the class for each element of which is isomorphic to Q by means of the characteristic family of sets, the characteristic mapping and the generate set of D.

The material in this work forms a part of first author's PH.D. Thesis, under the supervision of the second author Dr. Neşet Aydın.

2 Preliminaries

We recall various concepts and properties from [5-10].
Let X be an arbitrary nonempty set. Recall that the set of all binary relations on X is denoted by B_{X}. The binary operation " \circ " on B_{X} defined by for $\alpha, \beta \in B_{X}$

$$
(x, z) \in \alpha \circ \beta \Leftrightarrow(x, y) \in \alpha \text { and }(y, z) \in \beta, \text { for some } y \in X
$$

is associative and hence B_{X} is a semigroup with respect to the operation " \circ ". This semigroup is called the semigroup of all binary relations on the set X.

Let D be a nonempty subset of $P(X)$ such that it is closed under the union i.e., $\cup D^{\prime} \in D$ for any nonempty subset D^{\prime} of D. In that case, D is called a complete X - semilattice of unions. The union of all elements of D is denoted by the symbol \breve{D}. Clearly, \breve{D} is the largest element of D.

The set $N\left(D, D^{\prime}\right)=\left\{Z \in D \mid Z \subseteq Z^{\prime}\right.$ for any $\left.Z^{\prime} \in D^{\prime}\right\}$ is all lower bounds of D^{\prime} in D. Moreover, if $N\left(D, D^{\prime}\right) \neq \emptyset$ then $\Lambda\left(D, D^{\prime}\right)=\cup N\left(D, D^{\prime}\right)$ belongs to D and it is the greatest lower bound of D^{\prime}.

Let \widetilde{D} and D^{\prime} be some nonempty subsets of the complete $X-$ semilattices of unions. We say that a subset \widetilde{D} generates a set D^{\prime} if any element from D^{\prime} is a set-theoretic union of the elements from \widetilde{D}.

Further, let $x, y \in X, Y \subseteq X, \alpha \in B_{X}, T \in D, \emptyset \neq D^{\prime} \subseteq D$ and $t \in \breve{D}$. We use the notations:

$$
\begin{array}{ll}
y \alpha=\{x \in X \mid(y, x) \in \alpha\} & , Y \alpha=\bigcup_{y \in Y} y \alpha, \\
V(D, \alpha)=\{Y \alpha \mid Y \in D\} & , D_{t}=\left\{Z^{\prime} \in D \mid t \in Z^{\prime}\right\} \\
D_{T}^{\prime}=\left\{Z^{\prime} \in D^{\prime} \mid T \subseteq Z^{\prime}\right\} & , \ddot{D}_{T}^{\prime}=\left\{Z^{\prime} \in D^{\prime} \mid Z^{\prime} \subseteq T\right\} .
\end{array}
$$

Let $X^{*}=P(X) \backslash\{\emptyset\}, \alpha \in B_{X}, Y_{T}^{\alpha}=\{y \in X \mid y \alpha=T\}$ and

$$
V[\alpha]=\left\{\begin{array}{l}
V\left(X^{*}, \alpha\right), \text { if } \emptyset \notin D \\
V\left(X^{*}, \alpha\right), \text { if } \emptyset \in V\left(X^{*}, \alpha\right), \\
V\left(X^{*}, \alpha\right) \cup\{\emptyset\}, \text { if } \emptyset \notin V\left(X^{*}, \alpha\right) \text { and } \emptyset \in D .
\end{array}\right.
$$

In general, a representation of a binary relation α of the form

$$
\alpha=\bigcup_{T \in V[\alpha]}\left(Y_{T}^{\alpha} \times T\right)
$$

is called quasinormal. Note that, if $\alpha \in B_{X}$ has a quasinormal representation, then $X=\bigcup_{T \in V\left(X^{*}, \alpha\right)} Y_{T}^{\alpha}$ and $Y_{T}^{\alpha} \cap Y_{T^{\prime}}^{\alpha} \neq \emptyset$ for $T, T^{\prime} \in V\left(X^{*}, \alpha\right)$ which $T \neq T^{\prime}$.

In particular, let f be an arbitrary mapping from X into D then $B_{X}(D)$ denotes the set of all binary relations of the form

$$
\alpha_{f}=\bigcup_{x \in X}(\{x\} \times f(x))
$$

It is easy to prove that $B_{X}(D)$ is a semigroup with respect to the operation of multiplication of binary relations, which is called a complete semigroup of binary relations defined by an X-semilattice of unions D. Diasamidze introduced this structure and investigated their properties [6].

If $\alpha \circ \beta \circ \alpha=\alpha$ for some $\beta \in B_{X}(D)$ then a binary relation α is called a regular element of $B_{X}(D)$.

A complete X-semilattice of unions D is called " $X I$ - semilattice of unions" [9] if it satisfies the following two conditions

1. $\Lambda\left(D, D_{t}\right) \in D$ for any $t \in \breve{D}$,
2. $Z=\bigcup_{t \in Z} \Lambda\left(D, D_{t}\right)$ for any nonempty element Z of D.

In [9] they show that, β is a regular element of $B_{X}(D)$ iff $V[\beta]=V(D, \beta)$ is a complete $X I$-semilattice of unions.

Let D^{\prime} be an arbitrary nonempty subset of the complete X-semilattice of unions D. A nonempty element $T \in D^{\prime}$ is a nonlimiting element of D^{\prime} if $T \backslash l\left(D^{\prime}, T\right)=T \backslash \cup\left(D^{\prime} \backslash D_{T}^{\prime}\right) \neq \emptyset$. A nonempty element $T \in D^{\prime}$ is a limiting element of D^{\prime} if $T \backslash l\left(D^{\prime}, T\right)=\emptyset$.

The family $C(D)$ of pairwise disjoint subsets of the set $\breve{D}=\cup D$ is the characteristic family of sets of D if the followings hold
a) $\cap D \in C(D)$,
b) $\cup C(D)=\breve{D}$,
c) There exists a subset $C_{Z}(D)$ of the set $C(D)$ such that $Z=\cup C_{Z}(D)$ for all $Z \in D$.

A mapping $\theta: D \rightarrow C(D)$ is called characteristic mapping if $Z=(\cap D) \cup$ $\bigcup_{Z^{\prime} \in \hat{D}} \theta\left(Z^{\prime}\right)$ for all $Z \in D$.

The existence and the uniqueness of characteristic family and characteristic mapping is given in Diasamidze [7]. Moreover, it is shown that every $Z \in D$ can be written as

$$
Z=\theta(\breve{Q}) \cup \bigcup_{T \in \hat{Q}(Z)} \theta(T),
$$

where $\hat{Q}(Z)=Q \backslash\{T \in Q \mid Z \subseteq T\}$.
A one-to-one mapping φ between two complete X - semilattices of unions D^{\prime} and $D^{\prime \prime}$ is called a complete isomorphism if $\varphi\left(\cup D_{1}\right)=\underset{T^{\prime} \in D_{1}}{\cup} \varphi\left(T^{\prime}\right)$ for each nonempty subset D_{1} of the semilattice D^{\prime}. Also, let $\alpha \in B_{X}(D)$. A complete isomorphism φ between $X I$-semilattice of unions Q and D is called a complete $\alpha-$ isomorphism if $Q=V(D, \alpha)$ and $\varphi(\emptyset)=\emptyset$ for $\emptyset \in V(D, \alpha)$ and $\varphi(T) \alpha=T$ for any $T \in V(D, \alpha)$.

Let Q and D^{\prime} are respectively some $X I-$ and $X-$ subsemilattices of the complete X - semilattice of unions D. Then

$$
R_{\varphi}\left(Q, D^{\prime}\right)=\left\{\alpha \in B_{X}(D) \mid \alpha \text { regular, } \varphi \text { complete } \alpha-\text { isomorphism }\right\}
$$

where $\varphi: Q \rightarrow D^{\prime}$ complete isomorphism and $V(D, \alpha)=Q$. Besides, let us denote

$$
R\left(Q, D^{\prime}\right)=\bigcup_{\varphi \in \Phi\left(Q, D^{\prime}\right)} R_{\varphi}\left(Q, D^{\prime}\right) \text { and } R\left(D^{\prime}\right)=\bigcup_{Q^{\prime} \in \Omega(Q)} R\left(Q^{\prime}, D^{\prime}\right)
$$

where
$\Phi\left(Q, D^{\prime}\right)=\left\{\varphi \mid \varphi: Q \rightarrow D^{\prime}\right.$ is a complete α-isomorphism for any $\left.\alpha \in B_{X}(D)\right\}$ $\Omega(Q)=\left\{Q^{\prime} \mid Q^{\prime}\right.$ is $X I$-subsemilattices of D which is complete isomorphic to $\left.Q\right\}$

Theorem 2.1. [8, Theorem 10] Let α and σ be binary relations of the semigroup $B_{X}(D)$ such that $\alpha \circ \sigma \circ \alpha=\alpha$. If $D(\alpha)$ is some generating set of the semilattice $V(D, \alpha) \backslash\{\emptyset\}$ and $\alpha=\bigcup_{T \in V(D, \alpha)}\left(Y_{T}^{\alpha} \times T\right)$ is a quasinormal representation of the relation α, then $V(D, \alpha)$ is a complete XI- semilattice of unions. Moreover, there exists a complete α-isomorphism φ between the semilattice $V(D, \alpha)$ and $D^{\prime}=\{T \sigma \mid T \in V(D, \alpha)\}$, that satisfies the following conditions:
a) $\varphi(T)=T \sigma$ and $\varphi(T) \alpha=T$ for all $T \in V(D, \alpha)$
b) $\bigcup_{T^{\prime} \in \ddot{D}(\alpha)_{T}} Y_{T^{\prime}}^{\alpha} \supseteq \varphi(T)$ for any $T \in D(\alpha)$,
c) $Y_{T}^{\alpha} \cap \varphi(T) \neq \emptyset$ for all nonlimiting element T of the set $\ddot{D}(\alpha)_{T}$,
d) If T is a limiting element of the set $\ddot{D}(\alpha)_{T}$, then the equality $\cup B(T)=T$ is always holds for the set $B(T)=\left\{Z \in \ddot{D}(\alpha)_{T} \mid Y_{Z}^{\alpha} \cap \varphi(T) \neq \emptyset\right\}$.
On the other hand, if $\alpha \in B_{X}(D)$ such that $V(D, \alpha)$ is a complete XIsemilattice of unions. If for a complete α-isomorphism φ from $V(D, \alpha)$ to a subsemilattice D^{\prime} of D satisfies the conditions b) $-d$) of the theorem, then α is a regular element of $B_{X}(D)$.
Theorem 2.2. [9, Theorem 1.18.2] Let $D_{j}=\left\{T_{1}, \ldots, T_{j}\right\}, X$ be finite set and $\emptyset \neq Y \subseteq X$. If f is a mapping of the set X, on the D_{j}, for which $f(y)=T_{j}$ for some $y \in Y$, then the numbers of those mappings f of the sets X on the set D_{j} can be calculated by the formula $s=j^{|X \backslash Y|} \cdot\left(j^{|Y|}-(j-1)^{|Y|}\right)$.
Theorem 2.3. [9, Theorem 6.3.5] Let X is a finite set. If φ is a fixed element of the set $\Phi\left(D, D^{\prime}\right)$ and $|\Omega(D)|=m_{0}$ and q is a number of all automorphisms of the semilattice D then $\left|R\left(D^{\prime}\right)\right|=m_{0} \cdot q \cdot\left|R_{\varphi}\left(D, D^{\prime}\right)\right|$.

3 Results

Let X be a finite set, D be a complete X-semilattice of unions and $Q=$ $\left\{T_{6}, T_{5}, T_{4}, T_{3}, T_{2}, T_{1}, T_{0}\right\}$ be a X-subsemilattice of unions of D satisfies the following conditions

$$
\begin{aligned}
& T_{6} \subset T_{4} \subset T_{3} \subset T_{1} \subset T_{0}, \\
& T_{6} \subset T_{4} \subset T_{3} \subset T_{2} \subset T_{0}, \\
& T_{5} \subset T_{4} \subset T_{3} \subset T_{1} \subset T_{0}, \\
& T_{5} \subset T_{4} \subset T_{3} \subset T_{2} \subset T_{0}, \\
& T_{2} \backslash T_{1} \neq \emptyset, T_{1} \backslash T_{2} \neq \emptyset, \\
& T_{5} \backslash T_{6} \neq \emptyset, T_{6} \backslash T_{5} \neq \emptyset, \\
& T_{2} \cup T_{1}=T_{0}, T_{6} \cup T_{5}=T_{4} .
\end{aligned}
$$

The diagram of the Q is shown in Figure 3.1.

Figure 3.1

Let $C(Q)=\left\{P_{6}, P_{5}, P_{4}, P_{3}, P_{2}, P_{1}, P_{0}\right\}$ be characteristic family of sets of Q and $\theta: Q \rightarrow C(Q), \theta\left(T_{i}\right)=P_{i}(i=0,1, \ldots, 6)$ be characteristic mapping. Then, by the definition of characteristic family and characteristic mapping for each element $T_{i} \in Q$ we can write

$$
T_{i}=\theta(\breve{Q}) \cup \bigcup_{T \in \hat{Q}\left(T_{i}\right)} \theta(T),(i=0,1, \ldots, 6)
$$

where $\hat{Q}\left(T_{i}\right)=Q \backslash\left\{Z \in Q \mid T_{i} \subseteq Z\right\}, \breve{Q}=\cup Q=T_{0}$ and $\theta(\breve{Q})=\theta\left(T_{0}\right)=P_{0}$.
Accordingly, we get

$$
\begin{align*}
& T_{0}=P_{0} \cup \bigcup_{T \in \hat{Q}\left(T_{0}\right)} \theta(T)=P_{0} \cup P_{1} \cup P_{2} \cup P_{3} \cup P_{4} \cup P_{5} \cup P_{6}, \\
& T_{1}=P_{0} \cup \bigcup_{T \in \hat{Q}\left(T_{1}\right)} \theta(T)=P_{0} \cup P_{2} \cup P_{3} \cup P_{4} \cup P_{5} \cup P_{6}, \\
& T_{2}=P_{0} \cup \bigcup_{T \in \hat{Q}\left(T_{2}\right)} \theta(T)=P_{0} \cup P_{1} \cup P_{3} \cup P_{4} \cup P_{5} \cup P_{6}, \\
& T_{3}=P_{0} \cup \bigcup_{T \in \hat{Q}\left(T_{3}\right)} \theta(T)=P_{0} \cup P_{4} \cup P_{5} \cup P_{6}, \\
& T_{4}=P_{0} \cup \bigcup_{T \in \hat{Q}\left(T_{4}\right)} \theta(T)=P_{0} \cup P_{5} \cup P_{6}, \tag{3.1}\\
& T_{5}=P_{0} \cup \bigcup_{T \in \hat{Q}\left(T_{5}\right)}^{T} \theta(T)=P_{0} \cup P_{6}, \\
& T_{6}=P_{0} \cup \bigcup_{T \hat{Q}\left(T_{6}\right)} \theta(T)=P_{0} \cup P_{5} .
\end{align*}
$$

Firstly, let us determine that in which conditions Q is $X I$ - semilattice of unions. Then, we specify the greatest lower bounds of the each semilattice Q_{t} in Q for $t \in T_{0}$. Since $T_{0}=P_{0} \cup P_{1} \cup P_{2} \cup P_{3} \cup P_{4} \cup P_{5} \cup P_{6}$ and $P_{i}(i=0,1, \ldots, 6)$
are pairwise disjoint sets, by Equation (3.1) and the definition of Q_{t}, we have

$$
Q_{t}= \begin{cases}Q & , t \in P_{0} \tag{3.2}\\ \left\{T_{0}, T_{2}\right\} & , t \in P_{1} \\ \left\{T_{0}, T_{1}\right\} & , t \in P_{2} \\ \left\{T_{0}, T_{1}, T_{2}\right\} & , t \in P_{3} \\ \left\{T_{0}, T_{1}, T_{2}, T_{3}\right\} & , t \in P_{4} \\ \left\{T_{0}, T_{1}, T_{2}, T_{3}, T_{4}, T_{6}\right\} & , t \in P_{5} \\ \left\{T_{0}, T_{1}, T_{2}, T_{3}, T_{4}, T_{5}\right\} & , t \in P_{6}\end{cases}
$$

So, by Equation (3.2) and the definition of $N\left(Q, Q_{t}\right)$,

$$
N\left(Q, Q_{t}\right)= \begin{cases}\emptyset & , t \in P_{0} \tag{3.3}\\ \left\{T_{2}, T_{3}, T_{4}, T_{5}, T_{6}\right\} & , t \in P_{1} \\ \left\{T_{1}, T_{3}, T_{4}, T_{5}, T_{6}\right\} & , t \in P_{2} \\ \left\{T_{3}, T_{4}, T_{5}, T_{6}\right\} & , t \in P_{3} \\ \left\{T_{3}, T_{4}, T_{5}, T_{6}\right\} & , t \in P_{4} \\ \left\{T_{6}\right\} & , t \in P_{5} \\ \left\{T_{5}\right\} & , t \in P_{6}\end{cases}
$$

are obtained. From the Equation (3.3) the greatest lower bounds for each semilattice Q_{t}, we get

$$
\cup N\left(Q, Q_{t}\right)=\Lambda\left(Q, Q_{t}\right)=\left\{\begin{array}{ll}
\emptyset & , t \in P_{0} \tag{3.4}\\
T_{2} & , t \in P_{1} \\
T_{1} & , t \in P_{2} \\
T_{3} & , t \in P_{3} \\
T_{3} & , t \in P_{4} \\
T_{6} & , t \in P_{5} \\
T_{5} & , t \in P_{6}
\end{array} .\right.
$$

If $t \in P_{0}$ then $\Lambda\left(D, D_{t}\right)=\emptyset \notin D$. So, it must be $P_{0}=\emptyset$. Thus using the

Equations (3.1) and (3.4), we have

$$
\begin{aligned}
& t \in T_{6}=P_{5} \Rightarrow T_{6}=\Lambda\left(Q, Q_{t}\right), \\
& t \in T_{5}=P_{6} \Rightarrow T_{5}=\Lambda\left(Q, Q_{t}\right), \\
& t \in T_{4}=P_{5} \cup P_{6} \Rightarrow \Rightarrow \Lambda\left(Q, Q_{t}\right) \in\left\{T_{5}, T_{6}\right\} \\
& \Rightarrow T_{4}=T_{5} \cup T_{6}=\bigcup_{t \in T_{4}} \Lambda\left(Q, Q_{t}\right), \\
& t \in T_{3}=P_{4} \cup P_{5} \cup P_{6} \Rightarrow \Rightarrow \Lambda\left(Q, Q_{t}\right) \in\left\{T_{3}, T_{5}, T_{6}\right\} \\
& \Rightarrow T_{3}=T_{3} \cup T_{5} \cup T_{6}=\bigcup_{t \in T_{3}} \Lambda\left(Q, Q_{t}\right), \\
& t \in T_{2}=P_{1} \cup P_{3} \cup P_{4} \cup P_{5} \cup P_{6} \Rightarrow \Lambda\left(Q, Q_{t}\right)=\left\{T_{2}, T_{3}, T_{5}, T_{6}\right\} \\
& \Rightarrow T_{2}=T_{2} \cup T_{3} \cup T_{5} \cup T_{6}=\bigcup_{t \in T_{2}} \Lambda\left(Q, Q_{t}\right), \\
& t \in T_{1}=P_{2} \cup P_{3} \cup P_{4} \cup P_{5} \cup P_{6} \Rightarrow \Lambda\left(Q, Q_{t}\right)=\left\{T_{1}, T_{3}, T_{5}, T_{6}\right\} \\
& \Rightarrow T_{1}=T_{1} \cup T_{3} \cup T_{5} \cup T_{6}=\bigcup_{t \in T_{1}} \Lambda\left(Q, Q_{t}\right), \\
& t \in T_{0}=T_{2} \cup T_{1} \Rightarrow \Lambda\left(Q, Q_{t}\right)=\left\{T_{1}, T_{2}, T_{3}, T_{5}, T_{6}\right\} \\
& \Rightarrow T_{0}=T_{1} \cup T_{2} \cup T_{3} \cup T_{5} \cup T_{6}=\bigcup_{t \in T_{0}} \Lambda\left(Q, Q_{t}\right) .
\end{aligned}
$$

Lemma 3.1. Q is $X I-$ semilattice of unions if and only if $T_{6} \cap T_{5}=\emptyset$.

Proof. \Rightarrow : Let Q be a $X I$ - semilattice of unions. Then $P_{0}=\emptyset$ by Equation (3.4) and $T_{6}=P_{5}, T_{5}=P_{6}$ by Equation (3.1), we have $T_{6} \cap T_{5}=\emptyset$ since P_{6} and P_{5} are pairwise disjoint sets.
\Leftarrow : Let $T_{6} \cap T_{5}=\emptyset$ holds. From Equation (3.1), we obtain $P_{0}=\emptyset$. Using the Equations (3.4) and (3.5), we have Q is $X I$ - semilattice of unions.

Lemma 3.2. If Q is $X I-$ semilattice of unions then

$$
\left\{T_{6}, T_{5},\left(T_{1} \cap T_{2}\right) \backslash T_{4}, T_{1} \backslash T_{2}, T_{2} \backslash T_{1}, X \backslash T_{0}\right\}
$$

is a partition of the set X.

Proof. Considering the (3.1) with $P_{0}=\emptyset$, straightforward to see that $\left\{T_{6}, T_{5}\right.$, $\left.\left(T_{1} \cap T_{2}\right) \backslash T_{4}, T_{1} \backslash T_{2}, T_{2} \backslash T_{1}, X \backslash T_{0}\right\}$ is a partition of the set X.

Lemma 3.3. Let $G=\left\{T_{6}, T_{5}, T_{4}, T_{3}, T_{2}, T_{1}\right\}$ be a generating set of Q. Then the elements $T_{6}, T_{5}, T_{3}, T_{2}, T_{1}$ are nonlimiting elements of the sets $\ddot{G}_{T_{6}}, \ddot{G}_{T_{5}}$, $\ddot{G}_{T_{3}}, \ddot{G}_{T_{2}}, \ddot{G}_{T_{1}}$ respectively and T_{4} is a limiting element of the set $\ddot{G}_{T_{4}}$.

Proof. Definition of \ddot{D}_{T}^{\prime}, yield the following equations

$$
\begin{align*}
& \ddot{G}_{T_{6}}=\left\{T_{6}\right\}, \\
& \ddot{G}_{T_{5}}=\left\{T_{5}\right\}, \\
& \ddot{G}_{T_{4}}=\left\{T_{6}, T_{5}, T_{4}\right\}, \\
& \ddot{G}_{T_{3}}=\left\{T_{6}, T_{5}, T_{4}, T_{3}\right\}, \tag{3.6}\\
& \ddot{G}_{T_{2}}=\left\{T_{6}, T_{5}, T_{4}, T_{3}, T_{2}\right\}, \\
& \ddot{G}_{T_{1}}=\left\{T_{6}, T_{5}, T_{4}, T_{3}, T_{1}\right\} .
\end{align*}
$$

Now we get the sets $l\left(\ddot{G}_{T_{i}}, T_{i}\right), i \in\{1,2, \ldots, 6\}$,

$$
\begin{aligned}
l\left(\ddot{G}_{T_{6}}, T_{6}\right) & =\cup\left(\ddot{G}_{T_{6}} \backslash\left\{T_{6}\right\}\right)=\emptyset, \\
l\left(\ddot{G}_{T_{5}}, T_{5}\right) & =\cup\left(\ddot{G}_{T_{5}} \backslash\left\{T_{5}\right\}\right)=\emptyset, \\
l\left(\ddot{G}_{T_{4}}, T_{4}\right) & =\cup\left(\ddot{G}_{T_{4}} \backslash\left\{T_{4}\right\}\right)=T_{4}, \\
l\left(\ddot{G}_{T_{3}}, T_{3}\right) & =\cup\left(\ddot{G}_{T_{3}} \backslash\left\{T_{3}\right\}\right)=T_{4}, \\
l\left(\ddot{G}_{T_{2}}, T_{2}\right) & =\cup\left(\ddot{G}_{T_{2}} \backslash\left\{T_{2}\right\}\right)=T_{3}, \\
l\left(\ddot{G}_{T_{1}}, T_{1}\right) & =\cup\left(\ddot{G}_{T_{1}} \backslash\left\{T_{1}\right\}\right)=T_{3} .
\end{aligned}
$$

Then we find nonlimiting and limiting elements of $\ddot{G}_{T_{i}}, i \in\{1,2, \ldots, 6\}$.

$$
\begin{aligned}
& T_{6} \backslash l\left(\ddot{G}_{T_{6}}, T_{6}\right)=T_{6} \backslash \emptyset \quad=T_{6} \neq \emptyset \\
& T_{5} \backslash l\left(\ddot{G}_{T_{5}}, T_{5}\right)=T_{5} \backslash \emptyset \quad=T_{5} \neq \emptyset \\
& T_{4} \backslash l\left(\ddot{G}_{T_{4}}, T_{4}\right)=T_{4} \backslash T_{4}=\emptyset \\
& T_{3} \backslash l\left(\ddot{G}_{T_{3}}, T_{3}\right)=T_{3} \backslash T_{4} \neq \emptyset \\
& T_{2} \backslash l\left(\ddot{G}_{T_{2}}, T_{2}\right)=T_{2} \backslash T_{3} \neq \emptyset \\
& T_{1} \backslash l\left(\ddot{G}_{T_{1}}, T_{1}\right)=T_{1} \backslash T_{3} \neq \emptyset
\end{aligned}
$$

So, the elements $T_{6}, T_{5}, T_{3}, T_{2}, T_{1}$ are nonlimiting elements of the sets $\ddot{G}_{T_{6}}, \ddot{G}_{T_{5}}$, $\ddot{G}_{T_{3}}, \ddot{G}_{T_{2}}, \ddot{G}_{T_{1}}$ respectively and T_{4} is a limiting element of the set $\ddot{G}_{T_{4}}$.

Note that, if $\alpha \in B_{X}(D)$ is regular then from the definition of the set $B_{X}(D)$ there is a mapping f from X into D such that

$$
\alpha=\bigcup_{x \in D}(\{x\} \times f(x)) .
$$

Thus, $f(x) \in D$. Besides, we know that $\alpha \in B_{X}(D)$ is regular iff $V(D, \alpha)$ is $X I$ - semilattice of unions where $V(D, \alpha)=V[\alpha]$. For this reason, there is a $X I-$ subsemilattice $D^{\prime} \subset D$ and $V(D, \alpha)=D^{\prime}=V\left(D^{\prime}, \alpha\right)$. So we can write α as,

$$
\alpha=\bigcup_{T \in V[\alpha]}\left(Y_{T}^{\alpha} \times T\right)=\bigcup_{T \in D^{\prime}}\left(Y_{T}^{\alpha} \times T\right)
$$

In particular, let us determine the properties of regular elements $\alpha \in$ $B_{X}(D)$ such that $\alpha=\bigcup_{i=0}^{6}\left(Y_{i}^{\alpha} \times T_{i}\right)$ where $V(D, \alpha)=Q$.

Theorem 3.4. Let $\alpha \in B_{X}(D)$ be a quasinormal representation of the form

$$
\alpha=\bigcup_{i=0}^{6}\left(Y_{i}^{\alpha} \times T_{i}\right)
$$

such that $V(D, \alpha)=Q . \alpha \in B_{X}(D)$ is a regular iff for some complete α isomorphism $\varphi: Q \rightarrow D^{\prime} \subseteq D$, the following conditions are satisfied:

$$
\begin{align*}
& Y_{6}^{\alpha} \supseteq \varphi\left(T_{6}\right), \\
& Y_{5}^{\alpha} \supseteq \varphi\left(T_{5}\right), \\
& Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{3}^{\alpha} \supseteq \varphi\left(T_{3}\right), \\
& Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{3}^{\alpha} \cup Y_{2}^{\alpha} \supseteq \varphi\left(T_{2}\right), \tag{3.7}\\
& Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{3}^{\alpha} \cup Y_{1}^{\alpha} \supseteq \varphi\left(T_{1}\right), \\
& Y_{1}^{\alpha} \cap \varphi\left(T_{1}\right) \neq \emptyset, Y_{2}^{\alpha} \cap \varphi\left(T_{2}\right) \neq \emptyset, \\
& Y_{3}^{\alpha} \cap \varphi\left(T_{3}\right) \neq \emptyset .
\end{align*}
$$

Proof. Let $G=\left\{T_{6}, T_{5}, T_{4}, T_{3}, T_{2}, T_{1}\right\}$ be a generating set of Q.
\Rightarrow : Since $\alpha \in B_{X}(D)$ is regular and $V(D, \alpha)=Q, Q$ is $X I$-semilattice of unions. From Theorem 2.1, there exits a complete isomorphism $\varphi: Q \rightarrow D^{\prime}$. Considering Theorem $2.1(a), \varphi(T) \alpha=T$ for all $T \in V(D, \alpha)$. So, φ is complete α-isomorphism. Applying the Theorem 2.1 (b) we have

$$
\begin{align*}
& Y_{6}^{\alpha} \supseteq \varphi\left(T_{6}\right), Y_{5}^{\alpha} \supseteq \varphi\left(T_{5}\right), \\
& Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{4}^{\alpha} \supseteq \varphi\left(T_{4}\right), \\
& Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{3}^{\alpha} \supseteq \varphi\left(T_{3}\right), \tag{3.8}\\
& Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{3}^{\alpha} \cup Y_{2}^{\alpha} \supseteq \varphi\left(T_{2}\right), \\
& Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{3}^{\alpha} \cup Y_{1}^{\alpha} \supseteq \varphi\left(T_{1}\right) .
\end{align*}
$$

By using φ is complete α-isomorphism, $Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{4}^{\alpha} \supseteq \varphi\left(T_{6}\right) \cup \varphi\left(T_{5}\right)=\varphi\left(T_{4}\right)$ always ensured. Moreover, considering that the elements $T_{6}, T_{5}, T_{3}, T_{2}, T_{1}$ are nonlimiting elements of the sets $\ddot{G}_{T_{6}}, \ddot{G}_{T_{5}}, \ddot{G}_{T_{3}}, \ddot{G}_{T_{2}}, \ddot{G}_{T_{1}}$ respectively and using the Theorem 2.1 (c), following properties

$$
\begin{align*}
& Y_{1}^{\alpha} \cap \varphi\left(T_{1}\right) \neq \emptyset, \quad Y_{2}^{\alpha} \cap \varphi\left(T_{2}\right) \neq \emptyset, \\
& Y_{3}^{\alpha} \cap \varphi\left(T_{3}\right) \neq \emptyset, \quad Y_{5}^{\alpha} \cap \varphi\left(T_{5}\right) \neq \emptyset, \quad Y_{6}^{\alpha} \cap \varphi\left(T_{6}\right) \neq \emptyset \tag{3.9}
\end{align*}
$$

are obtained. From $Y_{6}^{\alpha} \supseteq \varphi\left(T_{6}\right)$ and $Y_{5}^{\alpha} \supseteq \varphi\left(T_{5}\right), Y_{6}^{\alpha} \cap \varphi\left(T_{6}\right) \neq \emptyset$ and $Y_{5}^{\alpha} \cap \varphi\left(T_{5}\right) \neq \emptyset$ always ensured. Thus there is no need the condition $Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{4}^{\alpha} \supseteq \varphi\left(T_{4}\right)$, $Y_{5}^{\alpha} \cap \varphi\left(T_{5}\right) \neq \emptyset$ and $Y_{6}^{\alpha} \cap \varphi\left(T_{6}\right) \neq \emptyset$. Therefore, there exist an α-isomorphism φ which holds given conditions.
$\Leftarrow: V(D, \alpha)$ is $X I$-semilattice of unions, because of $V(D, \alpha)$ is equal to Q. Let $\varphi: Q \rightarrow D^{\prime}$ be a complete α-isomorphism which holds given conditions. So, by Equation (3.7), satisfying Theorem $2.1(a)-(c)$. Remembering that T_{4} is a limiting element of the set $\ddot{G}_{T_{4}}$, we constitute the set
$B\left(T_{4}\right)=\left\{Z \in \ddot{G}_{T_{4}} \mid Y_{Z}^{\alpha} \cap \varphi\left(T_{4}\right) \neq \emptyset\right\}$. If $Y_{6}^{\alpha} \cap \varphi\left(T_{4}\right)=\emptyset$ we have

$$
Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \supseteq \varphi\left(T_{6}\right) \cup \varphi\left(T_{5}\right)=\varphi\left(T_{4}\right)
$$

So, we get $Y_{5}^{\alpha} \supseteq \varphi\left(T_{4}\right) \supseteq \varphi\left(T_{6}\right)$, it contradicts with $Y_{6}^{\alpha} \supseteq \varphi\left(T_{6}\right)$. Therefore, $T_{6} \in B\left(T_{4}\right)$. Similarly, if $Y_{5}^{\alpha} \cap \varphi\left(T_{4}\right)=\emptyset$ then $Y_{6}^{\alpha} \supseteq \varphi\left(T_{4}\right) \supseteq \varphi\left(T_{5}\right)$. This result in a contradiction since $Y_{6}^{\alpha} \supseteq \varphi\left(T_{6}\right)$. Therefore, $T_{5} \in B\left(T_{4}\right)$. We have $\cup B\left(T_{4}\right)=T_{6} \cup T_{5}=T_{4}$. By Theorem 2.1, we conclude that α is the regular element of the $B_{X}(D)$.

Now we calculate the number of regular elements α, satisfying the hypothesis of Theorem 3.4.

Let $\alpha \in B_{X}(D)$ be a regular element which is quasinormal representation of the form $\alpha=\bigcup_{i=0}^{6}\left(Y_{i}^{\alpha} \times T_{i}\right)$ and $V(D, \alpha)=Q$. Then there exist a complete $\alpha-$ isomorphism $\varphi: Q \rightarrow D^{\prime}=\left\{\varphi\left(T_{6}\right), \ldots, \varphi\left(T_{1}\right), \varphi\left(T_{0}\right)\right\}$ satisfying the hypothesis of Theorem 3.4. So, $\alpha \in R_{\varphi}\left(Q, D^{\prime}\right)$. We will denote $\varphi\left(T_{i}\right)=\bar{T}_{i}, i=0,1, \ldots 6$. Diagram of the $D^{\prime}=\left\{\bar{T}_{6}, \bar{T}_{5}, \bar{T}_{4}, \bar{T}_{3}, \bar{T}_{2}, \bar{T}_{1}, \bar{T}_{0}\right\}$ is shown in Figure 3.2.

Then the Equation (3.7) reduced to below equation.

$$
\begin{align*}
& Y_{6}^{\alpha} \supseteq \bar{T}_{6}, \\
& Y_{5}^{\alpha} \supseteq \bar{T}_{5}, \\
& Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{3}^{\alpha} \supseteq \bar{T}_{3}, \\
& Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{3}^{\alpha} \cup Y_{2}^{\alpha} \supseteq \bar{T}_{2}, \tag{3.10}\\
& Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{3}^{\alpha} \cup Y_{1}^{\alpha} \supseteq \bar{T}_{1}, \\
& Y_{1}^{\alpha} \cap \bar{T}_{1} \neq \emptyset, Y_{2}^{\alpha} \cap \bar{T}_{2} \neq \emptyset, \\
& Y_{3}^{\alpha} \cap \bar{T}_{3} \neq \emptyset .
\end{align*}
$$

Moreover, the image of the sets in Lemma 3.2 under the α - isomorphism φ

$$
\bar{T}_{6}, \bar{T}_{5},\left(\bar{T}_{1} \cap \bar{T}_{2}\right) \backslash \bar{T}_{4}, \bar{T}_{1} \backslash \bar{T}_{2}, \bar{T}_{2} \backslash \bar{T}_{1}, X \backslash \bar{T}_{0}
$$

are also pairwise disjoint sets and union of these sets equals X.

Lemma 3.5. For every $\alpha \in R_{\varphi}\left(Q, D^{\prime}\right)$, there exists an ordered system of disjoint mappings which is defined $\left\{\bar{T}_{6}, \bar{T}_{5},\left(\bar{T}_{1} \cap \bar{T}_{2}\right) \backslash \bar{T}_{4}, \bar{T}_{2} \backslash \bar{T}_{1}, \bar{T}_{1} \backslash \bar{T}_{2}, X \backslash \bar{T}_{0}\right\}$. Also, ordered systems are different which correspond to different binary relations.

Proof. Let $f_{\alpha}: X \rightarrow D$ be a mapping satisfying the condition $f_{\alpha}(t)=t \alpha$ for all $t \in X$. We consider the restrictions of the mapping f_{α} as $f_{0 \alpha}, f_{1 \alpha}, f_{2 \alpha}, f_{3 \alpha}$, $f_{4 \alpha}$ and $f_{5 \alpha}$ on the sets $\bar{T}_{6}, \bar{T}_{5},\left(\bar{T}_{1} \cap \bar{T}_{2}\right) \backslash \bar{T}_{4}, \bar{T}_{1} \backslash \bar{T}_{2}, \bar{T}_{2} \backslash \bar{T}_{1}, X \backslash \bar{T}_{0}$ respectively.

Now, considering the definition of the sets $Y_{i}^{\alpha},(i=0,1, \ldots, 6)$ together with the Equation (3.10) we have

$$
\begin{aligned}
t \in \bar{T}_{6} \Rightarrow t & \in Y_{6}^{\alpha} \Rightarrow t \alpha=T_{6} \Rightarrow f_{0 \alpha}(t)=T_{6}, \forall t \in \bar{T}_{6} . \\
t \in \bar{T}_{5} \Rightarrow t & \in Y_{5}^{\alpha} \Rightarrow t \alpha=T_{5} \Rightarrow f_{1 \alpha}(t)=T_{5}, \forall t \in \bar{T}_{5} . \\
t \in\left(\bar{T}_{1} \cap \bar{T}_{2}\right) \backslash \bar{T}_{4} & \Rightarrow t \in \bar{T}_{1} \cap \bar{T}_{2} \subseteq Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{3}^{\alpha} \\
& \Rightarrow t \alpha \in\left\{T_{6}, T_{5}, T_{4}, T_{3}\right\} \\
& \Rightarrow f_{2 \alpha}(t) \in\left\{T_{6}, T_{5}, T_{4}, T_{3}\right\}, \forall t \in\left(\bar{T}_{1} \cap \bar{T}_{2}\right) \backslash \bar{T}_{4} .
\end{aligned}
$$

Since $Y_{3}^{\alpha} \cap \bar{T}_{3} \neq \emptyset$, there is an element $t_{1} \in Y_{3}^{\alpha} \cap \bar{T}_{3}$. Then $t_{1} \alpha=T_{3}$ and $t_{1} \in \bar{T}_{3}$. If $t_{1} \in \bar{T}_{4}$ then $t_{1} \in \bar{T}_{4}=\bar{T}_{5} \cup \bar{T}_{6} \subseteq Y_{5}^{\alpha} \cup Y_{6}^{\alpha}$. Therefore, $t_{1} \alpha=\left\{T_{6}, T_{5}\right\}$ which is in contradiction with the equality $t_{1} \alpha=T_{3}$. So $f_{2 \alpha}\left(t_{1}\right)=T_{3}$ for some $t_{1} \in \bar{T}_{3} \backslash \bar{T}_{4}$.

$$
\begin{aligned}
t \in \bar{T}_{2} \backslash \bar{T}_{1} & \Rightarrow t \in \bar{T}_{2} \subseteq Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{3}^{\alpha} \cup Y_{2}^{\alpha} \\
& \Rightarrow t \alpha \in\left\{T_{6}, T_{5}, T_{4}, T_{3}, T_{2}\right\} \\
& \Rightarrow f_{3 \alpha}(t) \in\left\{T_{6}, T_{5}, T_{4}, T_{3}, T_{2}\right\}, \forall t \in \bar{T}_{2} \backslash \bar{T}_{1} .
\end{aligned}
$$

Also, since $Y_{2}^{\alpha} \cap \bar{T}_{2} \neq \emptyset$ there is an element $t_{2}, t_{2} \alpha=T_{2}$ and $t_{2} \in \bar{T}_{2}$. If $t_{2} \in \bar{T}_{1}$ then $t_{2} \in \bar{T}_{1} \subseteq Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{3}^{\alpha} \cup Y_{1}^{\alpha}$. Therefore, $t_{2} \alpha \in\left\{T_{6}, T_{5}, T_{4}, T_{3}, T_{1}\right\}$ which is in contradiction with the equality $t_{2} \alpha=T_{2}$. So $f_{3 \alpha}\left(t_{2}\right)=T_{2}$ for some $t_{2} \in \bar{T}_{2} \backslash \bar{T}_{1}$.

$$
\begin{aligned}
t \in \bar{T}_{1} \backslash \bar{T}_{2} & \Rightarrow t \in \bar{T}_{1} \subseteq Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{3}^{\alpha} \cup Y_{1}^{\alpha} \\
& \Rightarrow t \alpha \in\left\{T_{6}, T_{5}, T_{4}, T_{3}, T_{1}\right\} \\
& \Rightarrow f_{4 \alpha}(t) \in\left\{T_{6}, T_{5}, T_{4}, T_{3}, T_{1}\right\}, \forall t \in \bar{T}_{1} \backslash \bar{T}_{2} .
\end{aligned}
$$

Similarly, $t_{3} \in Y_{1}^{\alpha} \cap \bar{T}_{1}$ since $Y_{1}^{\alpha} \cap \bar{T}_{1} \neq \emptyset$. Then $t_{3} \alpha=T_{1}$ and $t_{3} \in \bar{T}_{1}$. If $t_{3} \in \bar{T}_{2}$ then $t_{3} \in Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{3}^{\alpha} \cup Y_{2}^{\alpha}$. So $t_{3} \alpha \in\left\{T_{6}, T_{5}, T_{4}, T_{3}, T_{2}\right\}$. However this contradicts to $t_{3} \alpha=T_{1}$. So $f_{4 \alpha}\left(t_{3}\right)=T_{1}$ for some $t_{3} \in \bar{T}_{1} \backslash \bar{T}_{2}$.

$$
t \in X \backslash \bar{T}_{0} \Rightarrow t \in X=\bigcup_{i=0}^{6} Y_{i}^{\alpha} \Rightarrow t \alpha \in Q \Rightarrow f_{5 \alpha}(t) \in Q, \forall t \in X \backslash \bar{T}_{0}
$$

Therefore, for every binary relation $\alpha \in R_{\varphi}\left(Q, D^{\prime}\right)$ there exists an ordered $\operatorname{system}\left(f_{0 \alpha}, f_{1 \alpha}, f_{2 \alpha}, f_{3 \alpha}, f_{4 \alpha}, f_{5 \alpha}\right)$.

On the other hand, suppose that for $\alpha, \beta \in R_{\varphi}\left(Q, D^{\prime}\right)$ which $\alpha \neq \beta$, be obtained $f_{\alpha}=\left(f_{0 \alpha}, f_{1 \alpha}, f_{2 \alpha}, f_{3 \alpha}, f_{4 \alpha}, f_{5 \alpha}\right)$ and $f_{\beta}=\left(f_{0 \beta}, f_{1 \beta}, f_{2 \beta}, f_{3 \beta}, f_{4 \beta}\right.$, $f_{5 \beta}$). If $f_{\alpha}=f_{\beta}$, we get

$$
f_{\alpha}=f_{\beta} \Rightarrow f_{\alpha}(t)=f_{\beta}(t), \forall t \in X \Rightarrow t \alpha=t \beta, \forall t \in X \Rightarrow \alpha=\beta
$$

which contradicts to $\alpha \neq \beta$. Therefore, different binary relations's ordered systems are different.

Lemma 3.6. Let $f=\left(f_{0}, f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right)$ be ordered system from X in the semilattice D such that

$$
\begin{aligned}
& f_{0}: \bar{T}_{6} \rightarrow\left\{T_{6}\right\}, \\
& f_{1}: \bar{T}_{5} \rightarrow\left\{T_{5}\right\}, \\
& f_{2}:\left(\bar{T}_{2} \cap \bar{T}_{1}\right) \backslash \bar{T}_{4} \rightarrow\left\{T_{6}, T_{5}, T_{4}, T_{3}\right\} \text { and } f_{2}(a)=T_{3}, \exists a \in \bar{T}_{3} \backslash \bar{T}_{4}, \\
& f_{3}: \bar{T}_{2} \backslash \bar{T}_{1} \rightarrow\left\{T_{6}, T_{5}, T_{4}, T_{3}, T_{2}\right\} \text { and } f_{3}(b)=T_{2}, \exists b \in \bar{T}_{2} \backslash \bar{T}_{1}, \\
& f_{4}: \bar{T}_{1} \backslash \bar{T}_{2} \rightarrow\left\{T_{6}, T_{5}, T_{4}, T_{3}, T_{1}\right\} \text { and } f_{4}(c)=T_{1}, \exists c \in \bar{T}_{1} \backslash \bar{T}_{2}, \\
& f_{5}: X \backslash \bar{T}_{0} \rightarrow Q .
\end{aligned}
$$

Then $\beta=\bigcup_{x \in X}(\{x\} \times f(x)) \in B_{X}(D)$ is regular and φ is a complete β-isomorphism. So $\beta \in R_{\varphi}\left(Q, D^{\prime}\right)$.

Proof. First we see that $V(D, \beta)=Q$. Considering $V(D, \beta)=\{Y \beta \mid Y \in D\}$, the properties of f mapping, $\bar{T}_{i} \beta=\bigcup_{x \in \bar{T}_{i}} x \beta$ and $D^{\prime} \subseteq D$, we get

$$
\begin{aligned}
& T_{6} \in Q \Rightarrow \bar{T}_{6} \beta=T_{6} \Rightarrow T_{6} \in V(D, \beta), \\
& T_{5} \in Q \Rightarrow \bar{T}_{5} \beta=T_{5} \Rightarrow T_{5} \in V(D, \beta), \\
& T_{4} \in Q \Rightarrow \bar{T}_{4} \beta=\bar{T}_{5} \beta \cup \bar{T}_{6} \beta=T_{5} \cup T_{6}=T_{4} \Rightarrow T_{4} \in V(D, \beta), \\
& T_{3} \in Q \Rightarrow \bar{T}_{3} \beta=\left(\left(\bar{T}_{3} \backslash \bar{T}_{4}\right) \cup \bar{T}_{4}\right) \beta=T_{6} \cup T_{5} \cup T_{4} \cup T_{3}=T_{3} \Rightarrow T_{3} \in V(D, \beta), \\
& T_{2} \in Q \Rightarrow \bar{T}_{2} \beta=T_{6} \cup T_{5} \cup T_{4} \cup T_{3} \cup T_{2}=T_{2} \Rightarrow T_{2} \in V(D, \beta), \\
& T_{1} \in Q \Rightarrow \bar{T}_{1} \beta=T_{6} \cup T_{5} \cup T_{4} \cup T_{3} \cup T_{1}=T_{1} \Rightarrow T_{1} \in V(D, \beta), \\
& T_{0} \in Q \Rightarrow \bar{T}_{0} \beta=T_{6} \cup T_{5} \cup T_{4} \cup T_{3} \cup T_{2} \cup T_{1}=T_{0} \Rightarrow T_{0} \in V(D, \beta) .
\end{aligned}
$$

Hence, $Q \subseteq V(D, \beta)$. Also,

$$
\begin{aligned}
Z \in V(D, \beta) & \Rightarrow Z=Y \beta, \exists Y \in D \\
& \Rightarrow Z=Y \beta=\bigcup_{y \in Y} y \beta=\bigcup_{y \in Y} f(y) \in Q
\end{aligned}
$$

since $f(y) \in Q$ and Q is closed set-theoretic union. Therefore, $V(D, \beta) \subseteq Q$. Hence $V(D, \beta)=Q$.

Moreover, $\beta=\bigcup_{T \in V\left(X^{*}, \beta\right)}\left(Y_{T}^{\beta} \times T\right)$ is a quasinormal representation since $\emptyset \notin Q$. From the definition of $\beta, f(x)=x \beta$ for all $x \in X$. It is easily seen that $V\left(X^{*}, \beta\right)=V(D, \beta)=Q$. We get $\beta=\bigcup_{i=0}^{6}\left(Y_{i}^{\beta} \times T_{i}\right)$.

On the other hand

$$
\begin{aligned}
& t \in \bar{T}_{6} \Rightarrow t \beta=f(t)=T_{6} \Rightarrow t \in Y_{6}^{\beta} \Rightarrow \bar{T}_{6} \subseteq Y_{6}^{\beta}, \\
& t \in \bar{T}_{5} \Rightarrow t \beta=f(t)=T_{5} \Rightarrow t \in Y_{5}^{\beta} \Rightarrow \bar{T}_{5} \subseteq Y_{5}^{\beta}, \\
& t \in \bar{T}_{3}=\left(\bar{T}_{3} \backslash \bar{T}_{4}\right) \cup \bar{T}_{5} \cup \bar{T}_{6} \Rightarrow t \beta=f(t) \in\left\{T_{6}, T_{5}, T_{4}, T_{3}\right\} \\
& \Rightarrow t \in Y_{6}^{\beta} \cup Y_{5}^{\beta} \cup Y_{4}^{\beta} \cup Y_{3}^{\beta} \\
& \Rightarrow \bar{T}_{3} \subseteq Y_{6}^{\beta} \cup Y_{5}^{\beta} \cup Y_{4}^{\beta} \cup Y_{3}^{\beta}, \\
& t \in \bar{T}_{2}=\bar{T}_{6} \cup \bar{T}_{5} \cup\left(\bar{T}_{2} \backslash \bar{T}_{1}\right) \cup\left(\left(\bar{T}_{2} \cap \bar{T}_{1}\right) \backslash \bar{T}_{4}\right) \Rightarrow t \beta=f(t) \in\left\{T_{6}, T_{5}, T_{4}, T_{3}, T_{2}\right\} \\
& \Rightarrow t \in Y_{6}^{\beta} \cup Y_{5}^{\beta} \cup Y_{4}^{\beta} \cup Y_{3}^{\beta} \cup Y_{2}^{\beta} \\
& \Rightarrow \bar{T}_{2} \subseteq Y_{6}^{\beta} \cup Y_{5}^{\beta} \cup Y_{4}^{\beta} \cup Y_{3}^{\beta} \cup Y_{2}^{\beta}, \\
& t \in \bar{T}_{1}=\bar{T}_{6} \cup \bar{T}_{5} \cup\left(\bar{T}_{1} \backslash \bar{T}_{2}\right) \cup\left(\left(\bar{T}_{2} \cap \bar{T}_{1}\right) \backslash \bar{T}_{4}\right) \Rightarrow t \beta=f(t) \in\left\{T_{6}, T_{5}, T_{4}, T_{3}, T_{1}\right\} \\
& \Rightarrow t \in Y_{6}^{\beta} \cup Y_{5}^{\beta} \cup Y_{4}^{\beta} \cup Y_{3}^{\beta} \cup Y_{1}^{\beta} \\
& \Rightarrow \bar{T}_{5} \subseteq Y_{6}^{\beta} \cup Y_{5}^{\beta} \cup Y_{4}^{\beta} \cup Y_{3}^{\beta} \cup Y_{1}^{\beta} .
\end{aligned}
$$

Also, by using $f_{2}(a)=T_{3}, \exists a \in \bar{T}_{3} \backslash \bar{T}_{4}$, we obtain $Y_{3}^{\beta} \cap \bar{T}_{3} \neq \emptyset$. Similarly, from properties of f_{3}, f_{4}, be seen $Y_{2}^{\beta} \cap \bar{T}_{2} \neq \emptyset$ and $Y_{1}^{\beta} \cap \bar{T}_{1} \neq \emptyset$. Therefore, the mapping $\varphi: Q \rightarrow D^{\prime}=\left\{\bar{T}_{0}, \bar{T}_{1}, \ldots, \bar{T}_{6}\right\}$ to be defined $\varphi\left(T_{i}\right)=\bar{T}_{i}$ satisfy the conditions in (3.10) for β. Hence φ is complete β-isomorhism because of $\varphi(T) \beta=\bar{T} \beta=T$, for all $T \in V(D, \beta)$. By Theorem 3.4, $\beta \in R_{\varphi}\left(Q, D^{\prime}\right)$.

Therefore, there is one to one correspondence between the elements of $R_{\varphi}\left(Q, D^{\prime}\right)$ and the set of ordered systems of disjoint mappings.

Theorem 3.7. Let X be a finite set and Q be XI- semilattice. If

$$
D^{\prime}=\left\{\bar{T}_{6}, \bar{T}_{5}, \bar{T}_{4}, \bar{T}_{3}, \bar{T}_{2}, \bar{T}_{1}, \bar{T}_{0}\right\}
$$

is $\alpha-$ isomorphic to Q and $\Omega(Q)=m_{0}$, then

$$
\begin{aligned}
R\left(D^{\prime}\right)= & m_{0} \cdot 4 \cdot\left(4^{\left|\bar{T}_{3} \backslash \bar{T}_{4}\right|}-3^{\left|\bar{T}_{3} \backslash \bar{T}_{4}\right|}\right) \cdot 4^{\mid\left(\bar{T}_{2} \cap \bar{T}_{1}\right) \backslash \bar{T}_{3}} . \\
& \left(5^{\left|\bar{T}_{2} \backslash \bar{T}_{1}\right|}-4^{\left|\bar{T}_{2} \backslash \bar{T}_{1}\right|}\right) \cdot\left(5^{\left|\bar{T}_{1} \backslash \bar{T}_{2}\right|}-4^{\left|\bar{T}_{1} \backslash \bar{T}_{2}\right|}\right) \cdot 7^{\left|X \backslash \bar{T}_{0}\right|}
\end{aligned}
$$

Proof. Lemma 3.5 and Lemma 3.6 show us that the number of the ordered system of disjoint mappings $\left(f_{0 \alpha}, f_{1 \alpha}, f_{2 \alpha}, f_{3 \alpha}, f_{4 \alpha}, f_{5 \alpha}\right)$ is equal to $\left|R_{\varphi}\left(Q, D^{\prime}\right)\right|$, which $\alpha \in B_{X}(D)$ regular element, $V(D, \alpha)=Q$ and $\varphi: Q \rightarrow D^{\prime}$ is a complete α-isomorphism.

Regular Elements of the Complete Semigroups of...

From the Theorem 2.2, the number of the mappings $f_{0 \alpha}, f_{1 \alpha}, f_{2 \alpha}, f_{3 \alpha}$, $f_{4 \alpha}$ and $f_{5 \alpha}$ are respectively as

$$
\begin{aligned}
& 1,1,\left(4^{\left|\bar{T}_{3} \backslash \bar{T}_{4}\right|}-3^{\left|\bar{T}_{3} \backslash \bar{T}_{4}\right|}\right) \cdot 4^{\left|\left(\bar{T}_{2} \cap \bar{T}_{1}\right) \backslash \bar{T}_{3}\right|} \\
& \left(5^{\left|\bar{T}_{2} \backslash \bar{T}_{1}\right|}-4^{\left|\bar{T}_{2} \backslash \bar{T}_{1}\right|}\right),\left(5^{\left|\bar{T}_{1} \backslash \bar{T}_{2}\right|}-4^{\left|\bar{T}_{1} \backslash \bar{T}_{2}\right|}\right), 7^{\left|X \backslash \bar{T}_{0}\right|} .
\end{aligned}
$$

Now, we determine the number of regular elements

$$
\begin{aligned}
\left|R_{\varphi}\left(Q, D^{\prime}\right)\right| & =\left(4^{\left|\bar{T}_{3} \backslash \bar{T}_{4}\right|}-3^{\left|\bar{T}_{3} \backslash \bar{T}_{4}\right|}\right) \cdot 4^{\left|\left(\bar{T}_{2} \cap \bar{T}_{1}\right) \backslash \bar{T}_{3}\right|} \\
& \left(5^{\left|\bar{T}_{2} \backslash \bar{T}_{1}\right|}-4^{\left|\bar{T}_{2} \backslash \bar{T}_{1}\right|}\right) \cdot\left(5^{\left|\bar{T}_{1} \backslash \bar{T}_{2}\right|}-4^{\left|\bar{T}_{1} \backslash \bar{T}_{2}\right|}\right) \cdot 7^{\left|X \backslash \bar{T}_{0}\right|}
\end{aligned}
$$

The number of all automorphisms of the semilattice Q is $q=4$. These are

$$
\begin{aligned}
i d_{Q} & =\left(\begin{array}{lllllll}
T_{6} & T_{5} & T_{4} & T_{3} & T_{2} & T_{1} & T_{0} \\
T_{6} & T_{5} & T_{4} & T_{3} & T_{2} & T_{1} & T_{0}
\end{array}\right) \\
\tau_{1} & =\left(\begin{array}{lllllll}
T_{6} & T_{5} & T_{4} & T_{3} & T_{2} & T_{1} & T_{0} \\
T_{5} & T_{6} & T_{4} & T_{3} & T_{2} & T_{1} & T_{0}
\end{array}\right) \\
\tau_{2} & =\left(\begin{array}{lllllll}
T_{6} & T_{5} & T_{4} & T_{3} & T_{2} & T_{1} & T_{0} \\
T_{6} & T_{5} & T_{4} & T_{3} & T_{1} & T_{2} & T_{0}
\end{array}\right) \\
\tau_{3} & =\left(\begin{array}{lllllll}
T_{6} & T_{5} & T_{4} & T_{3} & T_{2} & T_{1} & T_{0} \\
T_{5} & T_{6} & T_{4} & T_{3} & T_{1} & T_{2} & T_{0}
\end{array}\right)
\end{aligned}
$$

Therefore by using Theorem 2.3,

$$
\begin{aligned}
R\left(D^{\prime}\right)= & m_{0} \cdot 4 \cdot\left(4^{\left|\bar{T}_{3} \backslash \bar{T}_{4}\right|}-3^{\left|\bar{T}_{3} \backslash \bar{T}_{4}\right|}\right) \cdot 4^{\left|\left(\bar{T}_{2} \cap \bar{T}_{1}\right) \backslash \bar{T}_{3}\right|} \\
& \left(5^{\left|\bar{T}_{2} \backslash \bar{T}_{1}\right|}-4^{\left|\bar{T}_{2} \backslash \bar{T}_{1}\right|}\right) \cdot\left(5^{\left|\bar{T}_{1} \backslash \bar{T}_{2}\right|}-4^{\left|\bar{T}_{1} \backslash \bar{T}_{2}\right|}\right) \cdot 7^{\left|X \backslash \bar{T}_{0}\right|}
\end{aligned}
$$

is obtained.
Example 1. Let $X=\{1,2,3,4,5\}$ and

$$
D=\{\{1\},\{2\},\{1,2\},\{1,2,3\},\{1,2,3,4\},\{1,2,3,5\},\{1,2,3,4,5\}\}
$$

D is an X-semilattice of unions since D is closed the union of sets. Moreover D satisfies the conditions in (3.1) and $\{1\} \cap\{2\}=\emptyset$. Then, D is an $X I$-semilattice. Let $D=Q$. Therefore $|\Omega(Q)|=1$. Besides, the number of all automorphisms of Q is $q=4$. By using Theorem 3.7

$$
\begin{aligned}
|R(D)|= & 4 \cdot\left(4^{\left|\bar{T}_{3} \backslash \bar{T}_{4}\right|}-3^{\left|\bar{T}_{3} \backslash \bar{T}_{4}\right|}\right) 4^{\left|\left(\bar{T}_{2} \cap \bar{T}_{1}\right) \backslash \bar{T}_{3}\right|} \\
& \left(5^{\left|\bar{T}_{2} \backslash \bar{T}_{1}\right|}-4^{\left|\bar{T}_{2} \backslash \bar{T}_{1}\right|}\right) \cdot\left(5^{\left|\bar{T}_{1} \backslash \bar{T}_{2}\right|}-4^{\left|\bar{T}_{1} \backslash \bar{T}_{2}\right|}\right) \cdot 7^{\left|X \backslash \bar{T}_{0}\right|} \\
& =4 \cdot\left(4^{1}-3^{1}\right) \cdot 4^{0} \cdot\left(5^{1}-4^{1}\right) \cdot\left(5^{1}-1^{1}\right) \cdot 7^{0} \\
& =4
\end{aligned}
$$

is obtained.

References

[1] K.A. Zaretskii, The representation of ordered semigroups by binary relations, Izv. Vyssh. Uchebn. Zaved. Matematika, 13(6) (1959), 48-50.
[2] K.A. Zaretskii, The semigroup of binary relations, Mat. Sb., 61(1963), 291-305.
[3] G. Markowsky, Idempotents and product representations with applications to the semigroup of binary relations, Semigroup Forum, 5(1972), 95-119.
[4] B.M. Schein, Regular elements of the semigroup of all binary relations, Semigroup Forum, 13(1976), 95-102.
[5] Ya. Diasamidze, Complete Semigroups of Binary Relations, Ajara Publ. House, Batumi, (2000).
[6] Ya. Diasamidze, Complete semigroups of binary relations, Journal of Mathematical Sciences, 117(4) (2003), 4271-4319.
[7] Ya. Diasamidze, Sh. Makharadze, G. Partenadze and O. Givradze, On finite X - semilattices of unions, Journal of Mathematical Sciences, 141(4) (2007), 1134-1181.
[8] Ya. Diasamidze and Sh. Makharadze, Complete semigroups of binary relations defined by $X-$ semilattices of unions, Journal of Mathematical Sciences, 166(5) (2010), 615-633.
[9] Y.I. Diasamidze and S. Ve Makharadze, Complete Semigroups of Binary Relations, Kriter Yaynnevi, İstanbul, (2013).
[10] B. Albayrak, I.Y. Diasamidze and N. Aydın, Regular elements of the complete semigroups of binary relations of the class $\sum_{7}(X, 8)$, Int. Jour. of Pure and Applied Mathematics, 86(1) (2013), 199-216.

