

Gen. Math. Notes, Vol. 21, No. 1, March 2014, pp.27-42 ISSN 2219-7184; Copyright ©ICSRS Publication, 2014 www.i-csrs.org Available free online at http://www.geman.in

Regular Elements of the Complete Semigroups of

Binary Relations of the Class $\sum_{8}(X,7)$

Didem Yeşil Sungur¹ and Neşet $Aydin^2$

^{1,2}Canakkale Onsekiz Mart University, Art and Science Faculty Department of Mathematics, Canakkale-Turkey ¹E-mail: dyesil@comu.edu.tr ²E-mail: neseta@comu.edu.tr

(Received: 6-1-14 / Accepted: 17-2-14)

Abstract

In this paper, let $Q = \{T_6, T_5, T_4, T_3, T_2, T_1, T_0\}$ be a subsemilattice of Xsemilattice of unions D where $T_6 \subset T_4 \subset T_3 \subset T_1 \subset T_0$, $T_6 \subset T_4 \subset T_3 \subset T_2 \subset T_0$, $T_5 \subset T_4 \subset T_3 \subset T_1 \subset T_0$, $T_5 \subset T_4 \subset T_3 \subset T_2 \subset T_0$, $T_2 \setminus T_1 \neq \emptyset$, $T_1 \setminus T_2 \neq \emptyset$, $T_5 \setminus T_6 \neq \emptyset$, $T_6 \setminus T_5 \neq \emptyset$, $T_2 \cup T_1 = T_0$, $T_6 \cup T_5 = T_4$, then we characterize each element of the class $\sum_8 (X,7)$ which is isomorphic to Q by means of the characteristic family of sets, the characteristic mapping and the generate set of Q. Moreover, we describe the construction of regular elements α of $B_X(D)$ satisfying $V(D, \alpha) = Q$. Additionally, we find the number of these regular elements, when X is finite.

Keywords: Semigroups, Binary relations, Regular elements.

1 Introduction

Representations of partially ordered semigroups by binary relations were first considered by Zaretskii [1]. In [2] Zareckii proved that a binary relation α is a regular element of B_X if and only if $V(\alpha) (= V(P(X), \alpha))$ is a completely distributive lattice. Further, criteria for regularity were given by Markowsky [3] and Schein [4]. Then, Diasamidze proved that, a binary relation α is a regular element of B_X iff $V(X^*, \alpha) \subseteq V(D, \alpha)$ and $V(D, \alpha)$ is complete XI- semilattice of unions in [5]. So, Diasamidze extend Zaretskii's theorem and give an intrinsic characterization of regularity since if D = P(X) then $B_X(D) = B_X$ and $V(\alpha)$ (= $V(P(X), \alpha)$) is a completely distributive lattice. Therefore, Diasamidze generate systematic rules for understanding the structure of semigroups of binary relations and characterization of regular elements of these semigroups in [5 - 9]. In general, he studied semigroups but, in particular, he investigates complete semigroups of the binary relations.

In this paper, we take in particular, $Q = \{T_6, T_5, T_4, T_3, T_2, T_1, T_0\}$ subsemilattice of X-semilattice of unions D where the elements T_i 's, $i = 0, 1, \ldots, 6$ are satisfying the following properties, $T_6 \subset T_4 \subset T_3 \subset T_1 \subset T_0, T_6 \subset T_4 \subset T_3 \subset T_2 \subset T_0, T_5 \subset T_4 \subset T_3 \subset T_1 \subset T_0, T_5 \subset T_4 \subset T_3 \subset T_2 \subset T_0, T_2 \setminus T_1 \neq \emptyset,$ $T_1 \setminus T_2 \neq \emptyset, T_5 \setminus T_6 \neq \emptyset, T_6 \setminus T_5 \neq \emptyset, T_2 \cup T_1 = T_0, T_6 \cup T_5 = T_4$. We will investigate the properties of regular element $\alpha \in B_X(D)$ satisfying $V(D, \alpha) = Q$. Moreover, we will calculate the number of these regular elements of $B_X(D)$ for a finite set X.

As general, we also characterize the elements of the class $\sum_{8}(X,7)$. This class is the complete X-semilattice of unions every elements of which are isomorphic to Q. So, we characterize the class for each element of which is isomorphic to Q by means of the characteristic family of sets, the characteristic mapping and the generate set of D.

The material in this work forms a part of first author's PH.D. Thesis, under the supervision of the second author Dr. Neşet Aydın.

2 Preliminaries

We recall various concepts and properties from [5-10].

Let X be an arbitrary nonempty set. Recall that the set of all binary relations on X is denoted by B_X . The binary operation " \circ " on B_X defined by for $\alpha, \beta \in B_X$

$$(x,z) \in \alpha \circ \beta \Leftrightarrow (x,y) \in \alpha$$
 and $(y,z) \in \beta$, for some $y \in X$

is associative and hence B_X is a semigroup with respect to the operation " \circ ". This semigroup is called the *semigroup of all binary relations* on the set X.

Let D be a nonempty subset of P(X) such that it is closed under the union i.e., $\cup D' \in D$ for any nonempty subset D' of D. In that case, D is called a *complete* X- *semilattice of unions*. The union of all elements of D is denoted by the symbol \check{D} . Clearly, \check{D} is the largest element of D.

The set $N(D, D') = \{Z \in D \mid Z \subseteq Z' \text{ for any } Z' \in D'\}$ is all lower bounds of D' in D. Moreover, if $N(D, D') \neq \emptyset$ then $\Lambda(D, D') = \bigcup N(D, D')$ belongs to D and it is the greatest lower bound of D'.

Let D and D' be some nonempty subsets of the complete X- semilattices of unions. We say that a subset \widetilde{D} generates a set D' if any element from D'is a set-theoretic union of the elements from \widetilde{D} . Regular Elements of the Complete Semigroups of...

Further, let $x, y \in X$, $Y \subseteq X$, $\alpha \in B_X$, $T \in D$, $\emptyset \neq D' \subseteq D$ and $t \in D$. We use the notations:

$$y\alpha = \{x \in X \mid (y, x) \in \alpha\} \quad , \ Y\alpha = \bigcup_{y \in Y} y\alpha,$$
$$V(D, \alpha) = \{Y\alpha \mid Y \in D\} \quad , \ D_t = \{Z' \in D \mid t \in Z'\} \ ,$$
$$D'_T = \{Z' \in D' \mid T \subseteq Z'\} \quad , \ \ddot{D}'_T = \{Z' \in D' \mid Z' \subseteq T\}.$$

Let $X^* = P(X) \setminus \{\emptyset\}, \alpha \in B_X, Y_T^\alpha = \{y \in X \mid y\alpha = T\}$ and

$$V[\alpha] = \begin{cases} V(X^*, \alpha), \text{ if } \emptyset \notin D, \\ V(X^*, \alpha), \text{ if } \emptyset \in V(X^*, \alpha), \\ V(X^*, \alpha) \cup \{\emptyset\}, \text{ if } \emptyset \notin V(X^*, \alpha) \text{ and } \emptyset \in D. \end{cases}$$

In general, a representation of a binary relation α of the form

$$\alpha = \bigcup_{T \in V[\alpha]} (Y_T^{\alpha} \times T)$$

is called *quasinormal*. Note that, if $\alpha \in B_X$ has a quasinormal representation, then $X = \bigcup_{T \in V(X^*, \alpha)} Y_T^{\alpha}$ and $Y_T^{\alpha} \cap Y_{T'}^{\alpha} \neq \emptyset$ for $T, T' \in V(X^*, \alpha)$ which $T \neq T'$.

In particular, let f be an arbitrary mapping from X into D then $B_X(D)$ denotes the set of all binary relations of the form

$$\alpha_f = \bigcup_{x \in X} \left(\{x\} \times f(x) \right).$$

It is easy to prove that $B_X(D)$ is a semigroup with respect to the operation of multiplication of binary relations, which is called a *complete semigroup of binary relations* defined by an X-semilattice of unions D. Diasamidze introduced this structure and investigated their properties [6].

If $\alpha \circ \beta \circ \alpha = \alpha$ for some $\beta \in B_X(D)$ then a binary relation α is called a *regular element* of $B_X(D)$.

A complete X-semilattice of unions D is called "XI- semilattice of unions" [9] if it satisfies the following two conditions

1.
$$\Lambda(D, D_t) \in D$$
 for any $t \in \check{D}$,

2.
$$Z = \bigcup_{t \in Z} \Lambda(D, D_t)$$
 for any nonempty element Z of D.

In [9] they show that, β is a regular element of $B_X(D)$ iff $V[\beta] = V(D, \beta)$ is a complete XI-semilattice of unions.

Let D' be an arbitrary nonempty subset of the complete X-semilattice of unions D. A nonempty element $T \in D'$ is a *nonlimiting element* of D' if $T \setminus l(D', T) = T \setminus \bigcup (D' \setminus D'_T) \neq \emptyset$. A nonempty element $T \in D'$ is a *limiting element* of D' if $T \setminus l(D', T) = \emptyset$.

The family C(D) of pairwise disjoint subsets of the set $\check{D} = \bigcup D$ is the *characteristic family* of sets of D if the followings hold

- a) $\cap D \in C(D)$,
- b) $\cup C(D) = \breve{D}$,
- c) There exists a subset $C_Z(D)$ of the set C(D) such that $Z = \bigcup C_Z(D)$ for all $Z \in D$.

A mapping $\theta: D \to C(D)$ is called *characteristic mapping* if $Z = (\cap D) \cup \bigcup_{Z' \in \hat{D}} \theta(Z')$ for all $Z \in D$.

The existence and the uniqueness of characteristic family and characteristic mapping is given in Diasamidze [7]. Moreover, it is shown that every $Z \in D$ can be written as

$$Z = \theta(\tilde{Q}) \cup \bigcup_{T \in \hat{Q}(Z)} \theta(T) ,$$

where $\hat{Q}(Z) = Q \setminus \{T \in Q \mid Z \subseteq T\}.$

A one-to-one mapping φ between two complete X- semilattices of unions D' and D'' is called a *complete isomorphism* if $\varphi(\cup D_1) = \bigcup_{T' \in D_1} \varphi(T')$ for each nonempty subset D_1 of the semilattice D'. Also, let $\alpha \in B_X(D)$. A complete isomorphism φ between XI-semilattice of unions Q and D is called a *complete* α - *isomorphism* if $Q = V(D, \alpha)$ and $\varphi(\emptyset) = \emptyset$ for $\emptyset \in V(D, \alpha)$ and $\varphi(T)\alpha = T$ for any $T \in V(D, \alpha)$.

Let Q and D' are respectively some XI- and X- subsemilattices of the complete X- semilattice of unions D. Then

 $R_{\varphi}(Q, D') = \{ \alpha \in B_X(D) \mid \alpha \text{ regular}, \varphi \text{ complete } \alpha - \text{isomorphism} \}$

where $\varphi: Q \to D'$ complete isomorphism and $V(D, \alpha) = Q$. Besides, let us denote

$$R(Q,D') = \bigcup_{\varphi \in \Phi(Q,D')} R_{\varphi}(Q,D') \text{ and } R(D') = \bigcup_{Q' \in \Omega(Q)} R(Q',D').$$

where

 $\Phi(Q, D') = \{\varphi \mid \varphi : Q \to D' \text{ is a complete } \alpha \text{-isomorphism for any } \alpha \in B_X(D)\}$ $\Omega(Q) = \{Q' \mid Q' \text{ is } XI \text{-subsemilattices of } D \text{ which is complete isomorphic to } Q\}$ Regular Elements of the Complete Semigroups of...

Theorem 2.1. [8, Theorem 10] Let α and σ be binary relations of the semigroup $B_X(D)$ such that $\alpha \circ \sigma \circ \alpha = \alpha$. If $D(\alpha)$ is some generating set of the semilattice $V(D, \alpha) \setminus \{\emptyset\}$ and $\alpha = \bigcup_{T \in V(D, \alpha)} (Y_T^{\alpha} \times T)$ is a quasinormal represen-

tation of the relation α , then $V(D, \alpha)$ is a complete XI- semilattice of unions. Moreover, there exists a complete α -isomorphism φ between the semilattice $V(D, \alpha)$ and $D' = \{T\sigma \mid T \in V(D, \alpha)\}$, that satisfies the following conditions:

- a) $\varphi(T) = T\sigma$ and $\varphi(T) \alpha = T$ for all $T \in V(D, \alpha)$
- b) $\bigcup_{T'\in \ddot{D}(\alpha)_T} Y^{\alpha}_{T'} \supseteq \varphi(T) \text{ for any } T \in D(\alpha),$
- c) $Y_T^{\alpha} \cap \varphi(T) \neq \emptyset$ for all nonlimiting element T of the set $\ddot{D}(\alpha)_T$,
- d) If T is a limiting element of the set $\ddot{D}(\alpha)_T$, then the equality $\cup B(T) = T$ is always holds for the set $B(T) = \left\{ Z \in \ddot{D}(\alpha)_T \mid Y_Z^{\alpha} \cap \varphi(T) \neq \emptyset \right\}.$

On the other hand, if $\alpha \in B_X(D)$ such that $V(D, \alpha)$ is a complete XIsemilattice of unions. If for a complete α -isomorphism φ from $V(D, \alpha)$ to a subsemilattice D' of D satisfies the conditions b) - d of the theorem, then α is a regular element of $B_X(D)$.

Theorem 2.2. [9, Theorem 1.18.2] Let $D_j = \{T_1, \ldots, T_j\}$, X be finite set and $\emptyset \neq Y \subseteq X$. If f is a mapping of the set X, on the D_j , for which $f(y) = T_j$ for some $y \in Y$, then the numbers of those mappings f of the sets X on the set D_j can be calculated by the formula $s = j^{|X \setminus Y|} \cdot (j^{|Y|} - (j-1)^{|Y|})$.

Theorem 2.3. [9, Theorem 6.3.5] Let X is a finite set. If φ is a fixed element of the set $\Phi(D, D')$ and $|\Omega(D)| = m_0$ and q is a number of all automorphisms of the semilattice D then $|R(D')| = m_0 \cdot q \cdot |R_{\varphi}(D, D')|$.

3 Results

Let X be a finite set, D be a complete X-semilattice of unions and $Q = \{T_6, T_5, T_4, T_3, T_2, T_1, T_0\}$ be a X-subsemilattice of unions of D satisfies the following conditions

$$\begin{array}{l} T_6 \subset T_4 \subset T_3 \subset T_1 \subset T_0, \\ T_6 \subset T_4 \subset T_3 \subset T_2 \subset T_0, \\ T_5 \subset T_4 \subset T_3 \subset T_1 \subset T_0, \\ T_5 \subset T_4 \subset T_3 \subset T_2 \subset T_0, \\ T_2 \backslash T_1 \neq \emptyset, \ T_1 \backslash T_2 \neq \emptyset, \\ T_5 \backslash T_6 \neq \emptyset, \ T_6 \backslash T_5 \neq \emptyset, \\ T_2 \cup T_1 = T_0, \ T_6 \cup T_5 = T_4 \end{array}$$

The diagram of the Q is shown in Figure 3.1.

Let $C(Q) = \{P_6, P_5, P_4, P_3, P_2, P_1, P_0\}$ be characteristic family of sets of Q and $\theta: Q \to C(Q), \ \theta(T_i) = P_i(i = 0, 1, \dots, 6)$ be characteristic mapping. Then, by the definition of characteristic family and characteristic mapping for each element $T_i \in Q$ we can write

$$T_{i} = \theta(\breve{Q}) \cup \bigcup_{T \in \hat{Q}(T_{i})} \theta(T), (i = 0, 1, \dots, 6)$$

where $\hat{Q}(T_i) = Q \setminus \{Z \in Q \mid T_i \subseteq Z\}$, $\breve{Q} = \cup Q = T_0$ and $\theta(\breve{Q}) = \theta(T_0) = P_0$. Accordingly, we get

$$T_{0} = P_{0} \cup \bigcup_{\substack{T \in \hat{Q}(T_{0})\\ Q \in Q(T_{1})}} \theta(T) = P_{0} \cup P_{1} \cup P_{2} \cup P_{3} \cup P_{4} \cup P_{5} \cup P_{6},$$

$$T_{1} = P_{0} \cup \bigcup_{\substack{T \in \hat{Q}(T_{1})\\ Q \in Q(T_{2})}} \theta(T) = P_{0} \cup P_{2} \cup P_{3} \cup P_{4} \cup P_{5} \cup P_{6},$$

$$T_{3} = P_{0} \cup \bigcup_{\substack{T \in \hat{Q}(T_{2})\\ Q \in Q(T_{3})}} \theta(T) = P_{0} \cup P_{4} \cup P_{5} \cup P_{6},$$

$$T_{4} = P_{0} \cup \bigcup_{\substack{T \in \hat{Q}(T_{3})\\ Q \in Q(T_{4})}} \theta(T) = P_{0} \cup P_{5} \cup P_{6},$$

$$T_{5} = P_{0} \cup \bigcup_{\substack{T \in \hat{Q}(T_{4})\\ Q \in Q(T_{5})}} \theta(T) = P_{0} \cup P_{5}.$$

$$(3.1)$$

Firstly, let us determine that in which conditions Q is XI- semilattice of unions. Then, we specify the greatest lower bounds of the each semilattice Q_t in Q for $t \in T_0$. Since $T_0 = P_0 \cup P_1 \cup P_2 \cup P_3 \cup P_4 \cup P_5 \cup P_6$ and P_i (i = 0, 1, ..., 6)

are pairwise disjoint sets, by Equation (3.1) and the definition of Q_t , we have

$$Q_{t} = \begin{cases} Q & ,t \in P_{0} \\ \{T_{0}, T_{2}\} & ,t \in P_{1} \\ \{T_{0}, T_{1}\} & ,t \in P_{2} \\ \{T_{0}, T_{1}, T_{2}\} & ,t \in P_{3} \\ \{T_{0}, T_{1}, T_{2}, T_{3}\} & ,t \in P_{4} \\ \{T_{0}, T_{1}, T_{2}, T_{3}, T_{4}, T_{6}\} & ,t \in P_{5} \\ \{T_{0}, T_{1}, T_{2}, T_{3}, T_{4}, T_{5}\} & ,t \in P_{6} \end{cases}$$

$$(3.2)$$

So, by Equation (3.2) and the definition of $N(Q, Q_t)$,

$$N(Q,Q_t) = \begin{cases} \emptyset & ,t \in P_0 \\ \{T_2,T_3,T_4,T_5,T_6\} & ,t \in P_1 \\ \{T_1,T_3,T_4,T_5,T_6\} & ,t \in P_2 \\ \{T_3,T_4,T_5,T_6\} & ,t \in P_3 \\ \{T_3,T_4,T_5,T_6\} & ,t \in P_4 \\ \{T_6\} & ,t \in P_5 \\ \{T_5\} & ,t \in P_6 \end{cases}$$
(3.3)

are obtained. From the Equation (3.3) the greatest lower bounds for each semilattice Q_t , we get

$$\cup N(Q, Q_t) = \Lambda(Q, Q_t) = \begin{cases} \emptyset & ,t \in P_0 \\ T_2 & ,t \in P_1 \\ T_1 & ,t \in P_2 \\ T_3 & ,t \in P_3 \\ T_3 & ,t \in P_4 \\ T_6 & ,t \in P_5 \\ T_5 & ,t \in P_6 \end{cases}$$
(3.4)

If $t \in P_0$ then $\Lambda(D, D_t) = \emptyset \notin D$. So, it must be $P_0 = \emptyset$. Thus using the

Equations (3.1) and (3.4), we have

$$\begin{split} t \in T_{6} = P_{5} \Rightarrow T_{6} = \Lambda(Q, Q_{t}), \quad (3.5) \\ t \in T_{5} = P_{6} \Rightarrow T_{5} = \Lambda(Q, Q_{t}), \\ t \in T_{4} = P_{5} \cup P_{6} \Rightarrow \Rightarrow \Lambda(Q, Q_{t}) \in \{T_{5}, T_{6}\} \\ \Rightarrow T_{4} = T_{5} \cup T_{6} = \bigcup_{t \in T_{4}} \Lambda(Q, Q_{t}), \\ t \in T_{3} = P_{4} \cup P_{5} \cup P_{6} \Rightarrow \Rightarrow \Lambda(Q, Q_{t}) \in \{T_{3}, T_{5}, T_{6}\} \\ \Rightarrow T_{3} = T_{3} \cup T_{5} \cup T_{6} = \bigcup_{t \in T_{3}} \Lambda(Q, Q_{t}), \\ t \in T_{2} = P_{1} \cup P_{3} \cup P_{4} \cup P_{5} \cup P_{6} \Rightarrow \Lambda(Q, Q_{t}) = \{T_{2}, T_{3}, T_{5}, T_{6}\} \\ \Rightarrow T_{2} = T_{2} \cup T_{3} \cup T_{5} \cup T_{6} = \bigcup_{t \in T_{2}} \Lambda(Q, Q_{t}), \\ t \in T_{1} = P_{2} \cup P_{3} \cup P_{4} \cup P_{5} \cup P_{6} \Rightarrow \Lambda(Q, Q_{t}) = \{T_{1}, T_{3}, T_{5}, T_{6}\} \\ \Rightarrow T_{1} = T_{1} \cup T_{3} \cup T_{5} \cup T_{6} = \bigcup_{t \in T_{1}} \Lambda(Q, Q_{t}), \\ t \in T_{0} = T_{2} \cup T_{1} \Rightarrow \Lambda(Q, Q_{t}) = \{T_{1}, T_{2}, T_{3}, T_{5}, T_{6}\} \\ \Rightarrow T_{0} = T_{1} \cup T_{2} \cup T_{3} \cup T_{5} \cup T_{6} = \bigcup_{t \in T_{0}} \Lambda(Q, Q_{t}). \end{split}$$

Lemma 3.1. *Q* is XI- semilattice of unions if and only if $T_6 \cap T_5 = \emptyset$.

Proof. \Rightarrow : Let Q be a XI- semilattice of unions. Then $P_0 = \emptyset$ by Equation (3.4) and $T_6 = P_5$, $T_5 = P_6$ by Equation (3.1), we have $T_6 \cap T_5 = \emptyset$ since P_6 and P_5 are pairwise disjoint sets.

 \Leftarrow : Let $T_6 \cap T_5 = \emptyset$ holds. From Equation (3.1), we obtain $P_0 = \emptyset$. Using the Equations (3.4) and (3.5), we have Q is XI- semilattice of unions.

Lemma 3.2. If Q is XI- semilattice of unions then

$$\{T_6, T_5, (T_1 \cap T_2) \setminus T_4, T_1 \setminus T_2, T_2 \setminus T_1, X \setminus T_0\}$$

is a partition of the set X.

Proof. Considering the (3.1) with $P_0 = \emptyset$, straightforward to see that $\{T_6, T_5, (T_1 \cap T_2) \setminus T_4, T_1 \setminus T_2, T_2 \setminus T_1, X \setminus T_0\}$ is a partition of the set X.

Lemma 3.3. Let $G = \{T_6, T_5, T_4, T_3, T_2, T_1\}$ be a generating set of Q. Then the elements T_6, T_5, T_3, T_2, T_1 are nonlimiting elements of the sets $\ddot{G}_{T_6}, \ddot{G}_{T_5},$ $\ddot{G}_{T_3}, \ddot{G}_{T_2}, \ddot{G}_{T_1}$ respectively and T_4 is a limiting element of the set \ddot{G}_{T_4} . *Proof.* Definition of D_T' , yield the following equations

$$\ddot{G}_{T_6} = \{T_6\},
\ddot{G}_{T_5} = \{T_5\},
\ddot{G}_{T_4} = \{T_6, T_5, T_4\},
\ddot{G}_{T_3} = \{T_6, T_5, T_4, T_3\},
\ddot{G}_{T_2} = \{T_6, T_5, T_4, T_3, T_2\},
\ddot{G}_{T_1} = \{T_6, T_5, T_4, T_3, T_1\}.$$
(3.6)

Now we get the sets $l(\ddot{G}_{T_i}, T_i), i \in \{1, 2, \dots, 6\}$,

$l(\ddot{G}_{T_6}, T_6)$	=	$\cup (\ddot{G}_{T_6} \setminus \{T_6\})$	$= \emptyset,$
$l(\ddot{G}_{T_5}, T_5)$	=	$\cup (\ddot{G}_{T_5} \setminus \{T_5\})$	$= \emptyset,$
$l(\ddot{G}_{T_4}, T_4)$	=	$\cup (\ddot{G}_{T_4} \setminus \{T_4\})$	$=T_4,$
$l(\ddot{G}_{T_3}, T_3)$	=	$\cup (\ddot{G}_{T_3} \setminus \{T_3\})$	$=T_4,$
$l(\ddot{G}_{T_2}, T_2)$	=	$\cup (\ddot{G}_{T_2} \setminus \{T_2\})$	$=T_3,$
$l(\ddot{G}_{T_1}, T_1)$	=	$\cup (\ddot{G}_{T_1} \setminus \{T_1\})$	$=T_3.$

Then we find nonlimiting and limiting elements of \ddot{G}_{T_i} , $i \in \{1, 2, \ldots, 6\}$.

$$T_{6} \backslash l(G_{T_{6}}, T_{6}) = T_{6} \backslash \emptyset = T_{6} \neq \emptyset$$

$$T_{5} \backslash l(\ddot{G}_{T_{5}}, T_{5}) = T_{5} \backslash \emptyset = T_{5} \neq \emptyset$$

$$T_{4} \backslash l(\ddot{G}_{T_{4}}, T_{4}) = T_{4} \backslash T_{4} = \emptyset$$

$$T_{3} \backslash l(\ddot{G}_{T_{3}}, T_{3}) = T_{3} \backslash T_{4} \neq \emptyset$$

$$T_{2} \backslash l(\ddot{G}_{T_{2}}, T_{2}) = T_{2} \backslash T_{3} \neq \emptyset$$

$$T_{1} \backslash l(\ddot{G}_{T_{1}}, T_{1}) = T_{1} \backslash T_{3} \neq \emptyset$$

So, the elements T_6, T_5, T_3, T_2, T_1 are nonlimiting elements of the sets $\ddot{G}_{T_6}, \ddot{G}_{T_5}, \ddot{G}_{T_3}, \ddot{G}_{T_2}, \ddot{G}_{T_1}$ respectively and T_4 is a limiting element of the set \ddot{G}_{T_4} .

Note that, if $\alpha \in B_X(D)$ is regular then from the definition of the set $B_X(D)$ there is a mapping f from X into D such that

$$\alpha = \bigcup_{x \in D} \left(\{x\} \times f(x) \right)$$

Thus, $f(x) \in D$. Besides, we know that $\alpha \in B_X(D)$ is regular iff $V(D, \alpha)$ is XI- semilattice of unions where $V(D, \alpha) = V[\alpha]$. For this reason, there is a XI- subsemilattice $D' \subset D$ and $V(D, \alpha) = D' = V(D', \alpha)$. So we can write α as,

$$\alpha = \bigcup_{T \in V[\alpha]} (Y_T^{\alpha} \times T) = \bigcup_{T \in D'} (Y_T^{\alpha} \times T).$$

In particular, let us determine the properties of regular elements $\alpha \in B_X(D)$ such that $\alpha = \bigcup_{i=0}^6 (Y_i^{\alpha} \times T_i)$ where $V(D, \alpha) = Q$.

Theorem 3.4. Let $\alpha \in B_X(D)$ be a quasinormal representation of the form

$$\alpha = \bigcup_{i=0}^{6} (Y_i^{\alpha} \times T_i)$$

such that $V(D, \alpha) = Q$. $\alpha \in B_X(D)$ is a regular iff for some complete α isomorphism $\varphi : Q \to D' \subseteq D$, the following conditions are satisfied:

$$\begin{split} Y_{6}^{\alpha} &\supseteq \varphi(T_{6}), \\ Y_{5}^{\alpha} &\supseteq \varphi(T_{5}), \\ Y_{6}^{\alpha} &\cup Y_{5}^{\alpha} &\cup Y_{4}^{\alpha} &\cup Y_{3}^{\alpha} \supseteq \varphi(T_{3}), \\ Y_{6}^{\alpha} &\cup Y_{5}^{\alpha} &\cup Y_{4}^{\alpha} &\cup Y_{3}^{\alpha} &\cup Y_{2}^{\alpha} \supseteq \varphi(T_{2}), \\ Y_{6}^{\alpha} &\cup Y_{5}^{\alpha} &\cup Y_{4}^{\alpha} &\cup Y_{3}^{\alpha} &\cup Y_{1}^{\alpha} \supseteq \varphi(T_{1}), \\ Y_{1}^{\alpha} &\cap \varphi(T_{1}) \neq \emptyset, \ Y_{2}^{\alpha} \cap \varphi(T_{2}) \neq \emptyset, \\ Y_{3}^{\alpha} &\cap \varphi(T_{3}) \neq \emptyset. \end{split}$$

$$(3.7)$$

Proof. Let $G = \{T_6, T_5, T_4, T_3, T_2, T_1\}$ be a generating set of Q.

⇒: Since $\alpha \in B_X(D)$ is regular and $V(D, \alpha) = Q$, Q is XI-semilattice of unions. From Theorem 2.1, there exits a complete isomorphism $\varphi : Q \to D'$. Considering Theorem 2.1 (a), $\varphi(T)\alpha = T$ for all $T \in V(D, \alpha)$. So, φ is complete α -isomorphism. Applying the Theorem 2.1 (b) we have

$$\begin{split} Y_6^{\alpha} &\supseteq \varphi(T_6), \ Y_5^{\alpha} &\supseteq \varphi(T_5), \\ Y_6^{\alpha} &\cup Y_5^{\alpha} &\cup Y_4^{\alpha} \supseteq \varphi(T_4), \\ Y_6^{\alpha} &\cup Y_5^{\alpha} &\cup Y_4^{\alpha} &\cup Y_3^{\alpha} \supseteq \varphi(T_3), \\ Y_6^{\alpha} &\cup Y_5^{\alpha} &\cup Y_4^{\alpha} &\cup Y_3^{\alpha} &\cup Y_2^{\alpha} \supseteq \varphi(T_2), \\ Y_6^{\alpha} &\cup Y_5^{\alpha} &\cup Y_4^{\alpha} &\cup Y_3^{\alpha} &\cup Y_1^{\alpha} \supseteq \varphi(T_1). \end{split}$$
(3.8)

By using φ is complete α -isomorphism, $Y_6^{\alpha} \cup Y_5^{\alpha} \cup Y_4^{\alpha} \supseteq \varphi(T_6) \cup \varphi(T_5) = \varphi(T_4)$ always ensured. Moreover, considering that the elements T_6, T_5, T_3, T_2, T_1 are nonlimiting elements of the sets $\ddot{G}_{T_6}, \ddot{G}_{T_5}, \ddot{G}_{T_3}, \ddot{G}_{T_2}, \ddot{G}_{T_1}$ respectively and using the Theorem 2.1 (c), following properties

$$\begin{array}{l}Y_{1}^{\alpha} \cap \varphi(T_{1}) \neq \emptyset, \ Y_{2}^{\alpha} \cap \varphi(T_{2}) \neq \emptyset, \\Y_{3}^{\alpha} \cap \varphi(T_{3}) \neq \emptyset, \ Y_{5}^{\alpha} \cap \varphi(T_{5}) \neq \emptyset, \ Y_{6}^{\alpha} \cap \varphi(T_{6}) \neq \emptyset\end{array}$$
(3.9)

are obtained. From $Y_6^{\alpha} \supseteq \varphi(T_6)$ and $Y_5^{\alpha} \supseteq \varphi(T_5)$, $Y_6^{\alpha} \cap \varphi(T_6) \neq \emptyset$ and $Y_5^{\alpha} \cap \varphi(T_5) \neq \emptyset$ always ensured. Thus there is no need the condition $Y_6^{\alpha} \cup Y_5^{\alpha} \cup Y_4^{\alpha} \supseteq \varphi(T_4)$, $Y_5^{\alpha} \cap \varphi(T_5) \neq \emptyset$ and $Y_6^{\alpha} \cap \varphi(T_6) \neq \emptyset$. Therefore, there exist an α -isomorphism φ which holds given conditions.

 $\Leftarrow: V(D, \alpha)$ is XI-semilattice of unions, because of $V(D, \alpha)$ is equal to Q. Let $\varphi: Q \to D'$ be a complete α -isomorphism which holds given conditions. So, by Equation (3.7), satisfying Theorem 2.1 (a) - (c). Remembering that T_4 is a limiting element of the set \ddot{G}_{T_4} , we constitute the set

Regular Elements of the Complete Semigroups of...

$$\begin{split} B\left(T_{4}\right) &= \left\{Z \in \ddot{G}_{T_{4}} \mid Y_{Z}^{\alpha} \cap \varphi(T_{4}) \neq \emptyset\right\}. \text{ If } Y_{6}^{\alpha} \cap \varphi(T_{4}) = \emptyset \text{ we have} \\ & Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \ \supseteq \varphi(T_{6}) \cup \varphi(T_{5}) = \varphi(T_{4}) \end{split}$$

So, we get $Y_5^{\alpha} \supseteq \varphi(T_4) \supseteq \varphi(T_6)$, it contradicts with $Y_6^{\alpha} \supseteq \varphi(T_6)$. Therefore, $T_6 \in B(T_4)$. Similarly, if $Y_5^{\alpha} \cap \varphi(T_4) = \emptyset$ then $Y_6^{\alpha} \supseteq \varphi(T_4) \supseteq \varphi(T_5)$. This result in a contradiction since $Y_6^{\alpha} \supseteq \varphi(T_6)$. Therefore, $T_5 \in B(T_4)$. We have $\cup B(T_4) = T_6 \cup T_5 = T_4$. By Theorem 2.1, we conclude that α is the regular element of the $B_X(D)$.

Now we calculate the number of regular elements α , satisfying the hypothesis of Theorem 3.4.

Let $\alpha \in B_X(D)$ be a regular element which is quasinormal representation of the form $\alpha = \bigcup_{i=0}^{6} (Y_i^{\alpha} \times T_i)$ and $V(D, \alpha) = Q$. Then there exist a complete α isomorphism $\varphi : Q \to D' = \{\varphi(T_6), \ldots, \varphi(T_1), \varphi(T_0)\}$ satisfying the hypothesis of Theorem 3.4. So, $\alpha \in R_{\varphi}(Q, D')$. We will denote $\varphi(T_i) = \overline{T}_i$, $i = 0, 1, \ldots 6$. Diagram of the $D' = \{\overline{T}_6, \overline{T}_5, \overline{T}_4, \overline{T}_3, \overline{T}_2, \overline{T}_1, \overline{T}_0\}$ is shown in Figure 3.2.

Then the Equation (3.7) reduced to below equation.

$$\begin{split} Y_{6}^{\alpha} &\supseteq T_{6}, \\ Y_{5}^{\alpha} &\supseteq \overline{T}_{5}, \\ Y_{6}^{\alpha} &\cup Y_{5}^{\alpha} &\cup Y_{4}^{\alpha} &\cup Y_{3}^{\alpha} \supseteq \overline{T}_{3}, \\ Y_{6}^{\alpha} &\cup Y_{5}^{\alpha} &\cup Y_{4}^{\alpha} &\cup Y_{3}^{\alpha} &\cup Y_{2}^{\alpha} \supseteq \overline{T}_{2}, \\ Y_{6}^{\alpha} &\cup Y_{5}^{\alpha} &\cup Y_{4}^{\alpha} &\cup Y_{3}^{\alpha} &\cup Y_{1}^{\alpha} \supseteq \overline{T}_{1}, \\ Y_{1}^{\alpha} &\cap \overline{T}_{1} \neq \emptyset, \ Y_{2}^{\alpha} &\cap \overline{T}_{2} \neq \emptyset, \\ Y_{3}^{\alpha} &\cap \overline{T}_{3} \neq \emptyset. \end{split}$$

$$(3.10)$$

Moreover, the image of the sets in Lemma 3.2 under the α - isomorphism φ

$$\overline{T}_6, \overline{T}_5, (\overline{T}_1 \cap \overline{T}_2) \backslash \overline{T}_4, \overline{T}_1 \backslash \overline{T}_2, \overline{T}_2 \backslash \overline{T}_1, X \backslash \overline{T}_0$$

are also pairwise disjoint sets and union of these sets equals X.

Lemma 3.5. For every $\alpha \in R_{\varphi}(Q, D')$, there exists an ordered system of disjoint mappings which is defined $\{\overline{T}_6, \overline{T}_5, (\overline{T}_1 \cap \overline{T}_2) \setminus \overline{T}_4, \overline{T}_2 \setminus \overline{T}_1, \overline{T}_1 \setminus \overline{T}_2, X \setminus \overline{T}_0\}$. Also, ordered systems are different which correspond to different binary relations.

Proof. Let $f_{\alpha}: X \to D$ be a mapping satisfying the condition $f_{\alpha}(t) = t\alpha$ for all $t \in X$. We consider the restrictions of the mapping f_{α} as $f_{0\alpha}$, $f_{1\alpha}$, $f_{2\alpha}$, $f_{3\alpha}$, $f_{4\alpha}$ and $f_{5\alpha}$ on the sets $\overline{T}_6, \overline{T}_5, (\overline{T}_1 \cap \overline{T}_2) \setminus \overline{T}_4, \overline{T}_1 \setminus \overline{T}_2, \overline{T}_2 \setminus \overline{T}_1, X \setminus \overline{T}_0$ respectively.

Now, considering the definition of the sets Y_i^{α} , (i = 0, 1, ..., 6) together with the Equation (3.10) we have

$$\begin{split} t \in \overline{T}_6 \Rightarrow t \in Y_6^{\alpha} \Rightarrow t\alpha = T_6 \Rightarrow f_{0\alpha}(t) = T_6, \ \forall t \in \overline{T}_6. \\ t \in \overline{T}_5 \Rightarrow t \in Y_5^{\alpha} \Rightarrow t\alpha = T_5 \Rightarrow f_{1\alpha}(t) = T_5, \ \forall t \in \overline{T}_5. \\ t \in (\overline{T}_1 \cap \overline{T}_2) \backslash \overline{T}_4 \Rightarrow t \in \overline{T}_1 \cap \overline{T}_2 \subseteq Y_6^{\alpha} \cup Y_5^{\alpha} \cup Y_4^{\alpha} \cup Y_3^{\alpha} \\ \Rightarrow t\alpha \in \{T_6, T_5, T_4, T_3\} \\ \Rightarrow f_{2\alpha}(t) \in \{T_6, T_5, T_4, T_3\}, \ \forall t \in (\overline{T}_1 \cap \overline{T}_2) \backslash \overline{T}_4. \end{split}$$

Since $Y_3^{\alpha} \cap \overline{T}_3 \neq \emptyset$, there is an element $t_1 \in Y_3^{\alpha} \cap \overline{T}_3$. Then $t_1 \alpha = T_3$ and $t_1 \in \overline{T}_3$. If $t_1 \in \overline{T}_4$ then $t_1 \in \overline{T}_4 = \overline{T}_5 \cup \overline{T}_6 \subseteq Y_5^{\alpha} \cup Y_6^{\alpha}$. Therefore, $t_1 \alpha = \{T_6, T_5\}$ which is in contradiction with the equality $t_1 \alpha = T_3$. So $f_{2\alpha}(t_1) = T_3$ for some $t_1 \in \overline{T}_3 \setminus \overline{T}_4$.

$$\begin{split} t \in \overline{T}_2 \backslash \overline{T}_1 &\Rightarrow t \in \overline{T}_2 \subseteq Y_6^\alpha \cup Y_5^\alpha \cup Y_4^\alpha \cup Y_3^\alpha \cup Y_2^\alpha \\ &\Rightarrow t\alpha \in \{T_6, T_5, T_4, T_3, T_2\} \\ &\Rightarrow f_{3\alpha}(t) \in \{T_6, T_5, T_4, T_3, T_2\}, \ \forall t \in \overline{T}_2 \backslash \overline{T}_1. \end{split}$$

Also, since $Y_2^{\alpha} \cap \overline{T}_2 \neq \emptyset$ there is an element $t_2, t_2\alpha = T_2$ and $t_2 \in \overline{T}_2$. If $t_2 \in \overline{T}_1$ then $t_2 \in \overline{T}_1 \subseteq Y_6^{\alpha} \cup Y_5^{\alpha} \cup Y_4^{\alpha} \cup Y_3^{\alpha} \cup Y_1^{\alpha}$. Therefore, $t_2\alpha \in \{T_6, T_5, T_4, T_3, T_1\}$ which is in contradiction with the equality $t_2\alpha = T_2$. So $f_{3\alpha}(t_2) = T_2$ for some $t_2 \in \overline{T}_2 \setminus \overline{T}_1$.

$$t \in \overline{T}_1 \setminus \overline{T}_2 \Rightarrow t \in \overline{T}_1 \subseteq Y_6^{\alpha} \cup Y_5^{\alpha} \cup Y_4^{\alpha} \cup Y_3^{\alpha} \cup Y_1^{\alpha}$$

$$\Rightarrow t\alpha \in \{T_6, T_5, T_4, T_3, T_1\}$$

$$\Rightarrow f_{4\alpha}(t) \in \{T_6, T_5, T_4, T_3, T_1\}, \ \forall t \in \overline{T}_1 \setminus \overline{T}_2$$

Similarly, $t_3 \in Y_1^{\alpha} \cap \overline{T}_1$ since $Y_1^{\alpha} \cap \overline{T}_1 \neq \emptyset$. Then $t_3 \alpha = T_1$ and $t_3 \in \overline{T}_1$. If $t_3 \in \overline{T}_2$ then $t_3 \in Y_6^{\alpha} \cup Y_5^{\alpha} \cup Y_4^{\alpha} \cup Y_3^{\alpha} \cup Y_2^{\alpha}$. So $t_3 \alpha \in \{T_6, T_5, T_4, T_3, T_2\}$. However this contradicts to $t_3 \alpha = T_1$. So $f_{4\alpha}(t_3) = T_1$ for some $t_3 \in \overline{T}_1 \setminus \overline{T}_2$.

$$t \in X \setminus \overline{T}_0 \Rightarrow t \in X = \bigcup_{i=0}^{6} Y_i^{\alpha} \Rightarrow t\alpha \in Q \Rightarrow f_{5\alpha}(t) \in Q, \ \forall t \in X \setminus \overline{T}_0.$$

Therefore, for every binary relation $\alpha \in R_{\varphi}(Q, D')$ there exists an ordered system $(f_{0\alpha}, f_{1\alpha}, f_{2\alpha}, f_{3\alpha}, f_{4\alpha}, f_{5\alpha})$.

On the other hand, suppose that for $\alpha, \beta \in R_{\varphi}(Q, D')$ which $\alpha \neq \beta$, be obtained $f_{\alpha} = (f_{0\alpha}, f_{1\alpha}, f_{2\alpha}, f_{3\alpha}, f_{4\alpha}, f_{5\alpha})$ and $f_{\beta} = (f_{0\beta}, f_{1\beta}, f_{2\beta}, f_{3\beta}, f_{4\beta}, f_{5\beta})$. If $f_{\alpha} = f_{\beta}$, we get

$$f_{\alpha} = f_{\beta} \Rightarrow f_{\alpha}(t) = f_{\beta}(t), \ \forall t \in X \Rightarrow t\alpha = t\beta, \ \forall t \in X \Rightarrow \alpha = \beta$$

which contradicts to $\alpha \neq \beta$. Therefore, different binary relations's ordered systems are different.

Lemma 3.6. Let $f = (f_0, f_1, f_2, f_3, f_4, f_5)$ be ordered system from X in the semilattice D such that

$$\begin{split} f_{0}:&\overline{T}_{6} \to \{T_{6}\},\\ f_{1}:&\overline{T}_{5} \to \{T_{5}\},\\ f_{2}:&(\overline{T}_{2} \cap \overline{T}_{1}) \setminus \overline{T}_{4} \to \{T_{6}, T_{5}, T_{4}, T_{3}\} \ and \ f_{2}(a) = T_{3}, \ \exists \ a \in \overline{T}_{3} \setminus \overline{T}_{4},\\ f_{3}:&\overline{T}_{2} \setminus \overline{T}_{1} \to \{T_{6}, T_{5}, T_{4}, T_{3}, T_{2}\} and \ f_{3}(b) = T_{2}, \ \exists \ b \in \overline{T}_{2} \setminus \overline{T}_{1},\\ f_{4}:&\overline{T}_{1} \setminus \overline{T}_{2} \to \{T_{6}, T_{5}, T_{4}, T_{3}, T_{1}\} and \ f_{4}(c) = T_{1}, \ \exists \ c \in \overline{T}_{1} \setminus \overline{T}_{2},\\ f_{5}:& X \setminus \overline{T}_{0} \to Q. \end{split}$$

Then $\beta = \bigcup_{x \in X} (\{x\} \times f(x)) \in B_X(D)$ is regular and φ is a complete β -isomorphism. So $\beta \in R_{\varphi}(Q, D')$.

Proof. First we see that $V(D,\beta) = Q$. Considering $V(D,\beta) = \{Y\beta \mid Y \in D\}$, the properties of f mapping, $\overline{T}_i\beta = \bigcup_{x\in\overline{T}_i} x\beta$ and $D' \subseteq D$, we get

$$\begin{split} T_6 &\in Q \Rightarrow \overline{T}_6 \beta = T_6 \Rightarrow T_6 \in V(D,\beta), \\ T_5 &\in Q \Rightarrow \overline{T}_5 \beta = T_5 \Rightarrow T_5 \in V(D,\beta), \\ T_4 &\in Q \Rightarrow \overline{T}_4 \beta = \overline{T}_5 \beta \cup \overline{T}_6 \beta = T_5 \cup T_6 = T_4 \Rightarrow T_4 \in V(D,\beta), \\ T_3 &\in Q \Rightarrow \overline{T}_3 \beta = \left(\left(\overline{T}_3 \setminus \overline{T}_4\right) \cup \overline{T}_4\right) \beta = T_6 \cup T_5 \cup T_4 \cup T_3 = T_3 \Rightarrow T_3 \in V(D,\beta), \\ T_2 &\in Q \Rightarrow \overline{T}_2 \beta = T_6 \cup T_5 \cup T_4 \cup T_3 \cup T_2 = T_2 \Rightarrow T_2 \in V(D,\beta), \\ T_1 &\in Q \Rightarrow \overline{T}_1 \beta = T_6 \cup T_5 \cup T_4 \cup T_3 \cup T_1 = T_1 \Rightarrow T_1 \in V(D,\beta), \\ T_0 &\in Q \Rightarrow \overline{T}_0 \beta = T_6 \cup T_5 \cup T_4 \cup T_3 \cup T_2 \cup T_1 = T_0 \Rightarrow T_0 \in V(D,\beta). \end{split}$$

Hence, $Q \subseteq V(D, \beta)$. Also,

$$Z \in V(D,\beta) \Rightarrow Z = Y\beta, \ \exists Y \in D$$

$$\Rightarrow Z = Y\beta = \bigcup_{y \in Y} y\beta = \bigcup_{y \in Y} f(y) \in Q$$

since $f(y) \in Q$ and Q is closed set-theoretic union. Therefore, $V(D,\beta) \subseteq Q$. Hence $V(D,\beta) = Q$. Moreover, $\beta = \bigcup_{T \in V(X^*,\beta)} (Y_T^\beta \times T)$ is a quasinormal representation since $\emptyset \notin Q$. From the definition of β , $f(x) = x\beta$ for all $x \in X$. It is easily seen that $V(X^*,\beta) = V(D,\beta) = Q$. We get $\beta = \bigcup_{i=0}^6 (Y_i^\beta \times T_i)$. On the other hand

$$\begin{split} t \in \overline{T}_6 \Rightarrow t\beta &= f(t) = T_6 \Rightarrow t \in Y_6^\beta \Rightarrow \overline{T}_6 \subseteq Y_6^\beta, \\ t \in \overline{T}_5 \Rightarrow t\beta &= f(t) = T_5 \Rightarrow t \in Y_5^\beta \Rightarrow \overline{T}_5 \subseteq Y_5^\beta, \\ t \in \overline{T}_3 &= \left(\overline{T}_3 \backslash \overline{T}_4\right) \cup \overline{T}_5 \cup \overline{T}_6 \Rightarrow t\beta &= f(t) \in \{T_6, T_5, T_4, T_3\} \\ &\Rightarrow t \in Y_6^\beta \cup Y_5^\beta \cup Y_4^\beta \cup Y_3^\beta \\ &\Rightarrow \overline{T}_3 \subseteq Y_6^\beta \cup Y_5^\beta \cup Y_4^\beta \cup Y_3^\beta, \\ t \in \overline{T}_2 &= \overline{T}_6 \cup \overline{T}_5 \cup \left(\overline{T}_2 \backslash \overline{T}_1\right) \cup \left((\overline{T}_2 \cap \overline{T}_1) \backslash \overline{T}_4\right) \Rightarrow t\beta &= f(t) \in \{T_6, T_5, T_4, T_3, T_2\} \\ &\Rightarrow t \in Y_6^\beta \cup Y_5^\beta \cup Y_4^\beta \cup Y_3^\beta \cup Y_2^\beta \\ &\Rightarrow \overline{T}_2 \subseteq Y_6^\beta \cup Y_5^\beta \cup Y_4^\beta \cup Y_3^\beta \cup Y_2^\beta, \\ t \in \overline{T}_1 &= \overline{T}_6 \cup \overline{T}_5 \cup \left(\overline{T}_1 \backslash \overline{T}_2\right) \cup \left((\overline{T}_2 \cap \overline{T}_1) \backslash \overline{T}_4\right) \Rightarrow t\beta &= f(t) \in \{T_6, T_5, T_4, T_3, T_1\} \\ &\Rightarrow t \in Y_6^\beta \cup Y_5^\beta \cup Y_4^\beta \cup Y_3^\beta \cup Y_1^\beta, \\ &\Rightarrow \overline{T}_5 \subseteq Y_6^\beta \cup Y_5^\beta \cup Y_4^\beta \cup Y_3^\beta \cup Y_1^\beta. \end{split}$$

Also, by using $f_2(a) = T_3$, $\exists a \in \overline{T}_3 \setminus \overline{T}_4$, we obtain $Y_3^\beta \cap \overline{T}_3 \neq \emptyset$. Similarly, from properties of f_3 , f_4 , be seen $Y_2^\beta \cap \overline{T}_2 \neq \emptyset$ and $Y_1^\beta \cap \overline{T}_1 \neq \emptyset$. Therefore, the mapping $\varphi : Q \to D' = \{\overline{T}_0, \overline{T}_1, \dots, \overline{T}_6\}$ to be defined $\varphi(T_i) = \overline{T}_i$ satisfy the conditions in (3.10) for β . Hence φ is complete β -isomorphism because of $\varphi(T)\beta = \overline{T}\beta = T$, for all $T \in V(D, \beta)$. By Theorem 3.4, $\beta \in R_{\varphi}(Q, D')$. \Box

Therefore, there is one to one correspondence between the elements of $R_{\varphi}(Q, D')$ and the set of ordered systems of disjoint mappings.

Theorem 3.7. Let X be a finite set and Q be XI – semilattice. If

$$D' = \left\{ \overline{T}_6, \overline{T}_5, \overline{T}_4, \overline{T}_3, \overline{T}_2, \overline{T}_1, \overline{T}_0 \right\}$$

is α - isomorphic to Q and $\Omega(Q) = m_0$, then

$$R(D') = m_0 \cdot 4 \cdot \left(4^{\left|\overline{T}_3 \setminus \overline{T}_4\right|} - 3^{\left|\overline{T}_3 \setminus \overline{T}_4\right|}\right) \cdot 4^{\left|\left(\overline{T}_2 \cap \overline{T}_1\right) \setminus \overline{T}_3\right|} \cdot \left(5^{\left|\overline{T}_2 \setminus \overline{T}_1\right|} - 4^{\left|\overline{T}_2 \setminus \overline{T}_1\right|}\right) \cdot \left(5^{\left|\overline{T}_1 \setminus \overline{T}_2\right|} - 4^{\left|\overline{T}_1 \setminus \overline{T}_2\right|}\right) \cdot 7^{\left|X \setminus \overline{T}_0\right|}$$

Proof. Lemma 3.5 and Lemma 3.6 show us that the number of the ordered system of disjoint mappings $(f_{0\alpha}, f_{1\alpha}, f_{2\alpha}, f_{3\alpha}, f_{4\alpha}, f_{5\alpha})$ is equal to $|R_{\varphi}(Q, D')|$, which $\alpha \in B_X(D)$ regular element, $V(D, \alpha) = Q$ and $\varphi : Q \to D'$ is a complete α -isomorphism.

From the Theorem 2.2, the number of the mappings $f_{0\alpha}$, $f_{1\alpha}$, $f_{2\alpha}$, $f_{3\alpha}$, $f_{4\alpha}$ and $f_{5\alpha}$ are respectively as

$$1,1, \left(4^{\left|\overline{T}_{3}\setminus\overline{T}_{4}\right|} - 3^{\left|\overline{T}_{3}\setminus\overline{T}_{4}\right|}\right) \cdot 4^{\left|\left(\overline{T}_{2}\cap\overline{T}_{1}\right)\setminus\overline{T}_{3}\right|}, \\ \left(5^{\left|\overline{T}_{2}\setminus\overline{T}_{1}\right|} - 4^{\left|\overline{T}_{2}\setminus\overline{T}_{1}\right|}\right), \left(5^{\left|\overline{T}_{1}\setminus\overline{T}_{2}\right|} - 4^{\left|\overline{T}_{1}\setminus\overline{T}_{2}\right|}\right), 7^{\left|X\setminus\overline{T}_{0}\right|}.$$

Now, we determine the number of regular elements

$$|R_{\varphi}(Q,D')| = \left(4^{\left|\overline{T}_{3}\setminus\overline{T}_{4}\right|} - 3^{\left|\overline{T}_{3}\setminus\overline{T}_{4}\right|}\right) \cdot 4^{\left|\left(\overline{T}_{2}\cap\overline{T}_{1}\right)\setminus\overline{T}_{3}\right|}.$$
$$\left(5^{\left|\overline{T}_{2}\setminus\overline{T}_{1}\right|} - 4^{\left|\overline{T}_{2}\setminus\overline{T}_{1}\right|}\right) \cdot \left(5^{\left|\overline{T}_{1}\setminus\overline{T}_{2}\right|} - 4^{\left|\overline{T}_{1}\setminus\overline{T}_{2}\right|}\right) \cdot 7^{\left|X\setminus\overline{T}_{0}\right|}.$$

The number of all automorphisms of the semilattice Q is q = 4. These are

$$id_Q = \begin{pmatrix} T_6 & T_5 & T_4 & T_3 & T_2 & T_1 & T_0 \\ T_6 & T_5 & T_4 & T_3 & T_2 & T_1 & T_0 \end{pmatrix},$$

$$\tau_1 = \begin{pmatrix} T_6 & T_5 & T_4 & T_3 & T_2 & T_1 & T_0 \\ T_5 & T_6 & T_4 & T_3 & T_2 & T_1 & T_0 \end{pmatrix},$$

$$\tau_2 = \begin{pmatrix} T_6 & T_5 & T_4 & T_3 & T_2 & T_1 & T_0 \\ T_6 & T_5 & T_4 & T_3 & T_1 & T_2 & T_0 \end{pmatrix},$$

$$\tau_3 = \begin{pmatrix} T_6 & T_5 & T_4 & T_3 & T_2 & T_1 & T_0 \\ T_5 & T_6 & T_4 & T_3 & T_1 & T_2 & T_0 \end{pmatrix}.$$

Therefore by using Theorem 2.3,

$$R(D') = m_0 \cdot 4 \cdot \left(4^{|\overline{T}_3 \setminus \overline{T}_4|} - 3^{|\overline{T}_3 \setminus \overline{T}_4|} \right) \cdot 4^{|(\overline{T}_2 \cap \overline{T}_1) \setminus \overline{T}_3|} \cdot \left(5^{|\overline{T}_2 \setminus \overline{T}_1|} - 4^{|\overline{T}_2 \setminus \overline{T}_1|} \right) \cdot \left(5^{|\overline{T}_1 \setminus \overline{T}_2|} - 4^{|\overline{T}_1 \setminus \overline{T}_2|} \right) \cdot 7^{|X \setminus \overline{T}_0|}$$

is obtained.

Example 1. Let $X = \{1, 2, 3, 4, 5\}$ and

$$D = \{\{1\}, \{2\}, \{1,2\}, \{1,2,3\}, \{1,2,3,4\}, \{1,2,3,5\}, \{1,2,3,4,5\}\}.$$

D is an X-semilattice of unions since D is closed the union of sets. Moreover D satisfies the conditions in (3.1) and $\{1\} \cap \{2\} = \emptyset$. Then, D is an XI-semilattice. Let D = Q. Therefore $|\Omega(Q)| = 1$. Besides, the number of all automorphisms of Q is q = 4. By using Theorem 3.7

$$|R(D)| = 4 \cdot \left(4^{|\overline{T}_{3} \setminus \overline{T}_{4}|} - 3^{|\overline{T}_{3} \setminus \overline{T}_{4}|}\right) 4^{|(\overline{T}_{2} \cap \overline{T}_{1}) \setminus \overline{T}_{3}|} \\ \left(5^{|\overline{T}_{2} \setminus \overline{T}_{1}|} - 4^{|\overline{T}_{2} \setminus \overline{T}_{1}|}\right) \cdot \left(5^{|\overline{T}_{1} \setminus \overline{T}_{2}|} - 4^{|\overline{T}_{1} \setminus \overline{T}_{2}|}\right) \cdot 7^{|X \setminus \overline{T}_{0}|} \\ = 4 \cdot (4^{1} - 3^{1}) \cdot 4^{0} \cdot (5^{1} - 4^{1}) \cdot (5^{1} - 1^{1}) \cdot 7^{0} \\ = 4$$

is obtained.

References

- [1] K.A. Zaretskii, The representation of ordered semigroups by binary relations, *Izv. Vyssh. Uchebn. Zaved. Matematika*, 13(6) (1959), 48-50.
- [2] K.A. Zaretskii, The semigroup of binary relations, Mat. Sb., 61(1963), 291-305.
- [3] G. Markowsky, Idempotents and product representations with applications to the semigroup of binary relations, *Semigroup Forum*, 5(1972), 95-119.
- [4] B.M. Schein, Regular elements of the semigroup of all binary relations, Semigroup Forum, 13(1976), 95-102.
- [5] Ya. Diasamidze, *Complete Semigroups of Binary Relations*, Ajara Publ. House, Batumi, (2000).
- [6] Ya. Diasamidze, Complete semigroups of binary relations, Journal of Mathematical Sciences, 117(4) (2003), 4271-4319.
- Ya. Diasamidze, Sh. Makharadze, G. Partenadze and O. Givradze, On finite X – semilattices of unions, *Journal of Mathematical Sciences*, 141(4) (2007), 1134-1181.
- [8] Ya. Diasamidze and Sh. Makharadze, Complete semigroups of binary relations defined by X- semilattices of unions, Journal of Mathematical Sciences, 166(5) (2010), 615-633.
- [9] Y.I. Diasamidze and S. Ve Makharadze, Complete Semigroups of Binary Relations, Kriter Yayınevi, İstanbul, (2013).
- [10] B. Albayrak, I.Y. Diasamidze and N. Aydın, Regular elements of the complete semigroups of binary relations of the class $\sum_{7}(X, 8)$, Int. Jour. of Pure and Applied Mathematics, 86(1) (2013), 199-216.