Gen. Math. Notes, Vol. 18, No. 1, September, 2013, pp.24-36
ISSN 2219-7184; Copyright © ICSRS Publication, 2013
www.i-csrs.org
Available free online at http://www.geman.in

The Category of Q-P Quantale Modules

Shaohui Liang
Department of Mathematics
Xi'an University of Science and Technology
Xi'an 710054, P. R. China
E-mail: Liangshaohui1011@163.com

(Received: 7-6-13 / Accepted: 22-7-13)

Abstract

In this paper, we introduce the concept of $Q-P$ quantale modules. A series of categorical properties of $Q-P$ quantale modules are studied, we prove that the category of $Q-P$ quantale modules is not only pointed and connected, but also completed.

Keywords: Q-P quantale modules; Morphisms; Category.

1 Introduction

The first lattice analogy of a ring module was introduced in[1]by A.Joyal and M.Tierney. The idea of quantale module appeared in work[2] of S.Abransky and S.Vickers. With the development of the theory of quantale, many people have stuied this structure. The paper[3]investigate the relations of quantale module with quantale matrix. Every prime give wise to a strong module, which be generalized for prime matrix. Every quantale module can be viewed as a matrix.Pedre Resende [4] defined a sup-lattice bimorphism which are equivalent to Galois connections, and study their relation to quantale modules. Jan paska [5] introduced concept of Girard bimodules and studied of properties of Girard bimodules. In the paper [6][7]discussed a series of properties of Hilbert modules, and gave some important resultes on Hilbert modules. So, the quantale theory has aroused great interests of many scholar and experts, a great deal of new ideas and applications of quantale have been proposed in twenty years ([6-17]).

In this paper, we introduced the concept of Q-P quantale modules, and study deeply and systemly the categorical properties of Q-P quantale modules, some interesting categorical properties of Q-P quantale modules are obtained.

For facts concerning category in general we refer to [18].
The paper is organized as follows. In section 1, we recall the notions of quantale modules and introduce the definition of Q-P quantale modules. In section 2, we prove that the category of the Q-P quantale modules is pointed and connected.The equalizer, the coequlizer, the product, the coproduct, the mutiplipullback in the category of Q-P quantale modules are studied.we prove that the each projection of the category of $\mathrm{Q}-\mathrm{P}$ quantale modules is retract, and the category of Q-P quantale modules has kernel and cokernel.

2 Preliminaries

Definition 2.1 (10) A quantale is a complete lattice Q with an associative binary operation\&satisfying: a \& $\left(\sup _{\alpha} b_{\alpha}\right)=\sup _{\alpha}\left(a \& b_{\alpha}\right)$ and $\left(\sup _{\alpha} b_{\alpha}\right) \&$ $a=\sup _{\alpha}\left(b_{\alpha} \& a\right)$ for all $a \in Q$ and $b_{\alpha} \subseteq Q$.

Definition 2.2 (6) Let Q be a quantale, a left module over Q (briefly, a left Q-module)is a sup-lattice M, together with a module action $\cdot: Q \times M \longrightarrow M$ satisfying
(1) $\left(\bigvee_{i \in I} a_{i}\right) \cdot m=\bigvee_{i \in I}\left(a_{i} \cdot m\right)$;
(2) $a \cdot\left(\bigvee_{j \in J} m_{j}\right)=\bigvee_{j \in J}\left(a \cdot m_{j}\right)$;
(3) $(a \& b) \cdot m=a \cdot(b \cdot m)$. for all $a, b, a_{i} \in Q, m, m_{j} \in M$.

The right modules are defined analogously.
If Q is untial and $e \cdot m=m$ for every $m \in M$, we say that M is unital.
Definition 2.3 (10) Let M and N are Q-quantales. A mapping $f: M \longrightarrow N$ is said to be module homomorphism if $f\left(\bigvee_{i \in I} m_{i}\right)=\bigvee_{i \in I} f\left(m_{i}\right)$, and $f(a \cdot m)=$ $a \cdot f(m)$ for all $a \in Q, m, m_{i} \in M$.

Definition 2.4 Let Q, P be a quantale, a Q-P quantale module over Q, P (briefly, a Q-P-module) is a complete lattice M, together with a mapping T : $Q \times M \times P \longrightarrow M$ satisfies the following conditions:
(1) $T\left(\bigvee_{i \in I} a_{i}, m, \bigvee_{j \in J} b_{j}\right)=\bigvee_{i \in I} \bigvee_{j \in J} T\left(a_{i}, m, b_{j}\right)$;
(2) $T\left(a,\left(\underset{k \in K}{ } m_{k}\right), b\right)=\bigvee_{k \in K} T\left(a, m_{k}, b\right)$;
(3) $T(a \& b, m, c \& d)=T(a, T(b, m, c), d)$.
for all $a_{i}, a, b \in Q, b_{j}, c, d \in P, m_{k}, m \in M$.
We shall denote the Q-P quantale module M over Q, P by (M, T).

Definition 2.5 Let $\left(M_{1}, T_{1}\right)$ and $\left(M_{2}, T_{2}\right)$ are Q - P quantale modules. A mapping $f: M_{1} \longrightarrow M_{2}$ is saied to be $Q-P$ quantale module homomorphism if satisfying
(1) $f\left(\bigvee_{i \in I} m_{i}\right)=\bigvee_{i \in I} f\left(m_{i}\right)$;
(2) $f\left(T_{1}(a, m, b)\right)=T_{2}(a, f(m), b)$ for all $a \in Q, b \in P, m_{i} \in M$.

Definition 2.6 Let (M, T_{M}) be Q-P quantale module over Q and P, N is the subset of M, N is said to be submodule of M if N is closed under arbitrary join and $T_{M}(a, n, b) \in N$ for all $a \in Q, b \in P, n \in N$.

3 Equalizer, Intersection, Product and Pull Back

Definition 3.1 Let $\mathbf{Q}_{\mathbf{Q}} \mathbf{M o d}_{\mathbf{P}}$ be the category whose objects are the $Q-P$ quantale modules, and morphisms are $f: M \longrightarrow N$ which is the $Q-P$ quantale module homomorphism,i.e.,
$\mathcal{O} b\left({ }_{\mathbf{Q}} \mathbf{M o d}_{\mathbf{P}}\right)=\{M: M$ is $Q-P$ quantale modules $\}$,
$\operatorname{Mor}\left(\mathbf{Q}_{\mathbf{M o d}}^{\mathbf{P}}\right)=\{f: M \longrightarrow N$ is the $Q-P$ quantale modules homorphism $\}$ Hence, the category $\mathbf{Q}_{\mathbf{M o d}}^{\mathbf{P}}$ is a concrete category.

Theorem 3.2 Every constant morphism of the category $\mathbf{Q}_{\mathbf{Q}} \mathbf{M o d}_{\mathbf{P}}$ is exactly a zero morphism.

Proof: Let Q, P are quantales, M and N are double quantale modules, the mapping $\mathrm{f}: \mathrm{M} \longrightarrow \mathrm{N}$ is a morphism of Q-P quantale modules. Suppose $\operatorname{id}_{M}: \mathrm{M} \longrightarrow \mathrm{N}$ is a identity morphism, $0_{M}: \mathrm{M} \longrightarrow \mathrm{M}$ is a zero morphism. Since foid ${ }_{M}=\mathrm{fo} 0_{M}$, then foid ${ }_{M}(m)=\mathrm{fo} 0_{M}(m)$ for all $\mathrm{m} \in \mathrm{M}$. Thus $\mathrm{f}(\mathrm{m})=0_{N}$ for all $\mathrm{m} \in \mathrm{M}$.

Conversely, If $f(m)=0_{N}$ for all $m \in M$, then for $=$ fos for all $r, s \in \operatorname{Hom}(M, N)$.
Theorem 3.3 Every coconstant morphism of the category $\mathbf{Q}_{\mathbf{Q}} \mathbf{M o d}_{\mathbf{P}}$ is exactly a zero morphism.

Theorem 3.4 The category $\mathbf{Q}_{\mathbf{Q}} \operatorname{Mod}_{\mathbf{P}}$ is a pointed.
Theorem 3.5 (1) The category $\mathbf{Q}_{\mathbf{Q}} \operatorname{Mod}_{\mathbf{P}}$ has terminal objects.
(2) The category $\mathbf{Q}_{\mathbf{Q}} \operatorname{Mod}_{\mathbf{P}}$ has initial objects.
(3) The category $\mathbf{Q}_{\mathbf{Q}} \mathbf{M o d}_{\mathbf{P}}$ is connected.

Proof: (1) Let Q,P are quantales, $\left(\mathrm{M}, \mathrm{T}_{M}\right)$ is a Q-P quantale module. It is easy to prove that $\left(\{0\}, T_{\{0\}}\right)$ is a Q-P quantale module, define mapping f : $\mathrm{M} \longrightarrow\{0\}$ such that $\mathrm{f}(\mathrm{m})=0$ for all $\mathrm{m} \in \mathrm{M}$, then

$$
\begin{aligned}
& f\left(\bigvee_{i \in I} m_{i}\right)=0=\bigvee_{i \in I} 0=\bigvee_{i \in I} f\left(m_{i}\right) \\
& f\left(T_{M}(a, m, b)=0=T_{\{0\}}(a, 0, b)=T_{\{0\}}(a, f(m), b) \text { for all } \mathrm{a} \in \mathrm{Q}, \mathrm{~b} \in \mathrm{P}, \mathrm{~m}, \mathrm{~m}_{i} \in \mathrm{M}\right.
\end{aligned}
$$ therefore the mapping f is a Q-P quantale module morphism.

(2) Let M is a $\mathrm{Q}-\mathrm{P}$ quantale module, $\mathrm{f}:\{0\} \longrightarrow M$ is a Q-P quantale module morphism, then $\mathrm{f}(0)=0_{M}$. We can see that f is only morphism in $\operatorname{Hom}(\{0\}, \mathrm{M})$, therefore the category $\mathbf{Q}_{\mathbf{M o d}}^{\mathbf{P}} \mathbf{~ h a s ~ i n i t i a l ~ o b j e c t s . ~}$
(3)It is clearly.

Theorem 3.6 The category $\mathbf{Q}_{\mathbf{Q}} \mathbf{M o d}_{\mathbf{P}}$ has equalizers.

Proof: Let Q, P are quantales, $\left(M, T_{M}\right)$ and $\left(N, T_{N}\right)$ are $\mathrm{Q}-\mathrm{P}$ quantale modules, f and $\mathrm{g}: \mathrm{M} \longrightarrow \mathrm{N}$ are Q-P quantale module morphisms. Suppose $\mathrm{E}=\{m \in M \mid f(m)=g(m)\}$, then $\mathrm{f}\left(0_{M}\right)=0_{N}=\mathrm{g}\left(0_{M}\right)$, implies $0_{M} \in E \neq \emptyset$.

For all $\left\{m_{i} \mid i \in I\right\} \subseteq E, a \in Q, b \in P, \mathrm{~m} \in \mathrm{E}$,
$f\left(\bigvee_{i \in I} m_{i}\right)=\bigvee_{i \in I} f\left(m_{i}\right)=\bigvee_{i \in I} g\left(m_{i}\right)=g\left(\bigvee_{i \in I} m_{i}\right)$, i.e., $\bigvee_{i \in I} m_{i} \in E$;
$f\left(T_{M}(a, m, b)\right)=T_{N}(a, f(m), b)=T_{N}(a, g(m), b)=g\left(T_{M}(a, m, b)\right)$, i.e.,
$T_{M}(a, m, b) \in E$, then E is a submodule of M , therefore the inclusion mapping $\mathrm{i}: \mathrm{E} \hookrightarrow \mathrm{M}$ is a Q-P quantale module morphism. We will show (E, i) is equalizer of f and g,
(1) It is clear know that foi=goi;
(2) Let E^{\prime} is a $\mathrm{Q}-\mathrm{P}$ quantale module, mapping e : $E^{\prime} \longrightarrow M$ is a Q-P quantale module morphism, and satisfy fo e=goe. Define mapping $\bar{e}: E^{\prime} \longrightarrow E$ such that $\bar{e}(x)=e(x)$ for all $x \in E^{\prime}$. Since $f(e(x))=g(e(x))$ for all $x \in E^{\prime}$, then \bar{e} is well defined.
$\operatorname{Let}\left\{x_{i} \mid i \in I\right\} \subseteq E^{\prime}, a \in Q, b \in P, x \in E^{\prime}$, then $\bar{e}\left(\bigvee_{i \in I} x_{i}\right)=e\left(\bigvee_{i \in I} x_{i}\right)=$ $\bigvee_{i \in I} e\left(x_{i}\right)=\bigvee_{i \in I} \bar{e}\left(x_{i}\right) ;$
$\bar{e}\left(T_{M}(a, x, b)\right)=e\left(T_{M}(a, x, b)\right)=T_{M}(a, e(x), b)=T_{M}(a, \bar{e}(x), b)$, thus \bar{e} is a Q-P quantale module morphism. For all $x \in E^{\prime}$, we have that $(i \circ \bar{e})(x)=$ $i(\bar{e}(x))=i(e(x))=e(x)$, then $e=i \circ \bar{e}$.

It's easy to prove that there is a only one Q-P quantale module morphism from E^{\prime} to E with $e(x)=i \circ \bar{e}(x)$ for all $x \in E^{\prime}$,therefore(E, i) is the equalizer of f and g.

Theorem 3.7 The category $\mathbf{Q}_{\mathbf{Q}} \mathbf{M o d}_{\mathbf{P}}$ has multiple equalizers.

Proof: Let Q, P are quantales, $\left(M, T_{M}\right)$ and $\left(N, T_{N}\right)$ are Q-P quantale modules, $\left\{h_{j} \mid M \longrightarrow N\right\}_{j \in J}$ are Q-P quantale module morphisms. Suppose $E=\left\{m \in M \mid \forall j_{1}, j_{2} \in J, h_{j_{1}}(m)=h_{j_{2}}(m)\right\}$. Since $h_{j_{1}}\left(0_{M}\right)=0_{N}=$ $h_{j_{2}}\left(0_{M}\right)$ for all $j_{1}, j_{2} \in J$, then $0_{M} \in E \neq \emptyset$.
$\operatorname{Let}\left\{m_{i} \mid i \in I\right\} \subseteq E, a \in Q, b \in P, m \in E, j_{1}, j_{2} \in J$, we have
$h_{j_{1}}\left(\bigvee_{i \in I} m_{i}\right)=\bigvee_{i \in I} h_{j_{1}}\left(m_{i}\right)=\bigvee_{i \in I} h_{j_{2}}\left(m_{i}\right)=h_{j_{2}}\left(\bigvee_{i \in I} m_{i}\right)$, i.e., $\bigvee_{i \in I} m_{i} \in E$;
$h_{j_{1}}\left(T_{M}(a, m, b)=T_{N}\left(a, h_{j_{1}}(m), b\right)=T_{N}\left(a, h_{j_{2}}(m), b\right)=h_{j_{2}}\left(T_{M}(a, m, b)\right), i . e .\right.$, $T_{M}(a, m, b) \in E$,
thus the set E is a submodule of M , therefore the mapping i : $\mathrm{E} \hookrightarrow M$ is a Q-P quantale module morphism,

We will prove that (E, i) is the multiple equalizer of $\left\{h_{j}\right\}_{j \in J}$.
(1) It' is clearly that $h_{j_{1}} \circ i=h_{j_{2}} \circ i$ for all $j_{1}, j_{2} \in J$;
(2) Suppose ($E^{\prime}, T_{E^{\prime}}$ is a Q-P quantale module, mapping $e: E^{\prime} \longrightarrow M$ is a Q-P quantale module morphism, and satisfy $h_{j_{1}} \circ e=h_{j_{2}} \circ e$ for all $j_{1}, j_{2} \in J$. Define $\bar{e}: E^{\prime} \longrightarrow E, \bar{e}(x)=e(x)$ forall $x \in E^{\prime}$. Because $h_{j_{1}}(e(x))=h_{j_{2}}(e(x))$ for all $x \in E^{\prime}, j_{1}, j_{2} \in J$,thus $\bar{e}(x) \in E$ for all $x \in E^{\prime}$, therefore \bar{e} is well defined.

Let $\left\{x_{i} \mid i \in I\right\} \subseteq E^{\prime}, a \in Q, b \in P, x \in E^{\prime}$, then
$\bar{e}\left(\bigvee_{i \in I} x_{i}\right)=e\left(\bigvee_{i \in I} x_{i}\right)=\bigvee_{i \in I} e\left(x_{i}\right)=\bigvee_{i \in I} \bar{e}\left(x_{i}\right) ;$
$\bar{e}\left(T_{E^{\prime}}(a, x, b)\right)=e\left(T_{E^{\prime}}(a, x, b)\right)=T_{M}(a, e(x), b)=T_{M}(a, \bar{e}(x), b)$,
thus the mapping \bar{e} is Q-P quantale module morphism. Since $(i \circ \bar{e})(x)=$ $i(\bar{e}(x))=i(e(x))=e(x)$, then $e=i \circ \bar{e} f o r a l l x \in E^{\prime}$.It's easy to prove that there is a only one Q-P quantale module morphism from E'to E with $e(x)=i \circ \bar{e}(x)$ for all $x \in E^{\prime}$, therefore (E, i) is the equalizer of $\left\{h_{j}\right\}_{j \in J}$.

Theorem 3.8 The category $\mathbf{Q}_{\mathbf{Q}} \mathbf{M o d}_{\mathbf{P}}$ has intersection.

Proof: Let $\left(A_{i}, m_{i}\right)_{i \in I}$ is a family submodules of B,i.e.,there is a morphism $m_{i}: A_{i} \longrightarrow B$ for all $i \in I$. It's easy to prove that m_{i} is a homomorphism for all $i \in I$, then $m_{i}\left(A_{i}\right)$ is a submodule of B , and $m_{i}\left(A_{i}\right)$ is isomorphic to A_{i}.

Let mapping m_{i}^{o} is the corestrict of m_{i} on $m_{i}(A),\left(m_{i}^{o}\right)^{-1}$ is the inverse mapping of $m_{i}^{o}, D=\bigcap_{i \in I} m_{i}\left(A_{i}\right)$, It's evident that D is the submodule of B ,thus D is the submodule of A_{i} for all $i \in I$. Suppose $d: D \longrightarrow B$ is a inclusion map. We will prove that (D, d) is the intersection of $\left(A_{i}, m_{i}\right)_{i \in I}$ in the category. In fact, we have that
(1) Let $d_{i}=\left.\left(m_{i}^{\circ}\right)^{-1}\right|_{D}: D \longrightarrow A_{i}$ is the restrict of $\left(m_{i}^{o}\right)^{-1}$ on D for all $i \in I$, then d_{i} is the Q-P quantale module, and $d=m_{i} \circ d_{i}$ for all $i \in I$.
(2) Let $g: C \longrightarrow B$ and $g_{i}: C \longrightarrow A_{i}$ are the Q-P quantale modlue morphisms such that $g=m_{i} \circ g_{i}$ for all $i \in I$, then $g_{i}(C)$ is the submodule of D for all $i \in I$, thus $g(C)=m_{i}\left(g_{i}(C)\right)$ is the submodule of $m_{i}\left(A_{i}\right)$, we know that $g(C)$ is the submodule of D. Suppose f is the restrict of g on D, then f is a Q-P quantale module morphism, and $d \circ f=g$. It's easy to prove that there is a only one morphism such that $d \circ f=g$, therefore (D, d) is the intersection of $\left(A_{i}, m_{i}\right)_{i \in I}$ in the category.

Theorem 3.9 The category $\mathbf{Q}_{\mathbf{Q}} \mathbf{M o d}_{\mathbf{P}}$ has products.

Proof: Let $\left\{\left(M_{k}, T_{k}\right) \mid k \in K\right.$ is a family Q-P quantale modules, define $T: Q \times \prod_{k \in K} M_{k} \times Q \longrightarrow \prod_{k \in K} M_{k}$ such that $T(a, m, b)=\left(T_{k}\left(a, m_{k}, b\right)\right)_{k \in K}$ for all $a \in Q, b \in P, m=\left(m_{k}\right)_{k \in K}$, then
(1) $\prod_{k \in K} M_{k}$ is a complete lattice with pointwise.
(2) $\prod_{k \in K} M_{k}$ is a Q-P quantale module. In fact, for all $\left\{a_{i} \mid i \in I\right\} \subseteq Q$, $\left\{b_{h} \mid h \in H\right\} \subseteq P,\left\{m^{(j)}=\left(m_{k}^{(j)}\right)_{k \in K} \mid j \in J\right\} \subseteq \prod_{k \in K} M_{k}, a, b \in Q, c, d \in$ $P, m=\left(m_{k}\right)_{k \in K} \in \prod_{k \in K} M_{k}, k \in K$, we have that

$$
\left(T\left(\bigvee_{i \in I} a_{i}, m, \bigvee_{h \in H} b_{h}\right)\right)_{k}=T_{k}\left(\bigvee_{i \in I} a_{i}, m_{k}, \bigvee_{h \in H} b_{h}\right)=\bigvee_{i \in I} \bigvee_{h \in H} T_{k}\left(a_{i}, m_{k}, b_{h}\right)
$$

$$
=\bigvee_{i \in I} \bigvee_{h \in H} T\left(a_{i}, m, b_{h}\right)_{k}
$$

$=\left(\underset{i \in I}{\bigvee} \underset{h \in H}{ } T\left(a_{i}, m, b_{h}\right)\right)_{k}$;

$$
\begin{aligned}
&\left(T\left(a, \bigvee_{j \in J} m^{(j)}, c\right)\right)_{k}=T_{k}\left(a,\left(\bigvee_{j \in J} m^{(j)}\right)_{k}, c\right)=T_{k}\left(a, \bigvee_{j \in J} m_{k}^{(j)}, c\right)=\bigvee_{j \in J} T_{k}\left(a, m_{k}^{(j)}, c\right)= \\
& \bigvee_{j \in J}\left(T\left(a, m^{(j)}, c\right)\right)_{k} ; \\
&=(T(a \& b, m, c \& d))_{k}=T_{k}\left(a \& b, m_{k}, c \& d\right)=T_{k}\left(a, T_{k}\left(b, m_{k}, c\right), d\right)=T_{k}\left(a,\left(T(b, m, c)_{k}, d\right)\right) \\
& \quad\quad(3) \text { Let } k \in K, c), d)_{k} . \\
& \text { define } \pi_{k}: \prod_{k \in K} M_{k} \longrightarrow M_{k} \text { is a project,i.e., } \pi_{k}(m)=m_{k} \text { for }
\end{aligned}
$$ all $m=\left(m_{k}\right)_{k \in K} \in \prod_{k \in K} M_{k}$. Suppose $\left\{m^{(i)}=\left(m_{k}^{(i)}\right)_{k \in K} \mid i \in I\right\} \subseteq \prod_{k \in K} M_{k}$, $a \in Q, b \in P, m=\left(m_{k}\right)_{k \in K} \in \prod_{k \in K} M_{k}$, then

$\pi_{k}\left(\bigvee_{i \in I} m^{(i)}\right)=\left(\bigvee_{i \in I} m^{(i)}\right)_{k}=\bigvee_{i \in I} m_{k}^{(i)}=\bigvee_{i \in I} \pi_{k}\left(m^{(i)}\right) ;$
$\pi_{k}(T(a, m, b)) \stackrel{i \in I}{=}(T(a, m, b))_{k}=T_{k}\left(a, m_{k}, b\right)=T_{k}\left(a, \pi_{k}(m), b\right)$,
therefore $\pi_{k}: \prod_{k \in K} M_{k} \longrightarrow M_{k}$ is a Q-P quantale module morphism for all $k \in K$.
(4) we will prove that $\left(\prod_{k \in K} M_{k},\left\{\pi_{k}\right\}_{k \in K}\right)$ is the products of $\left\{M_{k} \mid k \in K\right\}$.

Let $\left(M, T_{M}\right)$ is the a Q-P quantale module, $f_{k}: M \longrightarrow M_{k}$ for all $k \in K$, define $\bar{f}: M \longrightarrow M_{k}$ such that $(\bar{f}(m))_{k}=f_{k}(m)$ for all $m \in M, k \in K$. For all $a \in Q, b \in Q, m \in M,\left\{m_{i} \mid i \in I\right\} \subseteq M, k \in K$, we have
$\left(\bar{f}\left(\bigvee_{i \in I} m_{i}\right)\right)_{k}=f_{k}\left(\bigvee_{i \in I} m_{i}\right)=\bigvee_{i \in I} f_{k}\left(m_{i}\right)=\bigvee_{i \in I}\left(\bar{f}\left(m_{i}\right)\right)_{k}=\left(\bigvee_{i \in I} \bar{f}\left(m_{i}\right)\right)_{k}$,
$\bar{f}\left(T_{\underline{M}}(a, m, b)\right)_{k}=f_{k}\left(T_{M}(a, m, b)\right)=T_{k}\left(a, f_{k}(m), b\right)=T_{k}\left(a,(\bar{f}(m))_{k}, b\right)=$ $\left(T_{M}(a, \bar{f}(m), b)\right)_{k}$,

Therefore \bar{f} is a Q-P quantale module morphism,It's clear that $\pi_{k} \circ \bar{f}=f_{k}$ for all $k \in K$. It's easy to prove that there is a only one morphism satisfy the condition. Hence $\left(\prod_{k \in K} M_{k},\left\{\pi_{k}\right\}_{k \in K}\right)$ is the products of $\left\{M_{k} \mid k \in K\right\}$.

Theorem 3.10 The category $\mathbf{Q}_{\mathbf{M}}$ Mod $_{\mathbf{P}}$ has coproducts.

Proof: Let $\left\{\left(M_{k}, T_{k}\right) \mid k \in K\right\}$ is a family Q-P quantale modules. By the theorem 2.7, we can see that $\left(\prod_{k \in K} M_{k}, T\right)$ is a Q-P quantale modules.

For all $k \in K$, we have that
(1) For all $\left\{m_{i} \mid i \in I\right\} \subseteq M_{k}$, then $\left(\delta_{k}\left(\bigvee_{i \in I} m_{i}\right)\right)_{k}=\bigvee_{i \in I} m_{i}=\bigvee_{i \in I}\left(\delta_{k}\left(m_{i}\right)\right)_{k}=$ $\left(\bigvee_{i \in I} \delta_{k}\left(m_{i}\right)\right)_{k}$,

For all $l \in K$, and $l \neq k,\left(\delta_{k}\left(\bigvee_{i \in I} m_{i}\right)\right)_{l}=0_{M_{l}}=\bigvee_{i \in I} 0_{M_{l}}=\bigvee_{i \in I}\left(\delta_{k}\left(m_{i}\right)\right)_{l}=$ $\left(\bigvee_{i \in I} \delta_{k}\left(m_{i}\right)\right)_{l}$,
i.e., $\delta_{k}\left(\bigvee_{i \in I} m_{i}\right)=\bigvee_{i \in I} \delta_{k}\left(m_{i}\right)$;
(2)For all $a, b \in Q, b \in P, m \in M_{k}$, we have
$\left(\delta_{k}\left(T_{k}(a, m, b)\right)_{k}=T_{k}(a, m, b)=T_{k}\left(a,\left(\delta_{k}(m)\right)_{k}, b\right)=\left(T\left(a, \delta_{k}(m), b\right)\right)_{k}\right.$,
For all $l \in K$, and $l \neq k$, we have $\left(\delta_{k}\left(T_{k}(a, m, b)\right)\right)_{l}=0_{M_{l}}=T_{l}\left(a, 0_{M_{l}}, b\right)=$ $T_{l}\left(a,\left(\delta_{k}(m)\right)_{l}, b\right)=\left(T\left(a, \delta_{k}(m), b\right)\right)_{l}$, i.e., $\delta_{k}\left(T_{k}(a, m, b)\right)=T\left(a, \delta_{k}(m), b\right)$.

Therefore δ_{k} is a Q-P quantale module morphism for all $k \in K$.
Let M is a $\mathrm{Q}-\mathrm{P}$ quantale module, mapping $f_{k}: M_{k} \longrightarrow M$ is a Q-P quantale module morphism for all $k \in K$. Define $f: \prod_{k \in K} M_{k} \longrightarrow M$ such that $f(x)=$ $\underset{k \in K}{ } f_{k}\left(x_{k}\right)$ with $x \in \prod_{k \in K} M_{k}$, then for all $\left\{x^{(i)} \mid i \in I\right\} \subseteq \prod_{k \in K} M_{k}, a \in Q, b \in$ $P, x \in \prod_{k \in K} M_{k}$,

$$
\begin{aligned}
& f\left(\bigvee_{i \in I} x^{(i)}\right)=\bigvee_{k \in K} f_{k}\left(\left(\bigvee_{i \in I} x^{(i)}\right)_{k}\right)=\bigvee_{k \in K} f_{k}\left(\bigvee_{i \in I} x_{k}^{(i)}\right)=\bigvee_{k \in K}\left(\bigvee_{i \in I} f_{k}\left(x_{k}^{(i)}\right)\right) \\
= & \bigvee_{i \in I} \bigvee_{k \in K} f_{k}\left(x_{k}^{(i)}\right)=\bigvee_{i \in I} f\left(x^{(i)}\right) ; \\
& f(T(a, x, b))=\bigvee_{k \in K} f_{k}\left(T(a, x, b)_{k}\right)=\bigvee_{k \in K} f_{k}\left(T_{k}\left(a, x_{k}, b\right)\right)=\bigvee_{k \in K}\left(T_{M}\left(a, f_{k}\left(x_{k}\right), b\right)\right) \\
= & T_{M}\left(a, \bigvee_{k \in K} f_{k}\left(x_{k}\right), b\right)=T_{M}(a, f(x), b),
\end{aligned}
$$

thus f is a Q-P quantale module morphism.
Since $\left(f \circ \delta_{k}\right)(x)=f\left(\delta_{k}(x)\right)=\bigvee_{l \in K} f_{l}\left(\delta_{k}(x)\right)_{l}=f_{k}(x)$ for all $k \in K, x \in M_{k}$, then $f \circ \delta_{k}=f_{k}$ for all $k \in K$.

It's easy to prove that there is a only one morphism satisfy the condition. Thus $\left(\prod_{k \in K} M_{k}, T\right)$ is the coproducts of $\left\{\left(M_{k}, T_{k}\right) \mid k \in K\right\}$.

Definition 3.11 Let Q, P are quantales, $\left(M, T_{M}\right)$ is a Q - P quantale module, $R \subseteq M \times M$. The set R is said to be a congruence of $Q-P$ quantale module on the M. If R satisfy
(1) R is an equivalence relation on M.
(2) If $\left(m_{i}, n_{i}\right) \in R$ for all $i \in I$, then $\left(\underset{i \in I}{ } m_{i}, \vee_{i \in I} n_{i}\right) \in R$;
(3) $\operatorname{If}(m, n) \in R$, then $\left(T_{M}(a, m, b), T_{M}(a, n, b)\right) \in R$ for all $a \in Q, b \in P$.

Let Q, P is a quantale, M is a $Q-P$ quantale module, R is a congrence of $Q-P$ quantale module on M, define order on M / R is that $[m] \leq[n]$ if and only if $[m \vee n]=[n]$ for all $[m],[n] \in M / R$.

Theorem 3.12 Let Q, P are quantales, M is a $Q-P$ quantale module, R is a congruence of Q - P quantale module on M, define $T_{M / R}: Q \times M / R \times$ $P \longrightarrow M / R$ such that $T_{M / R}(a,[m], b)=\left[T_{M}(a, m, b)\right]$ for all $a \in Q, b \in P$, $[m] \in M / R$, then $\left(M / R, T_{M / R}\right)$ is a $Q-P$ quantale module, and $\pi: m \mapsto[m]:$ $M \longrightarrow M /$ Ris a $Q-P$ quantale module morphism.

Proof: We will prove that " \leq "is a partial order on M / R, and $T_{M / R}$ is well defined. In fact, for all $[m],[n],[l] \in M / R$,
(i) It's clearly that $[m] \leq[m]$;
(ii) Let $[m] \leq[n],[n] \leq[m]$, then $[m \vee n]=[n]$ and $[n \vee m]=[m]$, thus $[m]=[n] ;$
(iii) $\operatorname{Let}[m] \leq[n],[n] \leq[l]$, then $[m \vee n]=[n]$ and $[n \vee l]=[l]$, therefore $[m \vee$ $l]=[m \vee(n \vee l)]=[(m \vee n) \vee(n \vee l)]=[n \vee l]=[l] ;$

If $\left[m_{1}\right]=\left[m_{2}\right]$, then $\left(m_{1}, m_{2}\right) \in R,\left(T_{M}(a, m, b), T_{M}(a, n, b)\right) \in R$ for all $a \in Q, b \in P$,i.e., $\left[T_{M}(a, m, b)\right]=\left[T_{M}(a, n, b)\right]$, thus $T_{M / R}$ is well defined.
(2)We will prove that $(M / R, \leq)$ is a complete lattice. Let $\left\{\left[m_{i}\right] \mid i \in I\right\} \subseteq$ M / R, we have
(i) Since $\left[m_{i} \vee\left(\bigvee_{i \in I} m_{i}\right)\right]=\left[\bigvee_{i \in I} m_{i}\right]$ for all $i \in I$, then $\left[m_{i}\right] \leq\left[\bigvee_{i \in I} m_{i}\right]$;
(ii) Let $[m] \in M / R$ and $\left[m_{i}\right] \leq[m]$ for all $i \in I$, then $\left[m_{i} \vee m\right]=[m]$ for all $i \in I$, therefore $\left[\left(\bigvee_{i \in I} m_{i}\right) \vee m\right]=\left[\bigvee_{i \in I}\left(m_{i} \vee m\right)\right]=[m]$, i.e., $\left[\bigvee_{i \in I} m_{i}\right] \leq[m]$.

Thus $\bigvee_{i \in I}^{M / R}\left[m_{i}\right]=\left[\bigvee_{i \in I} m_{i}\right]$.
(3) For all $\left\{a_{i} \mid i \in I\right\} \subseteq Q,\left\{b_{j} \mid j \in J\right\} \subseteq P,\left\{\left[m_{l}\right] \mid l \in H\right\} \subseteq M / R$, $a, b \in Q, c, d \in P,[m] \in M / R$, we have that
(i) $T_{M / R}\left(\bigvee_{i \in I} a_{i},[m], \bigvee_{j \in J} b_{j}\right)=\left[T_{M}\left(\bigvee_{i \in I} a_{i}, m, \bigvee_{j \in J} b_{j}\right)\right]=\left[\bigvee_{i \in I} \bigvee_{j \in J} T_{M}\left(a_{i}, m, b_{j}\right)\right]=$ $\bigvee_{i \in I} \bigvee_{j \in J} T_{M}\left[a_{i}, m, b_{j}\right]=\underset{i \in I}{\bigvee} \bigvee_{j \in J} T_{M / R}\left(a_{i},[m], b_{j}\right) ;$
(ii) $T_{M / R}\left(a,\left(\underset{j \in J}{\bigvee}\left[m_{j}\right]\right), c\right)=T_{M / R}\left(a,\left[\bigvee_{j \in J} m_{j}\right], c\right)=\left[T_{M}\left(a,\left(\bigvee_{j \in J} m_{j}\right), c\right)\right]$ $=\left[\bigvee_{j \in J} T_{M}\left(a, m_{j}, c\right)\right]=\bigvee_{j \in J}\left[T_{M}\left(a, m_{j}, c\right)\right]=\bigvee_{j \in J} T_{M / R}\left(a,\left[m_{j}\right], c\right) ;$
(iii) $T_{M / R}(a \& b,[m], c \& d)=\left[T_{M}(a \& b, m, c \& d)\right]=\left[T_{M}\left(a, T_{M}(b, m, c), d\right)\right]$ $=T_{M / R}\left(a,\left[T_{M}(b, m, c)\right], d\right)=T_{M / R}\left(a, T_{M / R}(b,[m], c), d\right)$.

Then is a Q-P quantale module.
(4) For all $\left\{\left[m_{i}\right] \mid i \in I\right\} \subseteq M / R, a \in Q, b \in P, \quad[m] \in M / R$,
$\pi\left(\bigvee_{i \in I} m_{i}\right)=\left[\bigvee_{i \in I} m_{i}\right]=\bigvee_{i \in I}\left[m_{i}\right]=\bigvee_{i \in I} \pi\left(m_{i}\right)$;
$\pi\left(T_{M}(a, m, b)\right)=\left[T_{M}(a, m, b)\right]=T_{M / R}(a,[m], b)=T_{M / R}(a, \pi(m), b)$.
So $\pi: m \mapsto[m]: M \longrightarrow M / R$ is a Q-P quantale module morphism.

Theorem 3.13 Let Q, P are quantales, M is a Q - P quantale module, then $\triangle=\{(x, x) \mid x \in M\}$ is a congrence of $Q-P$ quantale module on M.

Theorem 3.14 The category $\mathbf{Q}_{\mathbf{Q}} \mathbf{M o d}_{\mathbf{P}}$ has coequalizer.

Proof: Let Q,P are quantales, $\left(M, T_{M}\right)$ and $\left(N, T_{N}\right)$ are Q-P quantale modules, f and g are Q-P quantale module morphisms. Suppose R is the smallest congrence of the Q-P quantale modules on N , which contain $\{(f(x), g(x)) \mid$ $x \in M\}$. Let $E=N / R, \pi: N \longrightarrow N / R$ is the canonical epimorphsim, by the theorem 2.11 that $\left(N / R, T_{N / R}\right)$ is a Q-P quantale module, π is a Q-P quantale module morphism. We will prove (π, E) is the coequalier of f and g. In fact,
(1) $\pi \circ f=\pi \circ g$ is clearly.
(2) $\left(E^{\prime}, T_{E^{\prime}}\right)$ is a Q-P quantale module, $h: N \longrightarrow E^{\prime}$ is a Q-P quantale module morphism, and $h \circ f=h \circ g$. Let $R_{1}=h^{-1}(\triangle), \triangle=\left\{(x, x) \mid x \in E^{\prime}\right\}$. By the theorem 2.12, we can see that R_{1} is a congrence of Q-P quantale module on N. Since $h(f(x))=h(g(x))$ for all $x \in M$, then $(f(x), g(x)) \in R_{1}$, therefore R is the smallest congrence which contain $\{(f(x), g(x)) \mid x \in M\}$. Define $\bar{h}: N / R \longrightarrow E^{\prime}$ such that $\bar{h}([n])=h(n)$ for all $[n] \in Q / R$. Let $n_{1}, n_{2} \in N$ and $\left(n_{1}, n_{2}\right) \in R$, then $\left(n_{1}, n_{2}\right) \in R_{1}$, we have thath $\left(n_{1}\right)=h\left(n_{2}\right)$, thereore \bar{h} is wll defined.

For all $\left\{\left[n_{i}\right] \mid i \in I\right\} \subseteq N / R, a \in Q, b \in P,[n] \in N / R$, we have that
$\bar{h}\left(\bigvee_{i \in I}\left[n_{i}\right]\right)=\bar{h}\left(\left[\bigvee_{i \in I} n_{i}\right]\right)=h\left(\bigvee_{i \in I} n_{i}\right)=\bigvee_{i \in I} h\left(n_{i}\right)=\bigvee_{i \in I} \bar{h}\left(\left[n_{i}\right]\right)$,
$\bar{h}\left(T_{N / R}(a,[n], b)\right)=\bar{h}([T(a, n, b)])=h(T(a, n, b))=T_{E^{\prime}}(a, h(n), b)$ $=T_{E^{\prime}}(a, \bar{h}([n]), b)$,
thus \bar{h} is a Q-P quantale module morphism. It's easy to prove that $\bar{h} \circ \pi=h$ and \bar{h} is the only one morphism which satisfy the above condition. Therefore (π, E) is the coequalizer of f and g.

Theorem 3.15 The category $\mathbf{Q}_{\mathbf{Q}} \mathbf{M o d}_{\mathbf{P}}$ has mutiple pullback.

Proof: Let I is a set, $\left(B, T_{B}\right)$ and $\left(D_{i}, T_{D_{i}}\right)_{i \in I}$ are $\mathrm{Q}-\mathrm{P}$ quantale modules. $g_{i}: B \longrightarrow B_{i}, f_{i}: D_{i} \longrightarrow B_{i}$ are Q-P quantale modules morphisms for all $i \in I$.

Suppose $E=\left\{x \in B \times \prod_{i \in I} D_{i} \mid \forall i \in I, g_{i}\left(x_{0}\right)=f_{i}\left(x_{i}\right), x_{0} \in B\right\}$. We will prove that E is the submodule of $B \times \prod_{i \in I} D_{i}$.
(1) For all $\left\{x_{j} \mid j \in J\right\} \subseteq B \times \prod_{i \in I} D_{i}$, we have $g_{i}\left(\left(\bigvee_{j \in J} x_{j}\right)_{0}\right)=g_{i}\left(\bigvee_{j \in J}\left(x_{j}\right)_{0}\right)=$ $\bigvee_{j \in J} g_{i}\left(\left(x_{j}\right)_{0}\right)=\bigvee_{j \in J} f_{i}\left(\left(x_{j}\right)_{i}\right)=f_{i}\left(\bigvee_{j \in J}\left(x_{j}\right)_{i}\right)=f_{i}\left(\left(\bigvee_{j \in J} x_{j}\right)_{i}\right)$;
(2) For all $x \in B \times \prod_{i \in I} D_{i}, a \in Q, b \in P$, we have $g_{i}\left(\left(T(a, x, b)_{0}\right)=\right.$ $g_{i}\left(T_{B}\left(a, x_{0}, b\right)\right)=T_{B_{i}}\left(a, g_{i}\left(x_{0}\right), b\right)=T_{B}\left(a, f_{i}\left(x_{i}\right), b\right)=f_{i}\left(T_{D_{i}}\left(a, x_{i}, b\right)\right) ;$
then E is a submodule of $B \times \prod_{i \in I} D_{i}$.
Let $p_{0}, p_{i}(i \in I)$ are projects from $B \times \prod_{i \in I} D_{i}(i \in I)$ to B and D_{i} restrict on E respectively, then $g_{i} \circ p_{0}=f_{i} \circ p_{i}$, for all $i \in I$, we have gained a family commutative squares.

Let M is a Q-P quantale module,suppose $\left(x_{q}\right)_{0}=f(q),\left(x_{q}\right)_{i}=e_{i}(q)$, for all $q \in M$, then $x_{q} \in B \times \prod_{i \in I} D_{i}$. Since $f_{i} \circ e_{i}=g_{i} \circ f$, for all $i \in I$, then $x_{q} \in E$.

Define $h: M \longrightarrow$ Esuch that $h(q)=x_{q}$ for all $q \in Q$, we will prove that h is a double quantale module morphism. For all $m \in M, a \in Q, b \in Q,\left\{a_{j}\right\}_{j \in J} \subseteq$ $M, i \in I$, then
(1) since $\left(h\left(\bigvee_{j \in J} a_{j}\right)\right)_{0}=f\left(\bigvee_{j \in J} a_{j}\right)=\bigvee_{j \in J} f\left(a_{j}\right)=\bigvee_{j \in J}\left(h\left(a_{j}\right)\right)_{0}$,
$\left(h\left(\bigvee_{j \in J} a_{j}\right)\right)_{i}=e_{i}\left(\bigvee_{j \in J} a_{j}\right)=\bigvee_{j \in J} e_{i}\left(a_{j}\right)=\bigvee_{j \in J}\left(h\left(a_{j}\right)\right)_{i}$, thenh $\left(\bigvee_{j \in J} a_{j}\right)=\bigvee_{j \in J} h\left(a_{j}\right) ;$
$(2)\left(h\left(T_{M}(a, m, b)\right)_{0}=f\left(T_{M}(a, m, b)\right)=T_{B}(a, f(m), b)=T_{B}\left(a,(h(m))_{0}, b\right)\right.$, $\left(h\left(T_{M}(a, m, b)\right)_{i}=e_{i}\left(T_{M}(a, m, b)\right)=T_{D_{i}}\left(a, e_{i}(m), b\right)=T_{D_{i}}\left(a,(h(m))_{i}, b\right)\right.$;
hence h is a Q-P quantale module morphism, and $f=p_{0} \circ h, e_{i}=p_{i} \circ h$. It's easy to prove that h is the only $\mathrm{Q}-\mathrm{P}$ quantale module morphism which satisfy the conditions, therefore the category $\mathbf{Q}_{\mathbf{Q}} \operatorname{Mod}_{\mathbf{Q}}$ has mutiple pullback.

Theorem 3.16 The category $\mathbf{Q}_{\mathbf{M}} \mathbf{M o d}_{\mathbf{P}}$ has kernel.
Proof: Let Q, P are quantales, M and N are $\mathrm{Q}-\mathrm{P}$ quantale modules, f : $M \longrightarrow N$ is a Q-P quantale modules morphism, $0_{M, N}: M \longrightarrow N$ such that $\mathrm{f}(\mathrm{m})=0$ for all $m \in M$. Suppose $E=\{x \in M \mid f(x)=0\}$, then $(E, i: E \hookrightarrow$ M) is a equalizer of f and $0_{M, N}$, then f has kernel.

Theorem 3.17 The category $\mathbf{Q}_{\mathbf{Q}} \mathbf{M o d}_{\mathbf{P}}$ has cokernel.
Proof: Let Q, P are quantales, M and N are $\mathrm{Q}-\mathrm{P}$ quantale modules, f : $M \longrightarrow N$ is a Q-P quantale modules morphism, $0_{M, N}: M \longrightarrow N$ such that $\mathrm{f}(\mathrm{m})=0$ for all $m \in M$. Let R is the smallest congrvence which contain $\{(f(m), 0) \mid m \in M\}$, by the theorem 3.14 we know that $(E=N / R, \pi$: $N \hookrightarrow E)$ is the coequalizer of f and $0_{M, N}$, then f has cokernel.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No.10871121,71103143,) and the Engagement Award (2010041)and Dr. Foundation(2010QDJ024) of Xi'an University of Science and Technology, China.

References

[1] A. Joyal and M. Tiernry, An extension of the Galois theory of Grothendieck, Amer. Math. Soc. Memoirs, 309(1984)108-118.
[2] S. Abramsky and S. Vickers, Quantales, observational logic and process semantics, Math. Struct. Comput. Sci., 3(1993), 161-227.
[3] D. Kruml, Spatial quantales [J], Applied Categorical Structures, 10(2002), 49-62.
[4] P. Resende, Sup-lattice 2-forms and quantales [J], Journal of Algebra, 276(2004), 143-167.
[5] J. Paseka, A note on Girard bimodules [J], International Journal of Theoretical Physics, 39(3) (2000), 805-812.
[6] J. Paseka, Hilbter Q-modules and nuclear ideals in the category of V semilattices with a duality, CTCS'99: Conference on Category Theory and Computer Science (Edinburgh), Elsevier, Amsterdam, Paper No. 29019(1999), 19 (electronic).
[7] Y.H. Zhou and B. Zhao, The free objects in the category of involutive quantales and its property of well-powered, Chinese Journal of Engineering Mathematics, 23(2) (2006), 216-224 (In Chinese).
[8] F. Miraglia and U. Solitro, Sheaves over right sided idempotent quantales, Logic J. IGPL, 6(4) (1998), 545-600.
[9] M.E. Coniglio and F. Miraglia, Modules in the category of sheaves over quantales, Annals of Pure and Applied Logic, 108(2001), 103-136.
[10] K.I. Rosenthal, Quantales and their Applications, Longman Scientific and Techical, London, (1990).
[11] Z. Bin, The inverse limit in the category of topological molecular lattices [J], Fuzzy and Systems, 118(2001), 574-554.
[12] S. Abramsky and S. Vickers, Quantales, observational logic and process semantics, Math. Struct. Comput. Sci., 3(1993), 161-227.
[13] D. Kruml, Spatial quantales, Applied Categorial Structures, 10(2002), 4962.
[14] P. Resende, Sup-lattice 2-forms and quantales, Journal of Algebra, 276(2004), 143-167.
[15] P. Resende, Tropological systems are points of quantales, Journal of Pure and Applied Algebra, 173(2002), 87-120.
[16] J. Paseka, A note on Girard bimodules, International Journal of Theoretical Physics, 39(3) (2000), 805-812.
[17] J. Paseka, Morita equivalence in the context of hilbert modules, Proceedings of the Ninth Prague Topological Symposium Contribution Papers from the Symposium Held in Prague, Czech Republic, August 19-25 (2001), 223-251.
[18] H. Herrilich and E. Strecker, Category Theory, Berlin: Heldermann Verlag, (1979).

