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Abstract

In this work, we investigate the studies related to the Hahn sequence space.
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1 Introduction

By a sequence space, we understand a linear subspace of the space ω = CN of all
complex sequences which contains φ, the set of all �nitely non-zero sequences.
We write `∞, c and c0 for the classical spaces of all bounded, convergent
and null sequences, respectively. Also by bs, cs, `1 and `p, we denote the
space of all bounded, convergent, absolutely and p-absolutely convergent series,
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respectively. We de�ne bv, d`, σ∞, σc, σs, dE and
∫
E as follows:

bv =

{
x = (xk) ∈ ω :

∞∑
k=1

|xk − xk−1| <∞
}
,

d`1 =

{
x = (xk) ∈ ω :

∞∑
k=1

1

k
|xk| <∞

}
,

σ∞ =

{
x = (xk) ∈ ω : sup

n

1

n

∣∣∣∣ n∑
k=1

xk

∣∣∣∣ <∞},
σc =

{
x = (xk) ∈ ω : lim

n→∞

1

n

n∑
k=1

xk exists

}
,

σs =

{
x = (xk) ∈ ω : (C − 1)−

∑
xk = lim

n→∞

n∑
k=1

(
1− k − 1

n

)
xk exists

}
,

dE =
{
x = (xk) ∈ ω : (k−1xk) ∈ E

}
,∫

E =
{
x = (xk) ∈ ω : (kxk) ∈ E

}
,

where dE and
∫
E are called the di�erentiated and integrated spaces of E,

respectively.
A coordinate space (or K−space) is a vector space of numerical sequences,

where addition and scalar multiplication are de�ned pointwise.

An FK−space is a locally convex Fréchet space which is made up of se-
quences and has the property that coordinate projections are continuous.

A BK− space is locally convex Banach space which is made up of sequences
and has the property that coordinate projections are continuous.

A BK−space X is said to have AK (or sectional convergence) if and only
if ‖x[n] − x‖ → 0 as n→∞.

X has (C, 1) − AK (Cesàro-sectional convergence of order one) if for all
x ∈ X and

(P 1
n(x))k =


(

1− k−1
n

)
xk , if k = 1, 2, ..., n

0 , if k = n+ 1, n+ 2, ...

P 1
n(x) ∈ X and ‖P 1

n(x)− x‖X → 0 (n→∞).

Let X be an FK−space. A sequence (xk) in X is said to be weakly Cesàro
bounded, if

{
[f(x1) + f(x2) + ... + f(xk)]/k

}
is bounded for each f ∈ X ′

, the
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dual space of X.

Let Φ stand, for the set of all �nite sequences. The space X is said to have
AD (or) be an AD space if Φ is dense in X. We note that AK ⇒ AD [3].

An FK−space X ⊃ Φ is said to have AB if (x[n]) is bounded set in X for
each x ∈ X.

Let X be a BK−space. Then X is said to have monotone norm if ‖x[m]‖ ≥
‖x[n]‖ for m > n and ‖x‖ = sup[n]‖x[n]‖.

Let D = {x ∈ Φ : ‖x‖ ≤ 1} be in a BK−space X, that is, D is the
intersection of the closed unit sphere(disc) with Φ. A subset E of Φ is called
a determining set for X if and only if its absolutely convex hull K is identical
with D [18].

The normed space X is said to be rotund if and only if ‖(x + y)/2‖ < 1,
whenever x 6= y and ‖x‖ = ‖y‖ ≤ 1 in X [17].

The set S(λ, µ) de�ned by

S(λ, µ) = {z = (zk) ∈ ω : xz = (xkzk) ∈ µ for all x = (xk) ∈ λ} (1)

is called the multiplier space of the sequence spaces λ and µ. One can eaisly
observe for a sequence space υ with λ ⊃ υ ⊃ µ that the inclusions

S(λ, µ) ⊂ S(υ, µ) and S(λ, µ) ⊂ S(λ, υ)

hold. With the notation of (1), the alpha-, beta-, gamma- and sigma-duals of
a sequence space λ, which are respectively denoted by λα, λβ, λγ and λσ are
de�ned by

λα = S(λ, `1), λβ = S(λ, cs) λγ = S(λ, bs) and λσ = S(λ, σs).

For each �xed positive integer k, we write δk = {0, 0, ..., 1, 0, ...}, 1 in the
k − th place and zeros elsewhere. Given an FK−space X containing Φ, its
conjugate is denoted by X ′ and its f−dual or sequential dual is denoted by
Xf and is given by Xf = { all sequences (f(δk)) : f ∈ X ′}. An FK−space X
containing Φ is said to be semi replete if Xf ⊂ σ(`∞). The space bv is semi
replete, because bv = bs [13].

Let λ and µ be two sequence spaces, and A = (ank) be an in�nite matrix of
complex numbers ank, where k, n ∈ N. Then, we say that A de�nes a matrix
mapping from λ into µ, and we denote it by writing A : λ → µ if for every
sequence x = (xk) ∈ λ. The sequence Ax = {(Ax)n}, the A-transform of x, is
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in µ; where

(Ax)n =
∑
k

ankxk for each n ∈ N. (2)

Throughout the text, for short we suppose that the summation without limits
runs from 1 to ∞. By (λ : µ), we denote the class of all matrices A such that
A : λ → µ. Thus, A ∈ (λ : µ) if and only if the series on the right side of (2)
converges for each n ∈ N and each x ∈ λ and we have Ax = {(Ax)n}n∈N ∈ µ
for all x ∈ λ. A sequence x is said to be A-summable to l if Ax converges to l
which is called the A-limit of x.

Lemma 1.1. ([18], Theorem 7.2.7) Let X be an FK−space with X ⊃ Φ.
Then,

(i) Xβ ⊂ Xγ ⊂ Xf .

(ii) If X has AK, Xβ = Xf .

(iii) If X has AD, Xβ = Xγ.

2 Hahn Sequence Space

Hahn [7] introduced the BK−space h of all sequences x = (xk) such that

h =

{
x :

∞∑
k=1

k|∆xk| <∞ and lim
k→∞

xk = 0

}
,

where ∆xk = xk − xk+1, for all k ∈ N. The following norm

‖x‖h =
∑
k

k|∆xk|+ sup
k
|xk|

was de�ned on the space h by Hahn [7] (and also [6]). Rao ([12], Proposition
2.1) de�ned a new norm on h as ‖x‖ =

∑
k k|∆xk|.

Hahn proved following properties of the space h:

Lemma 2.1. (i) h is a Banach space.

(ii) h ⊂ `1 ∩
∫
c0.

(iii) hβ = σ∞.
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Clearly, h is a BK−space [6].

In [6], Goes and Goes studied functional analytic properties of theBK−space
bv0 ∩ d`1. Additionally, Goes and Goes considered the arithmetic means of se-
quences in bv0 and bv0 ∩ d`1, and used an important fact which the sequence
of arithmetic means (n−1

∑n
k=1 xk) of an x ∈ bv0 is a quasiconvex null sequence.

Rao [12] studied some geometric properties of Hahn sequence space and
gave the characterizations of some classes of matrix transformations.

Now we give some additional properties of h which proved by Goes and
Goes [6].

Theorem 2.2. ([6], Theorem 3.2) h = `1 ∩
∫
bv = `1 ∩

∫
bv0.

Proof. For k = 1, 2, ...

k∆xk = xk+1 + ∆(kxk). (3)

Hence x ∈ h implies

∞ >
∞∑
k=1

k|∆xk| ≥
∞∑
k=1

|∆(kxk)| −
∞∑
k=1

|xk+1|.

The last series is convergent since h ⊂ `1 by Part of (ii) of Lemma 2.1. Hence
also

∑∞
k=1 |∆(kxk)| <∞ and therefore h ⊂ `1 ∩

∫
bv.

Conversely, (3) implies for x ∈ `1 ∩
∫
bv that

∞ >
∞∑
k=1

|xk+1|+
∞∑
k=1

|∆(kxk)| ≥
∞∑
k=1

k|∆xk| and lim
k→∞

xk = 0.

Thus, `1 ∩
∫
bv ⊂ h. Hence, we have shown that h = `1 ∩

∫
bv. The second

equality in the theorem follows now from Lemma 2.1(ii).

Lemma 2.3. ([6], Lemma 3.3) If X and Y are β−dual (σ−dual) Köthe
spaces, then X ∩ Y is also a β−dual (σ−dual) Köthe space.

Proof. We use the known fact that if ζ = β or ζ = σ, then E is a ζ−dual
Köthe space if and only if E = (Eζ)ζ ≡ Eζζ ([5], p.139, Theorem 3). Hence if
X and Y are ζ−dual Köthe spaces, then

(X ∩ Y )ζζ = (Xζ + Y ζ)ζζζ = (Xζ + Y ζ)ζ = Xζζ ∩ Y ζζ = X ∩ Y.
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Theorem 2.4. ([6], Theorem 3.4) h = (σ∞)β.

Proof. By Part (iii) of Lemma 2.1, hβ = σ∞. Hence by the remark in the
beginning of the last proof it is enough to show that h is a β−dual Köthe
space. In fact: By Theorem 2.2, h = `1 ∩

∫
bv and as is well known `1 = (c0)

β

and
∫
bv = (d(cs))β since bv = (cs)β.

Theorem 2.5. ([6], Theorem 3.5) h is a BK−space with AK.

Proof. `1 and
∫
bv0 with norms ‖x‖ =

∑
k |xk| and ‖x‖ =

∑
k |∆(kxk)| re-

spectively are BK−spaces with AK. Hence by Theorem 2.2 and since the
intersection of two BK−spaces with AK is again a BK−space with AK ([15],
p.500), the theorem follows.

This result is found in [12] with a di�erent norm.

Remark 2.6. ([6], 3.6) Let E be a BK−space with AK, and let E
′
be

the conjugate space of E, i.e. the space of linear continuous functionals on
E. It is known that E

′
can be identi�ed with Eβ through the isomorphism

ϕ ∈ E ′ ⇔ (ϕ(ei))∞i=1 ∈ Eβ, where

(ei)k =

{
1 , if k = i
0 , if k 6= i

This is true because E has AK if and only if every ϕ ∈ E ′
can be written in

the form

ϕ(x) =
∞∑
k=1

xkyk, (x ∈ E);

where y ∈ Eβ [21]. As usual we write Eβ = E
′
if E is a BK−space with AK.

Analogously we have Eσ = E
′
if E is a BK−space with (C, 1)− AK.

Theorem 2.7. ([6], Theorem 3.7)

(i) h
′
= σ∞.

(ii) (σ0)
′
= h.

Proof. (i) By Theorem 2.5, h is a BK−space with AK and by Lemma 2.1(ii)
hβ = σ∞. Hence by Remark 2.6, h

′
= σ∞.

(ii) It is known that σ0 is a BK−space with AK([21], p.61) with the norm

‖x‖ = sup
n

1

n

∣∣∣∣∣
n∑
k=1

xk

∣∣∣∣∣ .
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Hence, again by Remark 2.6, (σ0)
β = (σ0)

′
. It remains to be shown that

(σ0)
β = h.

By Zeller([21], Theorem 1.1),
∫
σ0 =

∫
c0 + cs. Hence σ0 = c0 + d(cs) and

this implies (σ0)
β = (c0)

β ∩ [d(cs)]β = h by Theorem 2.2, since (c0)
β = ` and

(d(cs))β =
∫
bv.

Remark 2.8. ([6], p.97) σ0 ⊂ σc ⊂ σ∞ and (σ0)
β = (σ∞)β = h (by

Theorem 2.4 and 2.7) imply σβc = h (see also [19], p.268).

Proposition 2.9. ([12], Proposition 2) The space h is not rotund.

Proof. We take x = (1, 0, 0, ...) and y = (1/2, 1/2, 0, 0, ...). Then x and y are
in h. Also ‖x‖ = ‖y‖ = 1. Obviously x 6= y. But x + y = (3/2, 1/2, 0, ...) and
‖(x+ y)/2‖ = 1. Therefore, h is not rotund.

Proposition 2.10. ([12], Proposition 3) The unit disc in the space h has
extreme points.

Proof. For each �xed k = 1, 2, ..., we write

sk =
1

k

k∑
i=1

δi. (4)

Let y = (yk) be any point of h such that ‖sk + y‖ ≤ 1 and ‖sk − y‖ ≤ 1. But

‖sk + y‖ =
∑

υ≥1,υ 6=k

υ|∆yv|+ k
∣∣1/k + yk − yk+1

∣∣ (5)

and

‖sk − y‖ =
∑

υ≥1,υ 6=k

υ|∆yv|+ k
∣∣1/k − yk + yk+1

∣∣. (6)

Hence ‖sk + y‖ ≤ 1 implies k|1/k + yk − yk+1| ≤ 1 and ‖sk − y‖ ≤ 1 implies
k|1/k− yk + yk+1| ≤ 1. Consequently yk = yk+1. But when this holds we have

k|1/k + yk − yk+1| = 1 = k|1/k − yk + yk+1|.

Thus in order that ‖sk + y‖ ≤ 1 and ‖sk − y‖ ≤ 1 hold, all other terms in the
sums of (5) and (6) must be zero. That is, ∆yv = 0, (υ 6= k). This together
with the equality yk = yk+1 gives yk = constant. For y = (yk) ∈ h, yn =∑∞

k=n(yk − yk+1) so that n|yn| ≤
∑∞

k=n k|yk − yk+1| which converges to zero.
Thus, |yn| = O(1/n) and so yυ → 0 as υ → ∞. Hence yυ = 0, (υ = 1, 2, ...).
Thus ‖sk + y‖ ≤ 1 and ‖sk − y‖ ≤ 1 imply that y = (0, 0, 0, ...). Hence, sk is
an extreme point of the unit disc in h (for each �xed k = 1, 2, ...).
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Proposition 2.11. ([12], Proposition 4) Let sk be de�ned as in (4) for all
k ∈ N. Consider the set E = {sk : k = 1, 2, ...}. The E is a determining set
for the space h.

Proof. Let x ∈ D. Then x ∈ Φ and ‖x‖ ≤ 1. Consequently, x =
∑m

k=1 xkδ
k =∑m

k=1 tks
k where tk = k(xk − xk+1), (k = 1, 2, ...). Also,

∑m
k=1 |tk| ≤ ‖x‖ ≤ 1.

Therefore, x ∈ K, the absolutely convex hull of E. Thus

D ⊂ K. (7)

On the other hand, let x ∈ K. Then x =
∑m

k=1 tks
k with

∑m
k=1 |tk| ≤ 1.

Writing x = (x1, x2, ...), we observe that

x1 = t1 +
t2
2

+ · · ·+ tm
m
,

x2 =
t2
2

+
t3
3

+ · · ·+ tm
m
,

...
...

...

xm =
tm
m
,

xm+1 = xm+2 = · · · = 0.

Hence ‖x‖ =
∑∞

k=1 k|xk − xk+1| =
∑m

k=1 |tk| ≤ 1. Thus we have

K ⊂ D. (8)

Combining (7) and (8) it follows that K = D. Therefore, E is a determining
set for the space h.

Proposition 2.12. ([12], Proposition 5) Let X be any FK−space which
contains Φ. Then X includes h if and only if E = {sk : k = 1, 2, ...} is
bounded in X.

Proof. This is an immediate consequences of our Proposition 2.11 and Theorem
8.2.4 of [18].

Lemma 2.13. ([13], Lemma 1) Every semi replete space contains the Hahn
space h.

Proof. Let X be any semi replete space. Then Xf ⊂ σ(`∞). But σ(`∞) = hf

[12]. Thus Xf = hf . Since h has AD, we have by Theorem 8.6.1 [18], Xf ⊂
hf ⇒ h ⊂ X.
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Lemma 2.14. ([13], Lemma 2) A sequence z = (zk) belongs to σ(`∞) if
and only if zβ is semi replete.

Proof. Suppose that z ∈ σ(`∞). Then h[σ(`∞)]β ⊂ zβ so that zββ ⊂ hβ =
σ(`∞). But zβ has AK under the sequence of norms

P0(x) = ‖zx‖cs, (x ∈ zβ), I = (Ik), x = (xk).

Pn(x) = |xn|, (x ∈ zβ), n ≥ 1.

Hence zβf ⊂ σ(`∞). Therefore zβ is semi replete.

Conversely, suppose that zβ is semi replete. Then zβf ⊂ σ(`∞). Since
zβ has AK, we have zββ = zβf . So z ∈ zββ ⊂ σ(`∞). This completes the
proof.

Theorem 2.15. ([13], p.45) The intersection of all semi replete spaces in
h.

Proof. Let I denote the intersection of all semi replete spaces. By Lemma
2.13, I contains h. On the other hand, by Lemma 2.14, I is contained in⋂
{zβ : z ∈ σ(`∞)} and so I is contained in [σ(`∞)]β = h. Thus I = h. This

proves the theorem.

Let X be an FK−space with X ⊃ Φ. Then

B+ = Xfγ = B+(X) = {z ∈ ω : (z[n]) is bounded in X}
= {z ∈ ω : (znf(δ[n]) ∈ bs,∀f ∈ X ′}.

Also we write B = B+∩X. Let X is an AB−space if and only if B = X. Any
space with monotone norm has AB (see Theorem 10.3.12 of [18]).

Lemma 2.16. ([14], Lemma 2) hf = σ(`∞).

Proof. hβ = σ(`∞) by Lemma 2.1 ([7] and [6]). Also h has AK ([12] and [6]).
We have hβ = hf . Therefore hf = σ(`∞). This completes the proof.

Theorem 2.17. ([14], Theorem 1) Let Y be any FK−space ⊃ Φ. Then
Y ⊃ h if and only if the sequence (δ(k)) is weakly Cesàro bounded.

Proof. We know that h has AK. Since every AK−space is AD [3], the follow-
ing two sided implications establish the result.
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Y ⊃ h ⇔ Y f ⊂ hf since h has AD and hence by using Theorem 8.6.1. in [18]

⇔ Y f ⊂ σ(`∞) by Lemma 2.16

⇔ for each f ∈ Y ′
, the topological dual of Y, f(δ(k)) ∈ σ(`∞)

⇔
{
f(δ(1)) + f(δ(2)) + ...+ f(δ(k))

k

}
∈ `∞

⇔
{
f(δ(1)) + f(δ(2)) + ...+ f(δ(k))

k

}
is bounded.

⇔ The sequence (δ(k)) is weakly Cesàro bounded.

This completes the proof.

Theorem 2.18. ([14], Theorem 2) Suppose that h is a closed subspace of
an FK−space X. Then B+(X) ⊂ h.

Proof. Note that c0 has AK. Hence σ(c0) has AK. Consequently σ(c0) has
AD. Therefore by Lemma 1.1, [σ(c0)]

β = [σ(c0)]
γ. By, Theorem 10.3.5 of [18]

and Lemma 2.16, we have

B+(X) = B+(h) = hfγ = (hf )γ = (σ(`∞))γ.

But (σ(`∞))γ ⊂ (σ(c0))
γ = (σ(c0))

β and (σ(c0))
β = h (See p.97 [6]). Hence

B+(X) ⊂ h. This completes the proof.

Theorem 2.19. ([14], Theorem 3) Let X be an AK−space including Φ.
Then X ⊃ h if and only if B+(X) ⊃ h.

Proof. (Necessity): Suppose that X ⊃ h. Then the inclusion,

B+(X) ⊃ B+(h) (9)

holds by monotonicity Theorem 10.2.9 of [18]. By Theorem 10.3.4 of [18], we
have

B+(h) = hfγ = h (10)

From (9) and (10), we obtain B+(X) ⊃ B+(h) = h.
(Su�ciency): Suppose that B+(X) ⊃ h. We have

hγ ⊃ [B+(X)]γ. (11)

But h has AK and so h has AD. Therefore

hβ = hγ = hf . (12)
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But always

B+(X) = Xfγ. (13)

From (11) and (13), hγ ⊃ (Xfγ)γ = (Xf )γγ ⊃ Xf . Thus from (12), hf ⊃ Xf .
Now by Theorem 8.6.1 of [18]; since h has AD we conclude that X ⊃ h. This
completes the proof.

Theorem 2.20. ([14], Theorem 4) The space h has monotone norm.

Proof. Let m > n. It follows from

|xn| ≤ |xn − xn+1|+ |xn+1 − xn+2|+ ...+ |xm−1 − xm|+ |xm|

that

‖x(n)‖ ≤
( n−1∑

k=1

k|xk − xk+1|
)

+ n|xn − xn+1|+ ...+ (m− 1)|xm−1 − xm|+m|xm| = ‖x(m)‖

The sequence (‖x(n)‖) being monotone increasing, it thus follows from x =
limn→∞ x

(n) that

‖x‖ = lim
n→∞

‖x(n)‖ = sup
(n)

‖x(n)‖.

Rao and Subramanian [14] de�ned semi-Hahn space as below:
An FK−space X is called semi-Hahn if Xf ⊂ σ(`∞). In other words

f(δ(k)) ∈ σ(`∞),∀f ∈ X ′

⇔ {f(δ1) + f(δ2) + ...+ f(δk)

k
} ∈ `∞

⇔ {f(δ1) + f(δ2) + ...+ f(δk)

k
} is bounded for each f ∈ X ′

.

Example 2.21. ([14], p.169) The Hahn space is semi Hahn. Indeed, if h
is a Hahn space, then, hf = σ(`∞) by Lemma 2.16.

Lemma 2.22. ([18], 4.3.7) Let z be a sequence. Then (zβ, p) is an AK−space
with p = (pk) : k ∈ N, where

p0(x) = sup
m

∣∣∣∣ m∑
k=1

zkxk

∣∣∣∣, pn(x) = |xn|.

For any k such that zk 6= 0, pk may be omitted. If z ∈ Φ, p0 may be omitted.
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Theorem 2.23. ([14], Theorem 5) zβ is semi-Hahn if and only if z ∈ σ(`∞).

Proof. Step 1. Suppose that zβ is semi-Hahn. zβ has AK by Lemma 2.22.
Hence zβ = zf . Therefore zββ = (zβ)f by Theorem 7.2.7 of [18]. So zβ is
semi-Hahn if and only if zββ ⊂ σ(`∞). But then z ∈ zββ ⊂ σ(`∞).
Step 2. Conversely, let z ∈ σ(`∞). Then zβ ⊃ {σ(`∞)}β and zββ ⊂ σ(`∞)ββ =
hβ = σ(`∞). But (zβ)f = zββ. Hence (zβ)f ⊂ σ(`∞) which gives that zβ is
semi-Hahn. This completes the proof.

Theorem 2.24. ([14], Theorem 6) Every semi-Hahn space contains h.

Proof. Let X be any semi-Hahn space. Then, one can see that

⇒ Xf ⊂ σ(`∞).

⇒ f(δ(k)) ∈ σ(`∞), ∀f ∈ X ′

⇒ δ(k) is weakly Cesaro bounded w.r. to X

⇒ X ⊃ h by Theorem 2.17.

Theorem 2.25. ([14], Theorem 7) The intersection of all semi-Hahn spaces
is h.

Proof. Let I be the intersection of all semi-Hahn spaces. Then the intersection

I ⊂ ∩{zβ : z ∈ σ(`∞)} = {σ(`∞)}β = h (14)

By Theorem 2.24,

h ⊂ I (15)

From 14 and 14, we get I = h.

Corollary 2.26. ([14], p.170) The smallest semi-Hahn space is h.

3 Matrix Transformations

Now we give some matrix transformations:

Theorem 3.1. ([12] Proposition 6) A ∈ (h : c0) if and only if

lim
n→∞

ank = 0, (k = 1, 2, ...) (16)

sup
n,k

1

k

∣∣∣∣ k∑
υ=1

anυ

∣∣∣∣ <∞. (17)
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Proof. We have by Theorem 2.5 that h is a BK−space with AK. Also c0 is a
BK−space. So, we invoke Theorem 8.3-4 of [18] and conclude that A ∈ (h : c0)
if and only if the columns of A are in c0, and A(E) is a bounded subset of c0.

Here, we recall thatE = {sk : k = 1, 2, ...}. ButAsk =
{∑k

υ=1 anυ/k : n = 1, 2, ...
}
.

So, A ∈ (h : c0) if and only if (16) and (17) hold.

Omitting the proofs, we formulate the following results.

Theorem 3.2. ([12], Proposition 7) A ∈ (h : c) if and only if (17) holds
and

lim
n→∞

ank exists, (k = 1, 2, ...) (18)

Theorem 3.3. ([12], Proposition 8) A ∈ (h : `∞) if and only if (17) holds.

Theorem 3.4. ([12], Proposition 9) A ∈ (h : `1) if and only if

∞∑
n=1

|ank| converges, (k = 1, 2, ...) (19)

sup
k

1

k

∞∑
n=1

∣∣∣∣ k∑
υ=1

anυ

∣∣∣∣ <∞. (20)

Theorem 3.5. ([12], Proposition 10) A ∈ (h : h) if and only if (16) holds
and

∞∑
n=1

n|ank − an+1,k| converges, (k = 1, 2, ...) (21)

sup
k

1

k

∞∑
n=1

n

∣∣∣∣ k∑
υ=1

(anυ − an+1,υ)

∣∣∣∣ <∞. (22)

4 The Hahn Sequence Space of Fuzzy Numbers

In this section, we introduce the sequence space h(F ) called the Hahn sequence
space of fuzzy numbers [2].

The concept of fuzzy sets and fuzzy set operations was �rst introduced
by Zadeh [20]. Sequences of fuzzy numbers have been discussed by Aytar
and Pehlivan [1], Mursaleen and Ba³ar�r [9], Nanda [10] and many others.
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The study of Hahn sequence space was initiated by Rao [12] with certain
speci�c purpose in Banach space theory. Talo and Ba³ar [16] gave the idea of
determining the dual of sequence space of fuzzy numbers by using the concept
of convergence of a series of fuzzy numbers.

De�nition 4.1. A fuzzy number is a fuzzy set on the real axis, i.e., a map-
ping u : R→ [0, 1] which satis�es the following conditions:

(i) u is normal, i.e., there exists an x0 ∈ R such that u(x0) = 1.

(ii) u is fuzzy convex, i.e., u[λx+(1−λ)y] ≥ min{u(x), u(y)} for all x, y ∈ R
and for all λ ∈ [0, 1].

(iii) u is upper semi continuous.

(iv) The set [u]0 = {x ∈ R : u(x) > 0} is compact [20], where {x ∈ R : u(x) > 0}
denotes the closure of the set {x ∈ R : u(x) > 0} in the usual topology of
R.

We denote the set of all fuzzy numbers on R by E
′
and called it as the space

of fuzzy numbers. The λ−level set [u]λ of u ∈ E ′
is de�ned by

[u]λ =

{
{t ∈ R : u(t) ≥ λ} , (0 < λ ≤ 1),

{t ∈ R : u(t) > λ} , (λ = 0).

The set [u]λ is closed bounded and non-empty interval for each λ ∈ [0, 1] which
is de�ned by [u]λ = [u−(λ), u+(λ)]. Since each r ∈ R can be regarded as a fuzzy
number r de�ned by

r =

{
1 , (x = r),
0 , (x 6= r),

R can be embedded in E
′
. Let u,w ∈ E

′
and k ∈ R. The operations

addition, scalar multiplication and product de�ned on E
′
by

u+ v = w ⇔ [w]λ = [u]λ + [v]λ for all λ ∈ [0, 1]

⇔ [w]−(λ) = [u−(λ), v−(λ)] and [w]+(λ) = [u+(λ), v+(λ)] for all λ ∈ [0, 1]

[ku]λ = k[u]λ for all λ ∈ [0, 1] and uv = w ⇔ [w]λ = [u]λ[v]λ for all λ ∈ [0, 1],
where it is immediate that

[w]−(λ) = min{u−(λ)v−(λ), u−(λ)v+(λ), u+(λ)v−(λ), u+(λ)v+(λ)}
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and

[w]+(λ) = max{u−(λ)v−(λ), u−(λ)v+(λ), u+(λ)v−(λ), u+(λ)v+(λ)}

for all λ ∈ [0, 1].

Let W be the set of all closed and bounded intervals A of real numbers
with endpoints A and A i.e., A = [A,A]. De�ne the relation d on W by

d(A,B) = max{|A−B|, |A−B|}.

Then it can be observed that d is a metric on W [10] and (W,d) is a complete
metric space [4]. Now we can de�ne the metricD on E

′
by means of a Hausdor�

metric d as

D(u, v) = sup
λ∈[0,1]

d([u]λ, [v]λ) = sup
λ∈[0,1]

{
|u−(λ)− v−(λ)|, |u+(λ)− v+(λ)|

}
.

(E
′
, D) is a complete metric space ([11] Theorem 2.1). One can extend the

natural order relation on the real line to intervals as follows:

A ≤ B if and only if A ≤ B and A ≤ B.

The partial order relation on E
′
is de�ned as follows:

u ≤ v ⇔ [u]λ ≤ [v]λ ⇔ u−(λ) ≤ v−(λ) and u+(λ) ≤ v+(λ) for all λ ∈ [0, 1].

An absolute value |u| of a fuzzy number u is de�ned by

|u|(t) =

{
max{u(t), u(−t)} , (t ≥ 0),

0 , (t < 0).

λ−level set [|u|]λ of the absolute value of u ∈ E ′
is in the form [|u|]λ, where

|u|−(λ) = max{0, u−(λ), u+(λ)} and |u|+(λ) = max{|u−(λ)|, |u+(λ)|}. The
absolute value |uv| of u, v ∈ E ′

satis�es the following inequalities [16]

|uv|−(λ) ≤ |uv|+(λ) ≤ max{|u|−(λ)|v|−(λ), |u|−(λ)|v|+(λ), |u|+(λ)|v|−(λ), |u|+(λ)|v|+(λ)}

In the sequel, we require the following de�nitions and lemmas.

De�nition 4.2. A sequence u = (uk) of fuzzy numbers is a function u from
the set N into the set E

′
. The fuzzy number uk denotes the value of the function

at k ∈ N and is called the kth term of the sequence. Let w(F ) denote the set
of all sequences of fuzzy numbers.
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Lemma 4.3. The following statements hold:

(i) D(uv, 0) ≤ D(u, 0)D(v, 0) for all u, v ∈ E ′
.

(ii) If uk → u as k → ∞ then D(uk, 0) → D(u, 0) as k → ∞; where
(uk) ∈ w(F ).

De�nition 4.4. A sequence u = (uk) ∈ w(F ) is called convergent with limit
u ∈ E ′

if and only if for every ε > 0 there exists an n0 = n0(ε) ∈ N such that
D(uk, u) < ε for all k ≥ n0.

If the sequence (uk) ∈ w(F ) converges to a fuzzy number u then by the
de�nition of D the sequences of functions {u−k (λ)} and {u+k (λ)} are uniformly
convergent to u−(λ) and u+(λ) in [0, 1], respectively.

De�nition 4.5. A sequence u(uk) ∈ w(F ) is called bounded if and only if
the set of all fuzzy numbers consisting of the terms of the sequence (uk) is a
bounded set. That is to say that a sequence (uk) ∈ w(F ) is said to be bounded
if and only if there exist two fuzzy numbers m and M such that m ≤ uk ≤ M
for all k ∈ N.

De�nition 4.6. Let (uk) ∈ w(F ). Then the expression
∑
uk is called a

series of fuzzy numbers. Denote Sn =
∑n

k=0 uk for all n ∈ N. If the sequences
(Sn) converges to a fuzzy number u then we say that the series

∑
uk of fuzzy

numbers converges to u and write
∑n

k=0 uk = u which implies as n →∞ that∑n
k=0 u

−
k (λ)→ u−k (λ) and

∑n
k=0 u

+
k (λ)→ u+k (λ) uniformly in λ ∈ [0, 1]. Con-

versely, if the fuzzy numbers uk = {[u−k (λ), u+k (λ)] : λ ∈ [0, 1]},
∑
u−k (λ) and∑

u+k (λ) converge uniformly in λ then u = {[u−(λ), u+(λ)] : λ ∈ [0, 1]} de�nes
a fuzzy number such that u =

∑
uk.

We say otherwise the series of fuzzy numbers diverges. Additionally if the
sequence (Sn) is bounded then we say that the series

∑
uk of fuzzy numbers

is bounded. By cs(F ) and bs(F ), we denote the sets of all convergent and
bounded series of fuzzy numbers, respectively.

Lemma 4.7. Let for the series of functions
∑

k uk(x) and
∑

k vk(x) there
exists an n0 ∈ N such that |uk(x)| ≤ vk(x) for all k ≥ n0 and for all x ∈ [a, b]
with uk : [a, b] → R and vk : [a, b] → R. If the series converges uniformly
in [a, b] then the series

∑
k |uk(x)| and

∑
k |vk(x)| are uniformly convergent in

[a, b].

De�nition 4.8. (Weierstrass M Test) Let uk : [a, b] → R are given.
If there exists an Mk ≥ 0 such that |uk(x)| ≤ Mk for all k ∈ N and the
series

∑
kMk converges then the series

∑
k uk(x) is uniformly and absolutely

convergent in [a, b]
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De�nition 4.9. A mapping T from X1 and X2 is said to be fuzzy isometric
if d2(Tx, Ty) = d1(x, y) for all x, y ∈ X1. The space X1 is said to be fuzzy
isometric with the space X2 if there exists a bijective fuzzy isometry from X1

onto X2 and write X1
∼= X2. The spaces X1 and X2 are then called fuzzy

isometric spaces.

The following spaces are needed.

`∞(F ) =

{
(uk) ∈ w(F ) : sup

k∈N
D(uk, 0) <∞

}
,

c(F ) =
{

(uk) ∈ w(F ) : ∃` ∈ E ′
lim
k→∞

D(uk, `) = 0
}
,

c0(F ) =
{

(uk) ∈ w(F ) : lim
k→∞

D(uk, 0) = 0
}
,

`p(F ) =

{
(uk) ∈ w(F ) :

∑
k

D(uk, 0) <∞

}
.

Let A denote the matrix A = (ank) de�ned by

ank =

{
n(−1)n−k , n− 1 ≤ k ≤ n

0 , 1 ≤ k ≤ n− 1 or k > n

De�ne the sequence y = (yk) which will be frequently used as the A−transform
of a sequence x = (xk), i.e.,

yk = (Ax)k = k(xk − xk−1) k ≥ 1 (23)

We introduce the sets h(F ) and h∞(F ) as the sets of all sequences such
that their A−transforms are in `(F ) and `∞(F ) that is,

h(F ) =
{
u = (uk) ∈ ω(F ) :

∑
k

D[(Au)k, 0] <∞ and lim
k→∞

D[uk, 0] = 0
}

h∞(F ) =
{
u = (uk) ∈ ω(F ) : sup

k
D[(Au)k, 0] <∞

}
.

Example 4.10. ([2], Example 3.1) Consider the sequence u = (uk) de�ned
by

uk =

{
1 , 1 ≤ k ≤ n
0 , k > n

∑
D[(Au)k, 0] =

∑
D[k(uk − uk−1), 0] = 0

which is convergent. Also limk→∞D(uk, 0) = 0. Hence, u ∈ h(F ).
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Theorem 4.11. ([2], Theorem 3.2) h(F ) and h∞(F ) are complete metric
spaces with the metrics dh and dh∞ de�ned by

dh(u, v) =
∑
k

D[(Au)k, (Av)k]

dh∞(u, v) = sup
k∈N

D[(Au)k, (Av)k]

respectively, where u = (uk) and v = (vk) are the elements of the spaces h(F )
or h∞(F ).

Proof. Let {ui} be any Cauchy sequence in the space h(F ), where ui =

{u(i)0 , u
(i)
1 , u

(i)
2 , · · · }. Then for a given ε > 0, there exists a positive integer

n0(ε) such that

dh(ui, uj) =
∑
n

D[(Au)in, (Au)jn] < ε (24)

for i, j ≥ n0(ε). We obtain for each �xed n ∈ N from (24) that

D[(Au)in, (Au)jn] < ε

for every i, j ≥ n0(ε). We obtain for each �xed n ∈ N from (24) that

m∑
k=0

D[(Au)in, (Au)jn] ≤ dh(ui, uj) < ε. (25)

Take any i ≥ n0(ε) and takin limit as j → ∞ �rst and next m → ∞ in (24),
we obtain

dh(ui, u) < ε.

Finally, we proceed to prove u ∈ h(F ). Since {ui} is a Cauchy sequence in
h(F ), we have∑

k

D[(Au)ik, 0] ≤ ε and lim
k→∞

[(Au)ik, 0] = 0.

Now

D[(Au)k, 0] ≤ D[(Au)k, (Au)ik] +D[(Au)ik, (Au)jk] +D[(Au)jk, 0].

Hence,

D[(Au)k, 0] ≤
∑
k

D[(Au)k, (Au)ik] +
∑
k

D[(Au)ik, (Au)jk] +
∑
k

D[(Au)jk, 0] < ε.

Also from (25), limk→∞[(Au)ik, 0] = 0. Hence, u ∈ h(F ). Since, {ui} is an
arbitrary Cauchy sequence, the space h(F ) is complete.
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Theorem 4.12. ([2], De�nition 3.3) The space h(F ) is isomorphic to the
space `1(F ).

Proof. Consider the transformation T de�ned from h(F ) to `1(F ) by x 7→ y =
T (x). To prove the fact h(f) ∼= `1(F ), we show the existence of a bijection
between the spaces h(F ) and `1(F ). We can �nd that only one x ∈ h(F ) with
Tx = y. This means that T is injective.
Let y ∈ `1(F ). De�ne the sequence x = (xk) such that (Ax)k = yk for all k ∈ N.

Then dh(x, 0) =
∑

kD[(Ax)k, 0] =
∑

kD[yk, 0] <∞. Thus, x ∈ h(F ).
Consequently, T is bijective and is isometric. Therefore, h(F ) and `1(F ) are
isomorphic.

Theorem 4.13. ([2], Theorem 3.4) Let d denote the set of all sequences of
fuzzy numbers de�ned as follows

d =
{
x = (xk) ∈ w(F ) :

∑
k

k|xk − xk−1| <∞ and x ∈ c0(F )
}
.

Then, the set d is identical to the set h(F ).

Proof. Let x ∈ h(F ). Then∑
k

D((Ax)k, 0) <∞ and lim
k→∞

D[xk, 0] = 0. (26)

Using (23), ∑
k

D(yk, 0) <∞ and lim
k→∞

D[xk, 0] = 0.

We have,
∑

kD(yk, 0) = supλ∈[0,1] max{|y−k (λ)|, |y+k (λ)|}. Now, max{|y−k (λ)|, |y+k (λ)|} ≤∑
kD(yk, 0) <∞. This implies that

∑
k |yk| <∞. That is

∑
k k|xk − xk−1| <

∞. Also from (26), x ∈ c0(F ). Thus, x ∈ d. Then,
∑

k k|xk − xk−1| < ∞.
That is

∑
k |yk| < ∞. Therefore

∑
k kmax{|y−k (λ)|, |y+k (λ)|} converges for

λ ∈ [0, 1]. This gives for λ = 0,
∑

kD(yk, 0) <∞. Also (xk) ∈ c0(F ) implies
limk→∞D(xk, 0) = 0. This completes the proof.

De�nition 4.14. ([2], De�nition 3.5) The α−dual, β−dual and γ−dual
S(F )α, S(F )β and S(F )γ of a set S(F ) ⊂ w(F ) are de�ned by

{S(F )}α =
{

(uk) ∈ w(F ) : (ukvk) ∈ `1(F ) for all (vk) ∈ S(F )
}
,

{S(F )}β =
{

(uk) ∈ w(F ) : (ukvk) ∈ cs(F ) for all (vk) ∈ S(F )
}
,

{S(F )}γ =
{

(uk) ∈ w(F ) : (ukvk) ∈ bs(F ) for all (vk) ∈ S(F )
}
,
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De�nition 4.15. ([2], De�nition 3.6) Let B denote the matrix B = (bnk
)

de�ned by

bnk
=

{
1/n , 1 ≤ k ≤ n
0 , otherwise

De�ne the sequence y = (yk) by the B−transform of a sequence x = (xk), i.e.,
yk = (Bx)k =

∑k
i=1 xi/k for all k ∈ N.

The Cesàro space of `∞(F ) is the set of all sequences such that their
B−transforms are in `∞(F ). That is,

σ(`∞(F )) =
{
x = (xk) : sup

k
D[(Bx)k, 0] <∞

}
.

Theorem 4.16. ([2], Theorem 3.7) σ(`∞(F )) is a complete metric space
with the metric

dσ(u, v) = sup
k
D[(Bu)k, (Bv)k],

where u = (uk) and v = (vk) are the elements of the space σ(`∞(F )).

Theorem 4.17. ([2], Theorem 3.8) The β− and γ−dual of the set h(F ) is
the set σ(`∞(F )).

Proof. Let (uk) ∈ h(F ) and (vk) ∈ σ(`∞(F )). If (uk) ∈ h(F ), then limk→∞D[uk, 0] =
0. Therefore for given ε > 0 there exists n0 such that D(uk, 0) < ε. If
(vk) ∈ σ(`∞(F )), then supkD[(Bv)k, 0] < ∞. Thus, D(vk, 0) < ∞ for all k
and n. Hence, there exists a M > 0 such that D(vk, 0) < M for all k and n.
Now,

|(uk)−(λ)| ≤ D(uk, 0) ≤ D(uk, 0)D(vk, 0) < εM.

Weierstrass Test yields that
∑

k(uk)
−(λ) and

∑
k(uk)

+(λ) converge uniformly
and hence

∑
k uk converges. Thus σ(`∞(F )) ⊂ hβ(F ).

Conversely, suppose that (vk) ∈ hβ(F ). Then the series
∑

k ukvk converges
for all (uk) ∈ h(F ). This also holds for the sequence (uk) of fuzzy numbers
de�ned by uk = χ[−1, 1] for all k ∈ N. Since u−k (λ) = −1 and u+k (λ) = 1 for
all λ ∈ [0, 1], the series∑
k

(ukvk)
+(λ) =

∑
k

max{u−k (λ)v−k (λ), u−k (λ)v+k (λ), u+k (λ)v−k (λ), u+k (λ)v+k (λ)}

=
∑
k

max{−v−k (λ),−v+k (λ), v−k (λ), v+k (λ)}

=
∑
k

max{|v−k (λ)|, |v+k (λ)|}

converges uniformly. Thus supkD[(Bv)k, 0] < ∞. Hence, (vk) ∈ σ(`∞(F ))
and hβ(F ) = σ(`∞(F )). This completes the proof.
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5 Conclusion

Hahn de�ned the space h and gave its some general properties. Goes and
Goes [6] studied the functional analytic properties of this space. The study of
Hahn sequence space was initiated by Rao [12] with certain speci�c purpose in
Banach space theory. Also Rao [12] computed some matrix transformations.
Rao and Srinivasalu [13] introduce a new class of sequence spaces called semi
replete spaces. Rao and Subramanian [14] de�ned the semi Hahn space and
proved that the intersection of all semi Hahn spaces is the Hahn space. Bal-
asubramanian and Pandiarani[2] de�ned the new sequence space h(F ) called
the Hahn sequence space of fuzzy numbers and proved that β− and γ−duals
of h(F ) is the Cesàro space of the set of all fuzzy bounded sequences.

Determine the matrix domain hA of arbitrary triangles A and compute their
α−, β− and γ−duals and characterize matrix transformations on them into
the classical sequence spaces and almost convergent sequence space may hap-
pen new results. Also it may study the some geometric properties of this space.
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