Gen. Math. Notes, Vol. 15, No. 2, April, 2013, pp.32-44
ISSN 2219-7184; Copyright (c)ICSRS Publication, 2013
www.i-csrs.org
Available free online at http://www.geman.in

β - γ-Irresolute and β - γ-Closed Graph

Hariwan Z. Ibrahim
Department of Mathematics, Faculty of Science
University of Zakho, Kurdistan-Region, Iraq
E-mail: hariwan_math@yahoo.com

(Received: 22-1-13 / Accepted: 26-2-13)

Abstract

In this paper, we introduce the notion of $\beta-\gamma$-g.closed sets and some weak separation axioms. Also we show that some basic properties of $\beta-\gamma-T_{\frac{1}{2}}, \beta-\gamma-$ $T_{i}, \beta-\gamma-D_{i}$ for $i=0,1,2$ spaces and we ofer a new class of functions called $\beta-\gamma$-irresolute, β - γ-continuous functions and a new notion of the graph of a function called a β - γ-closed graph and investigate some of their fundamental properties.

Keywords: β - γ-open set, $\beta-\gamma$-g.closed set.

1 Introduction

Ogata [3] introduced the notion of γ-open sets which are weaker than open sets. The concept of β - γ-open sets and $\beta-\gamma D$-sets in topological spaces are introduced by Hariwan Z. Ibrahim [1].

In this paper, we introduce the notion of $\beta-\gamma$-g.closed sets and some weak separation axioms. Also we show that some basic properties of $\beta-\gamma-T_{\frac{1}{2}}, \beta-\gamma-$ $T_{i}, \beta-\gamma-D_{i}$ for $i=0,1,2$ spaces and we ofer a new class of functions called $\beta-\gamma$-irresolute, β - γ-continuous functions and a new notion of the graph of a function called a β - γ-closed graph and investigate some of their fundamental properties.

2 Preliminaries

Let (X, τ) be a topological space and A a subset of X. The closure of A and the interior of A are denoted by $C l(A)$ and $\operatorname{Int}(A)$, respectively. An operation γ [3] on a topology τ is a mapping from τ in to power set $P(X)$ of X such that $V \subseteq \gamma(V)$ for each $V \in \tau$, where $\gamma(V)$ denotes the value of γ at V. A subset A of X with an operation γ on τ is called γ-open [3] if for each $x \in A$, there exists an open set U such that $x \in U$ and $\gamma(U) \subseteq A$. Then, τ_{γ} denotes the set of all γ-open set in X. Clearly $\tau_{\gamma} \subseteq \tau$. Complements of γ-open sets are called γ-closed. The τ_{γ}-interior [2] of A is denoted by τ_{γ} - $\operatorname{Int}(A)$ and defined to be the union of all γ-open sets of X contained in A. A subset A of a space X is said to be β - γ-open [1] if $A \subseteq C l\left(\tau_{\gamma}-\operatorname{Int}(C l(A))\right)$.

$3 \beta-\gamma-\mathrm{g}$ Closed Sets, $\beta-\gamma-T_{\frac{1}{2}}$ Spaces and $\beta-\gamma-$ Irresolute

Definition 3.1 A subset A of X is called $\beta-\gamma$-closed if and only if its complement is $\beta-\gamma$-open.

Moreover, $\beta-\gamma O(X)$ denotes the collection of all β - γ-open sets of (X, τ) and $\beta-\gamma C(X)$ denotes the collection of all β - γ-closed sets of (X, τ).

Definition 3.2 Let A be a subset of a topological space (X, τ). The intersection of all $\beta-\gamma$-closed sets containing A is called the $\beta-\gamma$-closure of A and is denoted by $\beta-\gamma \operatorname{Cl}(A)$.

Definition 3.3 Let (X, τ) be a topological space. A subset U of X is called a β - γ-neighbourhood of a point $x \in X$ if there exists a $\beta-\gamma$-open set V such that $x \in V \subseteq U$.

Theorem 3.4 For the β - γ-closure of subsets A, B in a topological space (X, τ), the following properties hold:

1. A is β - γ-closed in (X, τ) if and only if $A=\beta-\gamma C l(A)$.
2. If $A \subseteq B$ then $\beta-\gamma C l(A) \subseteq \beta-\gamma C l(B)$.
3. $\beta-\gamma C l(A)$ is $\beta-\gamma$-closed, that is $\beta-\gamma C l(A)=\beta-\gamma C l(\beta-\gamma C l(A))$.
4. $x \in \beta-\gamma C l(A)$ if and only if $A \cap V \neq \phi$ for every β - γ-open set V of X containing x.

Proof. It is obvious.

Definition 3.5 A subset A of the space (X, τ) is said to be $\beta-\gamma$-g.closed if $\beta-\gamma C l(A) \subseteq U$ whenever $A \subseteq U$ and U is a $\beta-\gamma$-open set in (X, τ).

It is clear that every $\beta-\gamma$-closed subset of X is also a $\beta-\gamma$-g.closed set. The following example shows that a $\beta-\gamma$-g.closed set need not be β - γ-closed.

Example 3.6 let $X=\{a, b, c\}, \tau=\{\phi, X,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\}\}$, define an operation $\gamma: \tau \rightarrow P(X)$ such that $\gamma(A)=X$. Then $\{b\}$ is $\beta-\gamma-$ g.closed but it is not β - γ-closed.

Proposition 3.7 A subset A of (X, τ) is $\beta-\gamma-g$.closed if and only if β $\gamma C l(\{x\}) \cap A \neq \phi$ holds for every $x \in \beta-\gamma C l(A)$.

Proof. Let U be a β - γ-open set such that $A \subseteq U$. Let $x \in \beta-\gamma C l(A)$. By assumption there exists a $z \in \beta-\gamma C l(\{x\})$ and $z \in A \subseteq U$. It follows from Theorem 3.4 that $U \cap\{x\} \neq \phi$. Hence $x \in U$. This implies $\beta-\gamma C l(A) \subseteq U$. Therefore A is $\beta-\gamma$-g.closed set in (X, τ).
Conversely, let A be a $\beta-\gamma$-g.closed subset of X and $x \in \beta-\gamma C l(A)$ such that $\beta-$ $\gamma C l(\{x\}) \cap A=\phi$. Since, $\beta-\gamma C l(\{x\})$ is β - γ-closed set in (X, τ). Therefore by Definition 3.1, $X-(\beta-\gamma C l(\{x\}))$ is a $\beta-\gamma$-open set. Since $A \subseteq X-(\beta-\gamma C l(\{x\}))$ and A is β - γ-g.closed implies that $\beta-\gamma C l(A) \subseteq X-(\beta-\gamma C l(\{x\}))$ holds, and hence $x \notin \beta-\gamma C l(A)$. This is a contradiction. Hence $\beta-\gamma C l(\{x\}) \cap A \neq \phi$.

Theorem 3.8 If $\beta-\gamma C l(\{x\}) \cap A \neq \phi$ holds for every $x \in \beta-\gamma C l(A)$, then $\beta-\gamma C l(A)-A$ does not contain a non empty β - γ-closed set.

Proof. Suppose there exists a non empty β - γ-closed set F such that $F \subseteq \beta$ $\gamma C l(A)-A$. Let $x \in F, x \in \beta-\gamma C l(A)$ holds. It follows that $F \cap A=\beta-$ $\gamma C l(F) \cap A \supseteq \beta-\gamma C l(\{x\}) \cap A \neq \phi$. Hence $F \cap A \neq \phi$. This is a contradiction.

Corollary 3.9 A is $\beta-\gamma$-g.closed if and only if $A=F-N$, where F is $\beta-\gamma$-closed and N contains no non-empty $\beta-\gamma$-closed subsets.

Proof. Necessity follows from Proposition 3.7 and Theorem 3.8 with $F=$ $\beta-\gamma C l(A)$ and $N=\beta-\gamma C l(A)-A$.
Conversely, if $A=F-N$ and $A \subseteq O$ with O is β - γ-open, then $F \cap(X-O)$ is a β - γ-closed subset of N and thus is empty. Hence $\beta-\gamma C l(A) \subseteq F \subseteq O$.

Theorem 3.10 If a subset A of X is $\beta-\gamma$-g.closed and $A \subseteq B \subseteq \beta-\gamma C l(A)$, then B is a $\beta-\gamma-g$.closed set in X.

Proof. Let A be a β - γ-g.closed set such that $A \subseteq B \subseteq \beta-\gamma C l(A)$. Let U be a β - γ-open set of X such that $B \subseteq U$. Since A is β - γ-g.closed, we have $\beta-\gamma C l(A) \subseteq U$. Now $\beta-\gamma C l(A) \subseteq \beta-\gamma C l(B) \subseteq \beta-\gamma C l[\beta-\gamma C l(A)]=\beta-$ $\gamma C l(A) \subseteq U$. That is $\beta-\gamma C l(B) \subseteq U, \mathrm{U}$ is β - γ-open. Therefore B is a $\beta-\gamma$-g.closed set in X.

Theorem 3.11 Let $\gamma: \tau \rightarrow P(X)$ be an operation. Then for each $x \in X$, either $\{x\}$ is $\beta-\gamma$-closed or $X-\{x\}$ is $\beta-\gamma$-g.closed set in (X, τ).

Proof. Suppose that $\{x\}$ is not β - γ-closed, then by Definition 3.1, $X-\{x\}$ is not β - γ-open. Let U be any β - γ-open set such that $X-\{x\} \subseteq U$, so $U=X$. Hence $\beta-\gamma C l(X-\{x\}) \subseteq U$. Therefore $X-\{x\}$ is $\beta-\gamma$-g.closed.

Definition 3.12 A space X is said to be $\beta-\gamma-T_{\frac{1}{2}}$ space if every $\beta-\gamma$-g.closed set in (X, τ) is β - γ-closed.

Theorem 3.13 A space X is a $\beta-\gamma-T_{\frac{1}{2}}$ space if and only if $\{x\}$ is $\beta-\gamma$-closed or β - γ-open in (X, τ).

Proof. Suppose $\{x\}$ is not $\beta-\gamma$-closed. Then it follows from assumption and Theorem 3.11 that $\{x\}$ is β - γ-open.
Conversely, Let F be $\beta-\gamma$-g.closed set in (X, τ). Let x be any point in β $\gamma C l(F)$, then $\{x\}$ is β - γ-open or β - γ-closed.

1. Suppose $\{x\}$ is β - γ-open. Then by Theorem 3.4, we have $\{x\} \cap F \neq \phi$, hence $x \in F$. This implies $\beta-\gamma C l(F) \subseteq F$, therefore F is β - γ-closed.
2. Suppose $\{x\}$ is β - γ-closed. Assume $x \notin F$, then $x \in \beta-\gamma C l(F)-F$. This is not possible by Theorem 3.8. Thus we have $x \in F$. Therefore $\beta-\gamma C l(F)=F$ and hence F is β - γ-closed.

Definition 3.14 [1] A topological space (X, τ) with an operation γ on τ is said to be

1. $\beta-\gamma-T_{0}$ if for each pair of distinct points x, y in X, there exists a β - γ-open set U such that either $x \in U$ and $y \notin U$ or $x \notin U$ and $y \in U$.
2. $\beta-\gamma-T_{1}$ if for each pair of distinct points x, y in X, there exist two $\beta-\gamma$ open sets U and V such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$.
3. $\beta-\gamma-T_{2}$ if for each distinct points x, y in X, there exist two disjoint $\beta-\gamma$ open sets U and V containing x and y respectively.

Definition 3.15 [1] A subset A of a topological space X is called a $\beta-\gamma D$ set if there are two β - γ-open sets U and V such that $U \neq X$ and $A=U-V$.

Definition 3.16 [1] A topological space (X, τ) with an operation γ on τ is said to be

1. $\beta-\gamma-D_{0}$ if for any pair of distinct points x and y of X there exists a β γD-set of X containing x but not y or a $\beta-\gamma D$-set of X containing y but not x.
2. $\beta-\gamma-D_{1}$ if for any pair of distinct points x and y of X there exist two $\beta-\gamma D$-sets U and V such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$.
3. $\beta-\gamma-D_{2}$ if for any pair of distinct points x and y of X there exist disjoint $\beta-\gamma D$-sets G and E of X containing x and y, respectively.

Definition 3.17 A topological space (X, τ) with an operation γ on τ, is said to be β - γ-symmetric if for x and y in $X, x \in \beta-\gamma C l(\{y\})$ implies $y \in \beta$ $\gamma C l(\{x\})$.

Proposition 3.18 If (X, τ) is a topological space with an operation γ on τ, then the following are equivalent:

1. (X, τ) is a β - γ-symmetric space.
2. $\{x\}$ is $\beta-\gamma-$ g.closed, for each $x \in X$.

Proof. $(1) \Rightarrow(2)$. Assume that $\{x\} \subseteq U \in \beta-\gamma O(X)$, but $\beta-\gamma C l(\{x\}) \nsubseteq$ U. Then $\beta-\gamma C l(\{x\}) \cap X-U \neq \phi$. Now, we take $y \in \beta-\gamma C l(\{x\}) \cap X-U$, then by hypothesis $x \in \beta-\gamma C l(\{y\}) \subseteq X-U$ and $x \notin U$, which is a contradiction. Therefore $\{x\}$ is β - γ-g.closed, for each $x \in X$.
$(2) \Rightarrow(1)$. Assume that $x \in \beta-\gamma C l(\{y\})$, but $y \notin \beta-\gamma C l(\{x\})$. Then $\{y\} \subseteq$ $X-\beta-\gamma C l(\{x\})$ and hence $\beta-\gamma C l(\{y\}) \subseteq X-\beta-\gamma C l(\{x\})$. Therefore $x \in$ $X-\beta-\gamma C l(\{x\})$, which is a contradiction and hence $y \in \beta-\gamma C l(\{x\})$.

Proposition 3.19 A topological space (X, τ) is $\beta-\gamma-T_{1}$ if and only if the singletons are $\beta-\gamma$-closed sets.

Proof. Let (X, τ) be $\beta-\gamma-T_{1}$ and x any point of X. Suppose $y \in X-\{x\}$, then $x \neq y$ and so there exists a β - γ-open set U such that $y \in U$ but $x \notin U$. Consequently $y \in U \subseteq X-\{x\}$, that is $X-\{x\}=\cup\{U: y \in X-\{x\}\}$ which is β - γ-open.
Conversely, suppose $\{p\}$ is β - γ-closed for every $p \in X$. Let $x, y \in X$ with $x \neq y$. Now $x \neq y$ implies $y \in X-\{x\}$. Hence $X-\{x\}$ is a β - γ-open set contains y but not x. Similarly $X-\{y\}$ is a β - γ-open set contains x but not y. Accordingly X is a $\beta-\gamma-T_{1}$ space.

Corollary 3.20 If a topological space (X, τ) with an operation γ on τ is a $\beta-\gamma-T_{1}$ space, then it is $\beta-\gamma$-symmetric.

Proof. In a $\beta-\gamma-T_{1}$ space, every singleton is β - γ-closed (Proposition 3.19) and therefore is β - γ-g.closed. Then by Proposition 3.18, (X, τ) is β - γ-symmetric.

Corollary 3.21 For a topological space (X, τ) with an operation γ on τ, the following statements are equivalent:

1. (X, τ) is $\beta-\gamma$-symmetric and $\beta-\gamma-T_{0}$.
2. (X, τ) is $\beta-\gamma-T_{1}$.

Proof. By Corollary 3.20 and Remark 3.8 [1], it suffices to prove only (1) $\Rightarrow(2)$.

Let $x \neq y$ and as (X, τ) is $\beta-\gamma-T_{0}$, we may assume that $x \in U \subseteq X-\{y\}$ for some $U \in \beta-\gamma O(X)$. Then $x \notin \beta-\gamma C l(\{y\})$ and hence $y \notin \beta-\gamma C l(\{x\})$. There exists a β - γ-open set V such that $y \in V \subseteq X-\{x\}$ and thus (X, τ) is a $\beta-\gamma-T_{1}$ space.

Remark 3.22 Let (X, τ) be a topological space and γ be an operation on τ, then the following statements are hold:

1. Every $\beta-\gamma-T_{1}$ space is $\beta-\gamma-T_{\frac{1}{2}}$.
2. Every $\beta-\gamma-T_{\frac{1}{2}}$ space is $\beta-\gamma-T_{0}$.

Proposition 3.23 If (X, τ) is a β - γ-symmetric space with an operation γ on τ, then the following statements are equivalent:

1. (X, τ) is a $\beta-\gamma-T_{0}$ space.
2. (X, τ) is a $\beta-\gamma-T_{\frac{1}{2}}$ space.
3. (X, τ) is a $\beta-\gamma-T_{1}$ space.

Proof. (1) \Leftrightarrow (3). Obvious from Corollary 3.21.
$(3) \Rightarrow(2)$ and $(2) \Rightarrow(1)$. Directly from Remark 3.22.
Corollary 3.24 For a β - γ-symmetric space (X, τ), the following are equivalent:

1. (X, τ) is $\beta-\gamma-T_{0}$.
2. (X, τ) is $\beta-\gamma-D_{1}$.
3. (X, τ) is $\beta-\gamma-T_{1}$.

Proof. $(1) \Rightarrow(3)$. Follows from Corollary 3.21.
$(3) \Rightarrow(2) \Rightarrow(1)$. Follows from Remark 3.8 [1] and Corollary 3.11 [1].
Definition 3.25 Let A be a subset of a topological space (X, τ) and γ be an operation on τ. The $\beta-\gamma$-kernel of A, denoted by $\beta-\gamma k e r(A)$ is defined to be the set

$$
\beta-\gamma \operatorname{ker}(A)=\cap\{U \in \beta-\gamma O(X): A \subseteq U\}
$$

Proposition 3.26 Let (X, τ) be a topological space with an operation γ on τ and $x \in X$. Then $y \in \beta-\gamma \operatorname{ker}(\{x\})$ if and only if $x \in \beta-\gamma C l(\{y\})$.

Proof. Suppose that $y \notin \beta$ - $\gamma \operatorname{ker}(\{x\})$. Then there exists a β - γ-open set V containing x such that $y \notin V$. Therefore, we have $x \notin \beta-\gamma C l(\{y\})$. The proof of the converse case can be done similarly.

Proposition 3.27 Let (X, τ) be a topological space with an operation γ on τ and A be a subset of X. Then, $\beta-\gamma k e r(A)=\{x \in X: \beta-\gamma C l(\{x\}) \cap A \neq \phi\}$.

Proof. Let $x \in \beta-\gamma \operatorname{ker}(A)$ and suppose $\beta-\gamma C l(\{x\}) \cap A=\phi$. Hence $x \notin X-\beta-\gamma C l(\{x\})$ which is a β - γ-open set containing A. This is impossible, since $x \in \beta-\gamma \operatorname{ker}(A)$. Consequently, $\beta-\gamma C l(\{x\}) \cap A \neq \phi$. Next, let $x \in X$ such that $\beta-\gamma C l(\{x\}) \cap A \neq \phi$ and suppose that $x \notin \beta-\gamma k e r(A)$. Then, there exists a β - γ-open set V containing A and $x \notin V$. Let $y \in \beta-\gamma C l(\{x\}) \cap A$. Hence, V is a β - γ-neighbourhood of y which does not contain x. By this contradiction $x \in \beta-\gamma \operatorname{ker}(A)$ and the claim.

Proposition 3.28 If a singleton $\{x\}$ is a $\beta-\gamma D$-set of (X, τ), then $\beta-\gamma \operatorname{ker}(\{x\}) \neq$ X.

Proof. Since $\{x\}$ is a β - γD-set of (X, τ), then there exist two subsets $U_{1}, U_{2} \in$ $\beta-\gamma O(X, \tau)$ such that $\{x\}=U_{1}-U_{2},\{x\} \subseteq U_{1}$ and $U_{1} \neq X$. Thus, we have that $\beta-\gamma \operatorname{ker}(\{x\}) \subseteq U_{1} \neq X$ and so $\beta-\gamma \operatorname{ker}(\{x\}) \neq X$.

Proposition 3.29 For a $\beta-\gamma-T_{\frac{1}{2}}$ topological space (X, τ) with at least two points, (X, τ) is a $\beta-\gamma-D_{1}$ space if and only if $\beta-\gamma k e r(\{x\}) \neq X$ holds for every point $x \in X$.

Proof. Necessity. Let $x \in X$. For a point $y \neq x$, there exists a β - γD-set U such that $x \in U$ and $y \notin U$. Say $U=U_{1}-U_{2}$, where $U_{i} \in \beta-\gamma O(X, \tau)$ for each $i \in\{1,2\}$ and $U_{1} \neq X$. Thus, for the point x, we have a β - γ-open set U_{1} such that $\{x\} \subseteq U_{1}$ and $U_{1} \neq X$. Hence, $\beta-\gamma \operatorname{ker}(\{x\}) \neq X$.
Sufficiency. Let x and y be a pair of distinct points of X. We prove that there exist $\beta-\gamma D$-sets A and B containing x and y, respectively, such that $y \notin A$ and $x \notin B$. Using Theorem 3.13, we can take the subsets A and B for the following four cases for two points x and y.
Case1. $\{x\}$ is β - γ-open and $\{y\}$ is β - γ-closed in (X, τ). Since β - $\gamma k e r(\{y\}) \neq$ X, then there exists a β - γ-open set V such that $y \in V$ and $V \neq X$. Put $A=\{x\}$ and $B=\{y\}$. Since $B=V-(X-\{y\})$, then V is a β - γ-open set with $V \neq X$ and $X-\{y\}$ is β - γ-open, and B is a required β - γD-set containing y such that $x \notin B$. Obviously, A is a required $\beta-\gamma D$-set containing x such that $y \notin A$.

Case 2. $\{x\}$ is β - γ-closed and $\{y\}$ is β - γ-open in (X, τ). The proof is similar to Case 1.
Case 3. $\{x\}$ and $\{y\}$ are β - γ-open in (X, τ). Put $A=\{x\}$ and $B=\{y\}$.
Case 4. $\{x\}$ and $\{y\}$ are β - γ-closed in (X, τ). Put $A=X-\{y\}$ and $B=$ $X-\{x\}$.
For each case of the above, the subsets A and B are the required β - γD-sets. Therefore, (X, τ) is a $\beta-\gamma-D_{1}$ space.

Definition 3.30 Let (X, τ) and (Y, σ) be two topological spaces and γ, β operations on τ, σ, respectively. A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be β - γ-irresolute if for each $x \in X$ and each β - β-open set V containing $f(x)$, there is a β - γ-open set U in X containing x such that $f(U) \subseteq V$.

Theorem 3.31 Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a mapping, then the following statements are equivalent:

1. f is β - γ-irresolute.
2. $f(\beta-\gamma C l(A)) \subseteq \beta-\beta C l(f(A))$ holds for every subset A of (X, τ).
3. $f^{-1}(B)$ is β - γ-closed in (X, τ), for every $\beta-\beta$-closed set B of (Y, σ).

Proof. (1) $\Rightarrow(2)$. Let $y \in f(\beta-\gamma C l(A))$ and V be any β - β-open set containing y. Then there exists a point $x \in X$ and a β - γ-open set U such that $f(\mathrm{x})=y$ and $x \in U$ and $f(\mathrm{U}) \subseteq V$. Since $x \in \beta-\gamma C l(A)$, we have $U \cap A \neq \phi$ and hence $\phi \neq f(U \cap A) \subseteq f(U) \cap f(A) \subseteq V \cap f(A)$. This implies $y \in \beta-\beta C l(f(A))$. Therefore we have $f(\beta-\gamma C l(A)) \subseteq \beta-\beta C l(f(A))$.
$(2) \Rightarrow(3)$. Let B be a β - β-closed set in (Y, σ). Therefore $\beta-\beta C l(B)=B$. By using (2) we have $f\left(\beta-\gamma C l\left(f^{-1}(B)\right) \subseteq \beta-\beta C l(B)=B\right.$. Therefore we have $\beta-\gamma C l\left(f^{-1}(B)\right) \subseteq f^{-1}(B)$. Hence $f^{-1}(B)$ is $\beta-\gamma$-closed. $(3) \Rightarrow(1)$. Obvious.

Definition 3.32 A mapping $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be β - γ-closed if for any β - γ-closed set A of $(X, \tau), f(A)$ is a $\beta-\beta$-closed in (Y, σ).

Theorem 3.33 Suppose that f is β - γ-irresolute mapping and f is $\beta-\gamma$ closed. Then:

1. For every $\beta-\gamma$-g.closed set A of (X, τ) the image $f(A)$ is $\beta-\beta$-g.closed.
2. For every $\beta-\beta-g$.closed set B of (Y, σ) the inverse set $f^{-1}(B)$ is $\beta-\gamma$ g.closed.

Proof.

1. Let V be any β - β-open set in (Y, σ) such that $f(\mathrm{~A}) \subseteq V$. By using Theorem $3.31 f^{-1}(V)$ is β - γ-open. Since A is $\beta-\gamma$-g.closed and $A \subseteq$ $f^{-1}(V)$, we have $\beta-\gamma C l(A) \subseteq f^{-1}(V)$, and hence $f(\beta-\gamma C l(A)) \subseteq V$. By assumption $f(\beta-\gamma C l(A))$ is a β - β-closed set. Therefore $\beta-\beta C l(f(A)) \subseteq$ $\beta-\beta C l(f(\beta-\gamma C l(A)))=f(\beta-\gamma C l(A)) \subseteq V$. This implies $f(\mathrm{~A})$ is $\beta-\beta-$ g.closed.
2. Let U be β - γ-open set of (X, τ) such that $f^{-1}(B) \subseteq U$. Let $F=\beta$ $\gamma C l\left(f^{-1}(B)\right) \cap(X-U)$, then F is β - γ-closed set in (X, τ). Since f is β - γ-closed this implies $f(\mathrm{~F})$ is β - β-closed in (Y, σ). Since $f(F) \subseteq$ $f\left(\beta-\gamma C l\left(f^{-1}(B)\right)\right) \cap f(X-U) \subseteq \beta-\beta C l\left(f\left(f^{-1}(B)\right)\right) \cap f(X-U) \subseteq \beta-$ $\beta C l(B) \cap(Y-B)$. This implies $f(F)=\phi$, and hence $F=\phi$. Therefore $\beta-\gamma C l\left(f^{-1}(B)\right) \subseteq U$. Hence $f^{-1}(B)$ is $\beta-\gamma$-g.closed in (X, τ).

Theorem 3.34 Let $f:(X, \tau) \rightarrow(Y, \sigma)$ is β - γ-irresolute and β - γ-closed. Then:

1. If f is injective and (Y, σ) is $\beta-\beta-T_{\frac{1}{2}}$, then (X, τ) is $\beta-\gamma-T_{\frac{1}{2}}$.
2. If f is surjective and (X, τ) is $\beta-\gamma-T_{\frac{1}{2}}$, then (Y, σ) is $\beta-\beta-T_{\frac{1}{2}}$.

Proof.

1. Let A be a $\beta-\gamma$-g.closed set of (X, τ). By Theorem 3.33, $f(A)$ is $\beta-\beta$ g.closed. Since (Y, σ) is $\beta-\beta-T_{\frac{1}{2}}$, this implies that $f(A)$ is β - β-closed. Since f is β - γ-irresolute, then by Theorem 3.31, we have $A=f^{-1}(f(A))$ is β - γ-closed. Hence (X, τ) is $\beta-\gamma-T_{\frac{1}{2}}$.
2. Let B be a β - β-g.closed set of (Y, σ). By Theorem 3.33, $f^{-1}(B)$ is $\beta-\gamma$ g.closed in X. Since (X, τ) is $\beta-\gamma-T_{\frac{1}{2}}$, so $f^{-1}(B)$ is $\beta-\gamma$-closed. Since f is surjective and β - γ-closed, so $f\left(f^{-1}(B)\right)=B$ is β - β-closed.

Theorem 3.35 If $f:(X, \tau) \rightarrow(Y, \sigma)$ is a β - γ-irresolute surjective function and E is a $\beta-\beta D$-set in Y, then the inverse image of E is a $\beta-\gamma D$-set in X.

Proof. Let E be a β - βD-set in Y. Then there are β - β-open sets U_{1} and U_{2} in Y such that $E=U_{1}-U_{2}$ and $U_{1} \neq Y$. By the β - γ-irresolute of $f, f^{-1}\left(U_{1}\right)$ and $f^{-1}\left(U_{2}\right)$ are β - γ-open in X. Since $U_{1} \neq Y$ and f is surjective, we have $f^{-1}\left(U_{1}\right) \neq X$. Hence, $f^{-1}(E)=f^{-1}\left(U_{1}\right)-f^{-1}\left(U_{2}\right)$ is a $\beta-\gamma D$-set.

Theorem 3.36 If (Y, σ) is $\beta-\beta-D_{1}$ and $f:(X, \tau) \rightarrow(Y, \sigma)$ is β - γ-irresolute bijective, then (X, τ) is $\beta-\gamma-D_{1}$.

Proof. Suppose that Y is a $\beta-\beta-D_{1}$ space. Let x and y be any pair of distinct points in X. Since f is injective and Y is $\beta-\beta-D_{1}$, there exist β - βD-set G_{x} and G_{y} of Y containing $f(x)$ and $f(y)$ respectively, such that $f(x) \notin G_{y}$ and $f(y) \notin G_{x}$. By Theorem 3.35, $f^{-1}\left(G_{x}\right)$ and $f^{-1}\left(G_{y}\right)$ are β - γD-set in X containing x and y, respectively, such that $x \notin f^{-1}\left(G_{y}\right)$ and $y \notin f^{-1}\left(G_{x}\right)$. This implies that X is a $\beta-\gamma-D_{1}$ space.

Theorem 3.37 A topological space (X, τ) is $\beta-\gamma-D_{1}$ if for each pair of distinct points $x, y \in X$, there exists a β - γ-irresolute surjective function f : $(X, \tau) \rightarrow(Y, \sigma)$, where Y is a $\beta-\beta-D_{1}$ space such that $f(x)$ and $f(y)$ are distinct.

Proof. Let x and y be any pair of distinct points in X. By hypothesis, there exists a β - γ-irresolute, surjective function f of a space X onto a $\beta-\beta$ - D_{1} space Y such that $f(x) \neq f(y)$. Then, there exist disjoint β - βD-set G_{x} and G_{y} in Y such that $f(x) \in G_{x}$ and $f(y) \in G_{y}$. Since f is β - γ-irresolute and surjective, by Theorem 3.35, $f^{-1}\left(G_{x}\right)$ and $f^{-1}\left(G_{y}\right)$ are disjoint β - γD-sets in X containing x and y, respectively. Hence, X is $\beta-\gamma-D_{1}$ space.

4β - γ-Continuous and β - γ-Closed Graphs

Definition 4.1 A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be β - γ-continuous if for every open set V of $Y, f^{-1}(V)$ is β - γ-open in X.

Theorem 4.2 The following are equivalent for a function $f:(X, \tau) \rightarrow$ (Y, σ) :

1. f is $\beta-\gamma$-continuous.
2. The inverse image of every closed set in Y is $\beta-\gamma$-closed in X.
3. For each subset A of $X, f(\beta-\gamma C l(A)) \subseteq C l(f(A))$.
4. For each subset B of $Y, \beta-\gamma C l\left(f^{-1}(B)\right) \subseteq f^{-1}(C l(B))$.

Proof. (1) $\Leftrightarrow(2)$. Obvious.
$(3) \Leftrightarrow(4)$. Let B be any subset of Y. Then by (3), we have $f\left(\beta-\gamma C l\left(f^{-1}(B)\right)\right) \subseteq$ $C l\left(f\left(f^{-1}(B)\right)\right) \subseteq C l(B)$. This implies $\beta-\gamma C l\left(f^{-1}(B)\right) \subseteq f^{-1}(C l(B))$.

Conversely, let $B=f(A)$ where A is a subset of X. Then, by (4), we have, $\beta-\gamma C l\left(f^{-1}(f(A))\right) \subseteq f^{-1}(C l(f(A)))$. Thus, $f(\beta-\gamma C l(A)) \subseteq C l(f(A))$.
$(2) \Rightarrow(4)$. Let $B \subseteq Y$. Since $f^{-1}(C l(B))$ is β - γ-closed and $f^{-1}(B) \subseteq$ $f^{-1}(C l(B))$, then $\beta-\gamma C l\left(f^{-1}(B)\right) \subseteq f^{-1}(C l(B))$.
$(4) \Rightarrow(2)$. Let $K \subseteq Y$ be a closed set. By $(4), \beta-\gamma C l\left(f^{-1}(K)\right) \subseteq f^{-1}(C l(K))=$ $f^{-1}(K)$. Thus, $f^{-1}(K)$ is β - γ-closed.

Theorem 4.3 If $f: X \rightarrow Y$ is a $\beta-\gamma$-continuous injective function and Y is T_{2}, then X is $\beta-\gamma-T_{2}$.

Proof. Let x and y in X be any pair of distinct points, then there exist disjoint open sets A and B in Y such that $f(x) \in A$ and $f(y) \in B$. Since f is β - γ-continuous, $f^{-1}(A)$ and $f^{-1}(B)$ are β - γ-open in X containing x and y respectively, we have $f^{-1}(A) \cap f^{-1}(B)=\phi$. Thus, X is $\beta-\gamma-T_{2}$.

Definition 4.4 For a function $f:(X, \tau) \rightarrow(Y, \sigma)$, the graph $G(f)=$ $\{(x, f(x)): x \in X\}$ is said to be β - γ-closed if for each $(x, y) \notin G(f)$, there exist a β - γ-open set U containing x and an open set V containing y such that $(U \times V) \cap G(f)=\phi$.

Lemma 4.5 The function $f:(X, \tau) \rightarrow(Y, \sigma)$ has an β - γ-closed graph if and only if for each $x \in X$ and $y \in Y$ such that $y \neq f(x)$, there exist a $\beta-\gamma$-open set U and an open set V containing x and y respectively, such that $f(U) \cap V=\phi$.

Proof. It follows readily from the above definition.
Theorem 4.6 If $f:(X, \tau) \rightarrow(Y, \sigma)$ is an injective function with the β - γ closed graph, then X is $\beta-\gamma-T_{1}$.

Proof. Let x and y be two distinct points of X. Then $f(x) \neq f(y)$. Thus there exist a β - γ-open set U and an open set V containing x and $f(y)$, respectively, such that $f(U) \cap V=\phi$. Therefore $y \notin U$ and it follows that X is $\beta-\gamma-T_{1}$.

Theorem 4.7 If $f:(X, \tau) \rightarrow(Y, \sigma)$ is an injective $\beta-\gamma$-continuous with a β - γ-closed graph $G(f)$, then X is $\beta-\gamma-T_{2}$.

Proof. Let x_{1} and x_{2} be any distinct points of X. Then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$, so $\left(x_{1}, f\left(x_{2}\right)\right) \in(X \times Y)-G(f)$. Since the graph $G(f)$ is β - γ-closed, there exist a β - γ-open set U containing x_{1} and open set V containing $f\left(x_{2}\right)$ such that $f(U) \cap V=\phi$. Since f is β - γ-continuous, $f^{-1}(V)$ is a β - γ-open set containing x_{2} such that $U \cap f^{-1}(V)=\phi$. Hence X is $\beta-\gamma-T_{2}$.

Recall that a space X is said to be T_{1} if for each pair of distinct points x and y of X, there exist an open set U containing x but not y and an open set V containing y but not x.

Theorem 4.8 If $f:(X, \tau) \rightarrow(Y, \sigma)$ is an surjective function with the $\beta-\gamma$-closed graph, then Y is T_{1}.

Proof. Let y_{1} and y_{2} be two distinct points of Y. Since f is surjective, there exists x in X such that $f(x)=y_{2}$. Therefore $\left(x, y_{1}\right) \notin G(f)$. By Lemma 4.5, there exist β - γ-open set U and an open set V containing x and y_{1} respectively, such that $f(U) \cap V=\phi$. We obtain an open set V containing y_{1} which does not contain y_{2}. It follows that $y_{2} \notin V$. Hence, Y is T_{1}.

Definition 4.9 A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be $\beta-\gamma$ - W-continuous if for each $x \in X$ and each open set V of Y containing $f(x)$, there exists a $\beta-\gamma$-open set U in X containing x such that $f(U) \subseteq C l(V)$.

Theorem 4.10 If $f:(X, \tau) \rightarrow(Y, \sigma)$ is $\beta-\gamma$ - W-continuous and Y is Hausdorff, then $G(f)$ is β - γ-closed.

Proof. Suppose that $(x, y) \notin G(f)$, then $f(x) \neq y$. By the fact that Y is Hausdorff, there exist open sets W and V such that $f(x) \in W, y \in V$ and $V \cap W=\phi$. It follows that $C l(W) \cap V=\phi$. Since f is $\beta-\gamma$-W-continuous, there exists a β - γ-open set U containing x such that $f(U) \subseteq C l(W)$. Hence, we have $f(U) \cap V=\phi$. This means that $G(f)$ is β - γ-closed.

Definition 4.11 A subset A of a space X is said to be β - γ-compact relative to X if every cover of A by $\beta-\gamma$-open sets of X has a finite subcover.

Theorem 4.12 Let $f:(X, \tau) \rightarrow(Y, \sigma)$ have a β - γ-closed graph. If K is β - γ-compact relative to X, then $f(K)$ is closed in Y.

Proof. Suppose that $y \notin f(K)$. For each $x \in K, f(x) \neq y$. By lemma 4.5, there exists a β - γ-open set U_{x} containing x and an open neighbourhood V_{x} of y such that $f\left(U_{x}\right) \cap V_{x}=\phi$. The family $\left\{U_{x}: x \in K\right\}$ is a cover of K by $\beta-\gamma$-open sets of X and there exists a fnite subset K_{0} of K such that $K \subseteq \cup\left\{U_{x}: x \in K_{0}\right\}$. Put $V=\cap\left\{V_{x}: x \in K_{0}\right\}$. Then V is an open neighbourhood of y and $f(K) \cap V=\phi$. This means that $f(K)$ is closed in Y.

Theorem 4.13 If $f:(X, \tau) \rightarrow(Y, \sigma)$ has a $\beta-\gamma$-closed graph $G(f)$, then for each $x \in X .\{f(x)\}=\cap\{C l(f(A): A$ is β - γ-open set containing $x\}$.

Proof. Suppose that $y \neq f(x)$ and $y \in \cap\{C l(f(A)): A$ is β - γ-open set containing $x\}$. Then $y \in C l(f(A))$ for each β - γ-open set A containing x. This implies that for each open set B containing $y, B \cap f(A) \neq \phi$. Since $(x, y) \notin G(f)$ and $G(f)$ is a β - γ-closed graph, this is a contradiction.

Definition 4.14 A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is called $a \beta$ - γ-open if the image of every $\beta-\gamma$-open set in X is open in Y.

Theorem 4.15 If $f:(X, \tau) \rightarrow(Y, \sigma)$ is a surjective $\beta-\gamma$-open function with a β - γ-closed graph $G(f)$, then Y is T_{2}.

Proof. Let y_{1} and y_{2} be any two distinct points of Y. Since f is surjective $f(x)=y_{1}$ for some $x \in X$ and $\left(x, y_{2}\right) \in(X \times Y)-G(f)$. This implies that there exist a β - γ-open set A of X and an open set B of Y such that $\left(x, y_{2}\right) \in(A \times B)$ and $(A \times B) \cap G(f)=\phi$. We have $f(A) \cap B=\phi$. Since f is β - γ-open, then $f(A)$ is open such that $f(x)=y_{1} \in f(A)$. Thus, Y is T_{2}.

References

[1] H.Z. Ibrahim, Weak forms of γ-open sets and new separation axioms, Int. J. of Scientific and Engineering Research, 3(4) (April-2012), 1-4.
[2] G.S.S. Krishnan, A new class of semi open sets in a topological space, Proc. NCMCM, Allied Publishers, New Delhi, (2003), 305-311.
[3] H. Ogata, Operation on topological spaces and associated topology, Math. Japonica, 36(1) (1991), 175-184.

