

Gen. Math. Notes, Vol. 15, No. 2, April, 2013, pp.32-44 ISSN 2219-7184; Copyright ©ICSRS Publication, 2013 www.i-csrs.org Available free online at http://www.geman.in

β - γ -Irresolute and β - γ -Closed Graph

Hariwan Z. Ibrahim

Department of Mathematics, Faculty of Science University of Zakho, Kurdistan-Region, Iraq E-mail: hariwan_math@yahoo.com

(Received: 22-1-13 / Accepted: 26-2-13)

Abstract

In this paper, we introduce the notion of β - γ -g.closed sets and some weak separation axioms. Also we show that some basic properties of β - γ - $T_{\frac{1}{2}}$, β - γ - T_i , β - γ - D_i for i = 0, 1, 2 spaces and we ofer a new class of functions called β - γ -irresolute, β - γ -continuous functions and a new notion of the graph of a function called a β - γ -closed graph and investigate some of their fundamental properties.

Keywords: β - γ -open set, β - γ -g.closed set.

1 Introduction

Ogata [3] introduced the notion of γ -open sets which are weaker than open sets. The concept of β - γ -open sets and β - γD -sets in topological spaces are introduced by Hariwan Z. Ibrahim [1].

In this paper, we introduce the notion of β - γ -g.closed sets and some weak separation axioms. Also we show that some basic properties of β - γ - $T_{\frac{1}{2}}$, β - γ - T_i , β - γ - D_i for i = 0, 1, 2 spaces and we ofer a new class of functions called β - γ -irresolute, β - γ -continuous functions and a new notion of the graph of a function called a β - γ -closed graph and investigate some of their fundamental properties.

2 Preliminaries

Let (X, τ) be a topological space and A a subset of X. The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. An operation γ [3] on a topology τ is a mapping from τ in to power set P(X) of X such that $V \subseteq \gamma(V)$ for each $V \in \tau$, where $\gamma(V)$ denotes the value of γ at V. A subset A of X with an operation γ on τ is called γ -open [3] if for each $x \in A$, there exists an open set U such that $x \in U$ and $\gamma(U) \subseteq A$. Then, τ_{γ} denotes the set of all γ -open set in X. Clearly $\tau_{\gamma} \subseteq \tau$. Complements of γ -open sets are called γ -closed. The τ_{γ} -interior [2] of A is denoted by τ_{γ} -Int(A) and defined to be the union of all γ -open sets of X contained in A. A subset A of a space X is said to be β - γ -open [1] if $A \subseteq Cl(\tau_{\gamma}$ -Int(Cl(A))).

3 β - γ -g Closed Sets, β - γ - $T_{\frac{1}{2}}$ Spaces and β - γ -Irresolute

Definition 3.1 A subset A of X is called β - γ -closed if and only if its complement is β - γ -open.

Moreover, $\beta \gamma O(X)$ denotes the collection of all $\beta \gamma$ -open sets of (X, τ) and $\beta \gamma C(X)$ denotes the collection of all $\beta \gamma$ -closed sets of (X, τ) .

Definition 3.2 Let A be a subset of a topological space (X, τ) . The intersection of all β - γ -closed sets containing A is called the β - γ -closure of A and is denoted by β - γ Cl(A).

Definition 3.3 Let (X, τ) be a topological space. A subset U of X is called a β - γ -neighbourhood of a point $x \in X$ if there exists a β - γ -open set V such that $x \in V \subseteq U$.

Theorem 3.4 For the β - γ -closure of subsets A, B in a topological space (X, τ) , the following properties hold:

- 1. A is β - γ -closed in (X, τ) if and only if $A = \beta$ - $\gamma Cl(A)$.
- 2. If $A \subseteq B$ then $\beta \gamma Cl(A) \subseteq \beta \gamma Cl(B)$.
- 3. $\beta \gamma Cl(A)$ is $\beta \gamma closed$, that is $\beta \gamma Cl(A) = \beta \gamma Cl(\beta \gamma Cl(A))$.
- 4. $x \in \beta \gamma Cl(A)$ if and only if $A \cap V \neq \phi$ for every $\beta \gamma$ -open set V of X containing x.

Proof. It is obvious.

Definition 3.5 A subset A of the space (X, τ) is said to be β - γ -g.closed if β - γ Cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is a β - γ -open set in (X, τ) .

It is clear that every β - γ -closed subset of X is also a β - γ -g.closed set. The following example shows that a β - γ -g.closed set need not be β - γ -closed.

Example 3.6 let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\},$ define an operation $\gamma : \tau \to P(X)$ such that $\gamma(A) = X$. Then $\{b\}$ is β - γ -g.closed but it is not β - γ -closed.

Proposition 3.7 A subset A of (X, τ) is β - γ -g.closed if and only if β - $\gamma Cl(\{x\}) \cap A \neq \phi$ holds for every $x \in \beta$ - $\gamma Cl(A)$.

Proof. Let U be a β - γ -open set such that $A \subseteq U$. Let $x \in \beta$ - $\gamma Cl(A)$. By assumption there exists a $z \in \beta$ - $\gamma Cl(\{x\})$ and $z \in A \subseteq U$. It follows from Theorem 3.4 that $U \cap \{x\} \neq \phi$. Hence $x \in U$. This implies β - $\gamma Cl(A) \subseteq U$. Therefore A is β - γ -g.closed set in (X, τ) .

Conversely, let A be a β - γ -g.closed subset of X and $x \in \beta$ - $\gamma Cl(A)$ such that β - $\gamma Cl(\{x\}) \cap A = \phi$. Since, β - $\gamma Cl(\{x\})$ is β - γ -closed set in (X, τ) . Therefore by Definition 3.1, $X - (\beta - \gamma Cl(\{x\}))$ is a β - γ -open set. Since $A \subseteq X - (\beta - \gamma Cl(\{x\}))$ and A is β - γ -g.closed implies that β - $\gamma Cl(A) \subseteq X - (\beta - \gamma Cl(\{x\}))$ holds, and hence $x \notin \beta - \gamma Cl(A)$. This is a contradiction. Hence $\beta - \gamma Cl(\{x\}) \cap A \neq \phi$.

Theorem 3.8 If $\beta - \gamma Cl(\{x\}) \cap A \neq \phi$ holds for every $x \in \beta - \gamma Cl(A)$, then $\beta - \gamma Cl(A) - A$ does not contain a non empty $\beta - \gamma - closed$ set.

Proof. Suppose there exists a non empty β - γ -closed set F such that $F \subseteq \beta$ - $\gamma Cl(A) - A$. Let $x \in F$, $x \in \beta$ - $\gamma Cl(A)$ holds. It follows that $F \cap A = \beta$ - $\gamma Cl(F) \cap A \supseteq \beta$ - $\gamma Cl(\{x\}) \cap A \neq \phi$. Hence $F \cap A \neq \phi$. This is a contradiction.

Corollary 3.9 A is β - γ -g.closed if and only if A = F - N, where F is β - γ -closed and N contains no non-empty β - γ -closed subsets.

Proof. Necessity follows from Proposition 3.7 and Theorem 3.8 with $F = \beta - \gamma Cl(A)$ and $N = \beta - \gamma Cl(A) - A$. Conversely, if A = F - N and $A \subseteq O$ with O is $\beta - \gamma$ -open, then $F \cap (X - O)$ is a $\beta - \gamma$ -closed subset of N and thus is empty. Hence $\beta - \gamma Cl(A) \subseteq F \subseteq O$.

Theorem 3.10 If a subset A of X is β - γ -g.closed and $A \subseteq B \subseteq \beta$ - γ Cl(A), then B is a β - γ -g.closed set in X.

Proof. Let A be a β - γ -g.closed set such that $A \subseteq B \subseteq \beta$ - $\gamma Cl(A)$. Let U be a β - γ -open set of X such that $B \subseteq U$. Since A is β - γ -g.closed, we have β - $\gamma Cl(A) \subseteq U$. Now β - $\gamma Cl(A) \subseteq \beta$ - $\gamma Cl(B) \subseteq \beta$ - $\gamma Cl[\beta$ - $\gamma Cl(A)] = \beta$ - $\gamma Cl(A) \subseteq U$. That is β - $\gamma Cl(B) \subseteq U$, U is β - γ -open. Therefore B is a β - γ -g.closed set in X.

 β - γ -Irresolute and β - γ -Closed Graph

Theorem 3.11 Let $\gamma : \tau \to P(X)$ be an operation. Then for each $x \in X$, either $\{x\}$ is β - γ -closed or $X - \{x\}$ is β - γ -g.closed set in (X, τ) .

Proof. Suppose that $\{x\}$ is not β - γ -closed, then by Definition 3.1, $X - \{x\}$ is not β - γ -open. Let U be any β - γ -open set such that $X - \{x\} \subseteq U$, so U = X. Hence β - $\gamma Cl(X - \{x\}) \subseteq U$. Therefore $X - \{x\}$ is β - γ -g.closed.

Definition 3.12 A space X is said to be β - γ - $T_{\frac{1}{2}}$ space if every β - γ -g.closed set in (X, τ) is β - γ -closed.

Theorem 3.13 A space X is a $\beta - \gamma - T_{\frac{1}{2}}$ space if and only if $\{x\}$ is $\beta - \gamma$ -closed or $\beta - \gamma$ -open in (X, τ) .

Proof. Suppose $\{x\}$ is not β - γ -closed. Then it follows from assumption and Theorem 3.11 that $\{x\}$ is β - γ -open. Conversely, Let F be β - γ -g.closed set in (X, τ) . Let x be any point in β - γ - $\ell(F)$, then $\{x\}$ is β - γ -open or β - γ -closed.

- 1. Suppose $\{x\}$ is β - γ -open. Then by Theorem 3.4, we have $\{x\} \cap F \neq \phi$, hence $x \in F$. This implies β - $\gamma Cl(F) \subseteq F$, therefore F is β - γ -closed.
- 2. Suppose $\{x\}$ is β - γ -closed. Assume $x \notin F$, then $x \in \beta$ - $\gamma Cl(F) F$. This is not possible by Theorem 3.8. Thus we have $x \in F$. Therefore β - $\gamma Cl(F) = F$ and hence F is β - γ -closed.

Definition 3.14 [1] A topological space (X, τ) with an operation γ on τ is said to be

- 1. $\beta \gamma T_0$ if for each pair of distinct points x, y in X, there exists a $\beta \gamma$ -open set U such that either $x \in U$ and $y \notin U$ or $x \notin U$ and $y \in U$.
- 2. β - γ - T_1 if for each pair of distinct points x, y in X, there exist two β - γ -open sets U and V such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$.
- 3. β - γ - T_2 if for each distinct points x, y in X, there exist two disjoint β - γ -open sets U and V containing x and y respectively.

Definition 3.15 [1] A subset A of a topological space X is called a β - γD -set if there are two β - γ -open sets U and V such that $U \neq X$ and A = U - V.

Definition 3.16 [1] A topological space (X, τ) with an operation γ on τ is said to be

1. β - γ - D_0 if for any pair of distinct points x and y of X there exists a β - γ D-set of X containing x but not y or a β - γ D-set of X containing y but not x.

- 2. β - γ - D_1 if for any pair of distinct points x and y of X there exist two β - γ D-sets U and V such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$.
- 3. β - γ - D_2 if for any pair of distinct points x and y of X there exist disjoint β - γ D-sets G and E of X containing x and y, respectively.

Definition 3.17 A topological space (X, τ) with an operation γ on τ , is said to be β - γ -symmetric if for x and y in X, $x \in \beta$ - $\gamma Cl(\{y\})$ implies $y \in \beta$ - $\gamma Cl(\{x\})$.

Proposition 3.18 If (X, τ) is a topological space with an operation γ on τ , then the following are equivalent:

- 1. (X, τ) is a β - γ -symmetric space.
- 2. $\{x\}$ is β - γ -g.closed, for each $x \in X$.

Proof. (1) \Rightarrow (2). Assume that $\{x\} \subseteq U \in \beta \gamma O(X)$, but $\beta \gamma Cl(\{x\}) \not\subseteq U$. Then $\beta \gamma Cl(\{x\}) \cap X - U \neq \phi$. Now, we take $y \in \beta \gamma Cl(\{x\}) \cap X - U$, then by hypothesis $x \in \beta \gamma Cl(\{y\}) \subseteq X - U$ and $x \notin U$, which is a contradiction. Therefore $\{x\}$ is $\beta \gamma - \gamma cl(\{y\}) \subseteq X - U$ and $x \in X$.

(2) \Rightarrow (1). Assume that $x \in \beta - \gamma Cl(\{y\})$, but $y \notin \beta - \gamma Cl(\{x\})$. Then $\{y\} \subseteq X - \beta - \gamma Cl(\{x\})$ and hence $\beta - \gamma Cl(\{y\}) \subseteq X - \beta - \gamma Cl(\{x\})$. Therefore $x \in X - \beta - \gamma Cl(\{x\})$, which is a contradiction and hence $y \in \beta - \gamma Cl(\{x\})$.

Proposition 3.19 A topological space (X, τ) is β - γ - T_1 if and only if the singletons are β - γ -closed sets.

Proof. Let (X, τ) be β - γ - T_1 and x any point of X. Suppose $y \in X - \{x\}$, then $x \neq y$ and so there exists a β - γ -open set U such that $y \in U$ but $x \notin U$. Consequently $y \in U \subseteq X - \{x\}$, that is $X - \{x\} = \cup \{U : y \in X - \{x\}\}$ which is β - γ -open.

Conversely, suppose $\{p\}$ is β - γ -closed for every $p \in X$. Let $x, y \in X$ with $x \neq y$. Now $x \neq y$ implies $y \in X - \{x\}$. Hence $X - \{x\}$ is a β - γ -open set contains y but not x. Similarly $X - \{y\}$ is a β - γ -open set contains x but not y. Accordingly X is a β - γ - T_1 space.

Corollary 3.20 If a topological space (X, τ) with an operation γ on τ is a β - γ - T_1 space, then it is β - γ -symmetric.

Proof. In a β - γ - T_1 space, every singleton is β - γ -closed (Proposition 3.19) and therefore is β - γ -g.closed. Then by Proposition 3.18, (X, τ) is β - γ -symmetric.

Corollary 3.21 For a topological space (X, τ) with an operation γ on τ , the following statements are equivalent:

 β - γ -Irresolute and β - γ -Closed Graph

- 1. (X, τ) is β - γ -symmetric and β - γ - T_0 .
- 2. (X, τ) is $\beta \gamma T_1$.

Proof. By Corollary 3.20 and Remark 3.8 [1], it suffices to prove only $(1) \Rightarrow (2)$.

Let $x \neq y$ and as (X, τ) is $\beta - \gamma - T_0$, we may assume that $x \in U \subseteq X - \{y\}$ for some $U \in \beta - \gamma O(X)$. Then $x \notin \beta - \gamma Cl(\{y\})$ and hence $y \notin \beta - \gamma Cl(\{x\})$. There exists a $\beta - \gamma$ -open set V such that $y \in V \subseteq X - \{x\}$ and thus (X, τ) is a $\beta - \gamma - T_1$ space.

Remark 3.22 Let (X, τ) be a topological space and γ be an operation on τ , then the following statements are hold:

- 1. Every $\beta \gamma T_1$ space is $\beta \gamma T_{\frac{1}{2}}$.
- 2. Every $\beta \gamma T_{\frac{1}{2}}$ space is $\beta \gamma T_0$.

Proposition 3.23 If (X, τ) is a β - γ -symmetric space with an operation γ on τ , then the following statements are equivalent:

- 1. (X, τ) is a β - γ - T_0 space.
- 2. (X, τ) is a β - γ - $T_{\frac{1}{2}}$ space.
- 3. (X, τ) is a β - γ - T_1 space.

Proof. (1) \Leftrightarrow (3). Obvious from Corollary 3.21. (3) \Rightarrow (2) and (2) \Rightarrow (1). Directly from Remark 3.22.

Corollary 3.24 For a β - γ -symmetric space (X, τ) , the following are equivalent:

- 1. (X, τ) is $\beta \gamma T_0$.
- 2. (X, τ) is $\beta \gamma D_1$.
- 3. (X, τ) is $\beta \gamma T_1$.

Proof. (1) \Rightarrow (3). Follows from Corollary 3.21. (3) \Rightarrow (2) \Rightarrow (1). Follows from Remark 3.8 [1]and Corollary 3.11 [1].

Definition 3.25 Let A be a subset of a topological space (X, τ) and γ be an operation on τ . The β - γ -kernel of A, denoted by β - γ ker(A) is defined to be the set

$$\beta - \gamma ker(A) = \cap \{ U \in \beta - \gamma O(X) \colon A \subseteq U \}.$$

Proposition 3.26 Let (X, τ) be a topological space with an operation γ on τ and $x \in X$. Then $y \in \beta$ - $\gamma ker(\{x\})$ if and only if $x \in \beta$ - $\gamma Cl(\{y\})$.

Proof. Suppose that $y \notin \beta - \gamma ker(\{x\})$. Then there exists a $\beta - \gamma$ -open set V containing x such that $y \notin V$. Therefore, we have $x \notin \beta - \gamma Cl(\{y\})$. The proof of the converse case can be done similarly.

Proposition 3.27 Let (X, τ) be a topological space with an operation γ on τ and A be a subset of X. Then, β - $\gamma ker(A) = \{x \in X : \beta - \gamma Cl(\{x\}) \cap A \neq \phi\}.$

Proof. Let $x \in \beta$ - $\gamma ker(A)$ and suppose β - $\gamma Cl(\{x\}) \cap A = \phi$. Hence $x \notin X - \beta$ - $\gamma Cl(\{x\})$ which is a β - γ -open set containing A. This is impossible, since $x \in \beta$ - $\gamma ker(A)$. Consequently, β - $\gamma Cl(\{x\}) \cap A \neq \phi$. Next, let $x \in X$ such that β - $\gamma Cl(\{x\}) \cap A \neq \phi$ and suppose that $x \notin \beta$ - $\gamma ker(A)$. Then, there exists a β - γ -open set V containing A and $x \notin V$. Let $y \in \beta$ - $\gamma Cl(\{x\}) \cap A$. Hence, V is a β - γ -neighbourhood of y which does not contain x. By this contradiction $x \in \beta$ - $\gamma ker(A)$ and the claim.

Proposition 3.28 If a singleton $\{x\}$ is a β - γD -set of (X, τ) , then β - $\gamma ker(\{x\}) \neq X$.

Proof. Since $\{x\}$ is a β - γD -set of (X, τ) , then there exist two subsets $U_1, U_2 \in \beta$ - $\gamma O(X, \tau)$ such that $\{x\} = U_1 - U_2, \{x\} \subseteq U_1$ and $U_1 \neq X$. Thus, we have that β - $\gamma ker(\{x\}) \subseteq U_1 \neq X$ and so β - $\gamma ker(\{x\}) \neq X$.

Proposition 3.29 For a $\beta - \gamma - T_{\frac{1}{2}}$ topological space (X, τ) with at least two points, (X, τ) is a $\beta - \gamma - D_1$ space if and only if $\beta - \gamma \ker(\{x\}) \neq X$ holds for every point $x \in X$.

Proof. Necessity. Let $x \in X$. For a point $y \neq x$, there exists a β - γD -set U such that $x \in U$ and $y \notin U$. Say $U = U_1 - U_2$, where $U_i \in \beta$ - $\gamma O(X, \tau)$ for each $i \in \{1, 2\}$ and $U_1 \neq X$. Thus, for the point x, we have a β - γ -open set U_1 such that $\{x\} \subseteq U_1$ and $U_1 \neq X$. Hence, β - $\gamma ker(\{x\}) \neq X$.

Sufficiency. Let x and y be a pair of distinct points of X. We prove that there exist $\beta - \gamma D$ -sets A and B containing x and y, respectively, such that $y \notin A$ and $x \notin B$. Using Theorem 3.13, we can take the subsets A and B for the following four cases for two points x and y.

Case1. $\{x\}$ is β - γ -open and $\{y\}$ is β - γ -closed in (X, τ) . Since β - $\gamma ker(\{y\}) \neq X$, then there exists a β - γ -open set V such that $y \in V$ and $V \neq X$. Put $A = \{x\}$ and $B = \{y\}$. Since $B = V - (X - \{y\})$, then V is a β - γ -open set with $V \neq X$ and $X - \{y\}$ is β - γ -open, and B is a required β - γD -set containing y such that $x \notin B$. Obviously, A is a required β - γD -set containing x such that $y \notin A$.

Case 2. $\{x\}$ is β - γ -closed and $\{y\}$ is β - γ -open in (X, τ) . The proof is similar to Case 1. Case 3. $\{x\}$ and $\{y\}$ are β - γ -open in (X, τ) . Put $A = \{x\}$ and $B = \{y\}$.

Case 4. $\{x\}$ and $\{y\}$ are β - γ -closed in (X, τ) . Put $A = X - \{y\}$ and $B = X - \{x\}$.

For each case of the above, the subsets A and B are the required β - γD -sets. Therefore, (X, τ) is a β - γ - D_1 space.

Definition 3.30 Let (X, τ) and (Y, σ) be two topological spaces and γ , β operations on τ , σ , respectively. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be β - γ -irresolute if for each $x \in X$ and each β - β -open set V containing f(x), there is a β - γ -open set U in X containing x such that $f(U) \subseteq V$.

Theorem 3.31 Let $f : (X, \tau) \to (Y, \sigma)$ be a mapping, then the following statements are equivalent:

- 1. f is β - γ -irresolute.
- 2. $f(\beta \gamma Cl(A)) \subseteq \beta \beta Cl(f(A))$ holds for every subset A of (X, τ) .
- 3. $f^{-1}(B)$ is β - γ -closed in (X, τ) , for every β - β -closed set B of (Y, σ) .

Proof. (1) \Rightarrow (2). Let $y \in f(\beta - \gamma Cl(A))$ and V be any β - β -open set containing y. Then there exists a point $x \in X$ and a β - γ -open set U such that f(x) = y and $x \in U$ and $f(U) \subseteq V$. Since $x \in \beta - \gamma Cl(A)$, we have $U \cap A \neq \phi$ and hence $\phi \neq f(U \cap A) \subseteq f(U) \cap f(A) \subseteq V \cap f(A)$. This implies $y \in \beta - \beta Cl(f(A))$. Therefore we have $f(\beta - \gamma Cl(A)) \subseteq \beta - \beta Cl(f(A))$. (2) \Rightarrow (3). Let B be a β - β -closed set in (Y, σ) . Therefore β - $\beta Cl(B) = B$. By

using (2) we have $f(\beta - \gamma Cl(f^{-1}(B)) \subseteq \beta - \beta Cl(B) = B$. Therefore we have $\beta - \gamma Cl(f^{-1}(B)) \subseteq f^{-1}(B)$. Hence $f^{-1}(B)$ is $\beta - \gamma - closed$. (3) \Rightarrow (1). Obvious.

Definition 3.32 A mapping $f : (X, \tau) \to (Y, \sigma)$ is said to be β - γ -closed if for any β - γ -closed set A of (X, τ) , f(A) is a β - β -closed in (Y, σ) .

Theorem 3.33 Suppose that f is β - γ -irresolute mapping and f is β - γ -closed. Then:

- 1. For every β - γ -g.closed set A of (X, τ) the image f(A) is β - β -g.closed.
- 2. For every β - β -g.closed set B of (Y, σ) the inverse set $f^{-1}(B)$ is β - γ -g.closed.

- 1. Let V be any β - β -open set in (Y, σ) such that $f(A) \subseteq V$. By using Theorem 3.31 $f^{-1}(V)$ is β - γ -open. Since A is β - γ -g.closed and $A \subseteq f^{-1}(V)$, we have β - $\gamma Cl(A) \subseteq f^{-1}(V)$, and hence $f(\beta$ - $\gamma Cl(A)) \subseteq V$. By assumption $f(\beta$ - $\gamma Cl(A))$ is a β - β -closed set. Therefore β - $\beta Cl(f(A)) \subseteq \beta$ - $\beta Cl(f(\beta)) = f(\beta - \gamma Cl(A)) \subseteq V$. This implies f(A) is β - β -g.closed.
- 2. Let U be β - γ -open set of (X, τ) such that $f^{-1}(B) \subseteq U$. Let $F = \beta$ - $\gamma Cl(f^{-1}(B)) \cap (X - U)$, then F is β - γ -closed set in (X, τ) . Since fis β - γ -closed this implies f(F) is β - β -closed in (Y, σ) . Since $f(F) \subseteq$ $f(\beta$ - $\gamma Cl(f^{-1}(B))) \cap f(X - U) \subseteq \beta$ - $\beta Cl(f(f^{-1}(B))) \cap f(X - U) \subseteq \beta$ - $\beta Cl(B) \cap (Y - B)$. This implies $f(F) = \phi$, and hence $F = \phi$. Therefore β - $\gamma Cl(f^{-1}(B)) \subseteq U$. Hence $f^{-1}(B)$ is β - γ -g.closed in (X, τ) .

Theorem 3.34 Let $f : (X, \tau) \to (Y, \sigma)$ is β - γ -irresolute and β - γ -closed. Then:

- 1. If f is injective and (Y, σ) is $\beta \beta T_{\frac{1}{2}}$, then (X, τ) is $\beta \gamma T_{\frac{1}{2}}$.
- 2. If f is surjective and (X, τ) is $\beta \gamma T_{\frac{1}{2}}$, then (Y, σ) is $\beta \beta T_{\frac{1}{2}}$.

Proof.

- 1. Let A be a β - γ -g.closed set of (X, τ) . By Theorem 3.33, f(A) is β - β -g.closed. Since (Y, σ) is β - β - $T_{\frac{1}{2}}$, this implies that f(A) is β - β -closed. Since f is β - γ -irresolute, then by Theorem 3.31, we have $A = f^{-1}(f(A))$ is β - γ -closed. Hence (X, τ) is β - γ - $T_{\frac{1}{2}}$.
- 2. Let B be a β - β -g.closed set of (Y, σ) . By Theorem 3.33, $f^{-1}(B)$ is β - γ -g.closed in X. Since (X, τ) is β - γ - $T_{\frac{1}{2}}$, so $f^{-1}(B)$ is β - γ -closed. Since f is surjective and β - γ -closed, so $f(f^{-1}(B)) = B$ is β - β -closed.

Theorem 3.35 If $f : (X, \tau) \to (Y, \sigma)$ is a β - γ -irresolute surjective function and E is a β - β D-set in Y, then the inverse image of E is a β - γ D-set in X.

Proof. Let E be a β - βD -set in Y. Then there are β - β -open sets U_1 and U_2 in Y such that $E = U_1 - U_2$ and $U_1 \neq Y$. By the β - γ -irresolute of f, $f^{-1}(U_1)$ and $f^{-1}(U_2)$ are β - γ -open in X. Since $U_1 \neq Y$ and f is surjective, we have $f^{-1}(U_1) \neq X$. Hence, $f^{-1}(E) = f^{-1}(U_1) - f^{-1}(U_2)$ is a β - γD -set.

Theorem 3.36 If (Y, σ) is β - β - D_1 and $f : (X, \tau) \to (Y, \sigma)$ is β - γ -irresolute bijective, then (X, τ) is β - γ - D_1 .

Proof. Suppose that Y is a β - β - D_1 space. Let x and y be any pair of distinct points in X. Since f is injective and Y is β - β - D_1 , there exist β - β D-set G_x and G_y of Y containing f(x) and f(y) respectively, such that $f(x) \notin G_y$ and $f(y) \notin G_x$. By Theorem 3.35, $f^{-1}(G_x)$ and $f^{-1}(G_y)$ are β - γ D-set in X containing x and y, respectively, such that $x \notin f^{-1}(G_y)$ and $y \notin f^{-1}(G_x)$. This implies that X is a β - γ - D_1 space.

Theorem 3.37 A topological space (X, τ) is $\beta - \gamma - D_1$ if for each pair of distinct points $x, y \in X$, there exists a $\beta - \gamma$ -irresolute surjective function $f : (X, \tau) \rightarrow (Y, \sigma)$, where Y is a $\beta - \beta - D_1$ space such that f(x) and f(y) are distinct.

Proof. Let x and y be any pair of distinct points in X. By hypothesis, there exists a β - γ -irresolute, surjective function f of a space X onto a β - β - D_1 space Y such that $f(x) \neq f(y)$. Then, there exist disjoint β - βD -set G_x and G_y in Y such that $f(x) \in G_x$ and $f(y) \in G_y$. Since f is β - γ -irresolute and surjective, by Theorem 3.35, $f^{-1}(G_x)$ and $f^{-1}(G_y)$ are disjoint β - γD -sets in X containing x and y, respectively. Hence, X is β - γ - D_1 space.

4 β - γ -Continuous and β - γ -Closed Graphs

Definition 4.1 A function $f : (X, \tau) \to (Y, \sigma)$ is said to be β - γ -continuous if for every open set V of Y, $f^{-1}(V)$ is β - γ -open in X.

Theorem 4.2 The following are equivalent for a function $f : (X, \tau) \rightarrow (Y, \sigma)$:

- 1. f is β - γ -continuous.
- 2. The inverse image of every closed set in Y is β - γ -closed in X.
- 3. For each subset A of X, $f(\beta \gamma Cl(A)) \subseteq Cl(f(A))$.
- 4. For each subset B of Y, $\beta \gamma Cl(f^{-1}(B)) \subseteq f^{-1}(Cl(B))$.

Proof. (1) \Leftrightarrow (2). Obvious.

(3) \Leftrightarrow (4). Let *B* be any subset of *Y*. Then by (3), we have $f(\beta - \gamma Cl(f^{-1}(B))) \subseteq Cl(f(f^{-1}(B))) \subseteq Cl(B)$. This implies $\beta - \gamma Cl(f^{-1}(B)) \subseteq f^{-1}(Cl(B))$.

Conversely, let B = f(A) where A is a subset of X. Then, by (4), we have, $\beta - \gamma Cl(f^{-1}(f(A))) \subseteq f^{-1}(Cl(f(A)))$. Thus, $f(\beta - \gamma Cl(A)) \subseteq Cl(f(A))$. (2) \Rightarrow (4). Let $B \subseteq Y$. Since $f^{-1}(Cl(B))$ is $\beta - \gamma$ -closed and $f^{-1}(B) \subseteq f^{-1}(Cl(B))$, then $\beta - \gamma Cl(f^{-1}(B)) \subseteq f^{-1}(Cl(B))$. (4) \Rightarrow (2). Let $K \subseteq Y$ be a closed set. By (4), $\beta - \gamma Cl(f^{-1}(K)) \subseteq f^{-1}(Cl(K)) = f^{-1}(K)$. Thus, $f^{-1}(K)$ is $\beta - \gamma$ -closed. **Theorem 4.3** If $f : X \to Y$ is a β - γ -continuous injective function and Y is T_2 , then X is β - γ - T_2 .

Proof. Let x and y in X be any pair of distinct points, then there exist disjoint open sets A and B in Y such that $f(x) \in A$ and $f(y) \in B$. Since f is β - γ -continuous, $f^{-1}(A)$ and $f^{-1}(B)$ are β - γ -open in X containing x and y respectively, we have $f^{-1}(A) \cap f^{-1}(B) = \phi$. Thus, X is β - γ - T_2 .

Definition 4.4 For a function $f : (X, \tau) \to (Y, \sigma)$, the graph $G(f) = \{(x, f(x)) : x \in X\}$ is said to be β - γ -closed if for each $(x, y) \notin G(f)$, there exist a β - γ -open set U containing x and an open set V containing y such that $(U \times V) \cap G(f) = \phi$.

Lemma 4.5 The function $f : (X, \tau) \to (Y, \sigma)$ has an β - γ -closed graph if and only if for each $x \in X$ and $y \in Y$ such that $y \neq f(x)$, there exist a β - γ -open set U and an open set V containing x and y respectively, such that $f(U) \cap V = \phi$.

Proof. It follows readily from the above definition.

Theorem 4.6 If $f : (X, \tau) \to (Y, \sigma)$ is an injective function with the β - γ -closed graph, then X is β - γ - T_1 .

Proof. Let x and y be two distinct points of X. Then $f(x) \neq f(y)$. Thus there exist a β - γ -open set U and an open set V containing x and f(y), respectively, such that $f(U) \cap V = \phi$. Therefore $y \notin U$ and it follows that X is β - γ - T_1 .

Theorem 4.7 If $f : (X, \tau) \to (Y, \sigma)$ is an injective β - γ -continuous with a β - γ -closed graph G(f), then X is β - γ - T_2 .

Proof. Let x_1 and x_2 be any distinct points of X. Then $f(x_1) \neq f(x_2)$, so $(x_1, f(x_2)) \in (X \times Y) - G(f)$. Since the graph G(f) is β - γ -closed, there exist a β - γ -open set U containing x_1 and open set V containing $f(x_2)$ such that $f(U) \cap V = \phi$. Since f is β - γ -continuous, $f^{-1}(V)$ is a β - γ -open set containing x_2 such that $U \cap f^{-1}(V) = \phi$. Hence X is β - γ - T_2 .

Recall that a space X is said to be T_1 if for each pair of distinct points x and y of X, there exist an open set U containing x but not y and an open set V containing y but not x.

Theorem 4.8 If $f : (X, \tau) \to (Y, \sigma)$ is an surjective function with the β - γ -closed graph, then Y is T_1 .

Proof. Let y_1 and y_2 be two distinct points of Y. Since f is surjective, there exists x in X such that $f(x) = y_2$. Therefore $(x, y_1) \notin G(f)$. By Lemma 4.5, there exist β - γ -open set U and an open set V containing x and y_1 respectively, such that $f(U) \cap V = \phi$. We obtain an open set V containing y_1 which does not contain y_2 . It follows that $y_2 \notin V$. Hence, Y is T_1 .

 β - γ -Irresolute and β - γ -Closed Graph

Definition 4.9 A function $f : (X, \tau) \to (Y, \sigma)$ is said to be β - γ -W-continuous if for each $x \in X$ and each open set V of Y containing f(x), there exists a β - γ -open set U in X containing x such that $f(U) \subseteq Cl(V)$.

Theorem 4.10 If $f : (X, \tau) \to (Y, \sigma)$ is β - γ -W-continuous and Y is Hausdorff, then G(f) is β - γ -closed.

Proof. Suppose that $(x, y) \notin G(f)$, then $f(x) \neq y$. By the fact that Y is Hausdorff, there exist open sets W and V such that $f(x) \in W$, $y \in V$ and $V \cap W = \phi$. It follows that $Cl(W) \cap V = \phi$. Since f is β - γ -W-continuous, there exists a β - γ -open set U containing x such that $f(U) \subseteq Cl(W)$. Hence, we have $f(U) \cap V = \phi$. This means that G(f) is β - γ -closed.

Definition 4.11 A subset A of a space X is said to be β - γ -compact relative to X if every cover of A by β - γ -open sets of X has a finite subcover.

Theorem 4.12 Let $f : (X, \tau) \to (Y, \sigma)$ have a β - γ -closed graph. If K is β - γ -compact relative to X, then f(K) is closed in Y.

Proof. Suppose that $y \notin f(K)$. For each $x \in K$, $f(x) \neq y$. By lemma 4.5, there exists a β - γ -open set U_x containing x and an open neighbourhood V_x of y such that $f(U_x) \cap V_x = \phi$. The family $\{U_x : x \in K\}$ is a cover of K by β - γ -open sets of X and there exists a fnite subset K_0 of K such that $K \subseteq \bigcup \{U_x : x \in K_0\}$. Put $V = \bigcap \{V_x : x \in K_0\}$. Then V is an open neighbourhood of y and $f(K) \cap V = \phi$. This means that f(K) is closed in Y.

Theorem 4.13 If $f : (X, \tau) \to (Y, \sigma)$ has a β - γ -closed graph G(f), then for each $x \in X$. $\{f(x)\} = \cap \{Cl(f(A) : A \text{ is } \beta$ - γ -open set containing $x\}$.

Proof. Suppose that $y \neq f(x)$ and $y \in \bigcap\{Cl(f(A)) : A \text{ is } \beta - \gamma \text{-open set containing } x\}$. Then $y \in Cl(f(A))$ for each $\beta - \gamma \text{-open set } A$ containing x. This implies that for each open set B containing $y, B \cap f(A) \neq \phi$. Since $(x, y) \notin G(f)$ and G(f) is a $\beta - \gamma$ -closed graph, this is a contradiction.

Definition 4.14 A function $f : (X, \tau) \to (Y, \sigma)$ is called a β - γ -open if the image of every β - γ -open set in X is open in Y.

Theorem 4.15 If $f : (X, \tau) \to (Y, \sigma)$ is a surjective β - γ -open function with a β - γ -closed graph G(f), then Y is T_2 .

Proof. Let y_1 and y_2 be any two distinct points of Y. Since f is surjective $f(x) = y_1$ for some $x \in X$ and $(x, y_2) \in (X \times Y) - G(f)$. This implies that there exist a β - γ -open set A of X and an open set B of Y such that $(x, y_2) \in (A \times B)$ and $(A \times B) \cap G(f) = \phi$. We have $f(A) \cap B = \phi$. Since f is β - γ -open, then f(A) is open such that $f(x) = y_1 \in f(A)$. Thus, Y is T_2 .

References

- [1] H.Z. Ibrahim, Weak forms of γ -open sets and new separation axioms, *Int. J. of Scientific and Engineering Research*, 3(4) (April-2012), 1-4.
- [2] G.S.S. Krishnan, A new class of semi open sets in a topological space, Proc. NCMCM, Allied Publishers, New Delhi, (2003), 305-311.
- [3] H. Ogata, Operation on topological spaces and associated topology, *Math. Japonica*, 36(1) (1991), 175-184.