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Abstract

In this paper, we introduce the notion of β-γ-g.closed sets and some weak
separation axioms. Also we show that some basic properties of β-γ-T 1

2
, β-γ-

Ti, β-γ-Di for i = 0, 1, 2 spaces and we ofer a new class of functions called
β-γ-irresolute, β-γ-continuous functions and a new notion of the graph of a
function called a β-γ-closed graph and investigate some of their fundamental
properties.
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1 Introduction

Ogata [3] introduced the notion of γ-open sets which are weaker than open
sets. The concept of β-γ-open sets and β-γD-sets in topological spaces are
introduced by Hariwan Z. Ibrahim [1].

In this paper, we introduce the notion of β-γ-g.closed sets and some weak
separation axioms. Also we show that some basic properties of β-γ-T 1

2
, β-γ-

Ti, β-γ-Di for i = 0, 1, 2 spaces and we ofer a new class of functions called
β-γ-irresolute, β-γ-continuous functions and a new notion of the graph of a
function called a β-γ-closed graph and investigate some of their fundamental
properties.
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2 Preliminaries

Let (X, τ) be a topological space and A a subset of X. The closure of A and
the interior of A are denoted by Cl(A) and Int(A), respectively. An operation
γ [3] on a topology τ is a mapping from τ in to power set P (X) of X such that
V ⊆ γ(V ) for each V ∈ τ , where γ(V ) denotes the value of γ at V . A subset
A of X with an operation γ on τ is called γ-open [3] if for each x ∈ A, there
exists an open set U such that x ∈ U and γ(U) ⊆ A. Then, τγ denotes the set
of all γ-open set in X. Clearly τγ ⊆ τ . Complements of γ-open sets are called
γ-closed. The τγ-interior [2] of A is denoted by τγ-Int(A) and defined to be
the union of all γ-open sets of X contained in A. A subset A of a space X is
said to be β-γ-open [1] if A ⊆ Cl(τγ-Int(Cl(A))).

3 β-γ-g Closed Sets, β-γ-T1
2

Spaces and β-γ-

Irresolute

Definition 3.1 A subset A of X is called β-γ-closed if and only if its com-
plement is β-γ-open.

Moreover, β-γO(X) denotes the collection of all β-γ-open sets of (X, τ)
and β-γC(X) denotes the collection of all β-γ-closed sets of (X, τ).

Definition 3.2 Let A be a subset of a topological space (X, τ). The inter-
section of all β-γ-closed sets containing A is called the β-γ-closure of A and
is denoted by β-γCl(A).

Definition 3.3 Let (X, τ) be a topological space. A subset U of X is called
a β-γ-neighbourhood of a point x ∈ X if there exists a β-γ-open set V such
that x ∈ V ⊆ U .

Theorem 3.4 For the β-γ-closure of subsets A,B in a topological space
(X, τ), the following properties hold:

1. A is β-γ-closed in (X, τ) if and only if A = β-γCl(A).

2. If A ⊆ B then β-γCl(A) ⊆ β-γCl(B).

3. β-γCl(A) is β-γ-closed, that is β-γCl(A) = β-γCl(β-γCl(A)).

4. x ∈ β-γCl(A) if and only if A ∩ V 6= φ for every β-γ-open set V of X
containing x.

Proof. It is obvious.
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Definition 3.5 A subset A of the space (X, τ) is said to be β-γ-g.closed if
β-γCl(A) ⊆ U whenever A ⊆ U and U is a β-γ-open set in (X, τ).

It is clear that every β-γ-closed subset of X is also a β-γ-g.closed set. The
following example shows that a β-γ-g.closed set need not be β-γ-closed.

Example 3.6 let X = {a, b, c}, τ = {φ, X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}},
define an operation γ : τ → P (X) such that γ(A) = X. Then {b} is β-γ-
g.closed but it is not β-γ-closed.

Proposition 3.7 A subset A of (X, τ) is β-γ-g.closed if and only if β-
γCl({x}) ∩ A 6= φ holds for every x ∈ β-γCl(A).

Proof. Let U be a β-γ-open set such that A ⊆ U . Let x ∈ β-γCl(A). By
assumption there exists a z ∈ β-γCl({x}) and z ∈ A ⊆ U . It follows from
Theorem 3.4 that U ∩ {x} 6= φ. Hence x ∈ U . This implies β-γCl(A) ⊆ U .
Therefore A is β-γ-g.closed set in (X, τ).
Conversely, let A be a β-γ-g.closed subset of X and x ∈ β-γCl(A) such that β-
γCl({x})∩A = φ. Since, β-γCl({x}) is β-γ-closed set in (X, τ). Therefore by
Definition 3.1, X−(β-γCl({x})) is a β-γ-open set. Since A ⊆ X−(β-γCl({x}))
and A is β-γ-g.closed implies that β-γCl(A) ⊆ X − (β-γCl({x})) holds, and
hence x /∈ β-γCl(A). This is a contradiction. Hence β-γCl({x}) ∩ A 6= φ.

Theorem 3.8 If β-γCl({x}) ∩ A 6= φ holds for every x ∈ β-γCl(A), then
β-γCl(A)− A does not contain a non empty β-γ-closed set.

Proof. Suppose there exists a non empty β-γ-closed set F such that F ⊆ β-
γCl(A) − A. Let x ∈ F , x ∈ β-γCl(A) holds. It follows that F ∩ A = β-
γCl(F )∩A ⊇ β-γCl({x})∩A 6= φ. Hence F ∩A 6= φ. This is a contradiction.

Corollary 3.9 A is β-γ-g.closed if and only if A = F − N , where F is
β-γ-closed and N contains no non-empty β-γ-closed subsets.

Proof. Necessity follows from Proposition 3.7 and Theorem 3.8 with F =
β-γCl(A) and N = β-γCl(A)− A.
Conversely, if A = F −N and A ⊆ O with O is β-γ-open, then F ∩ (X − O)
is a β-γ-closed subset of N and thus is empty. Hence β-γCl(A) ⊆ F ⊆ O.

Theorem 3.10 If a subset A of X is β-γ-g.closed and A ⊆ B ⊆ β-γCl(A),
then B is a β-γ-g.closed set in X.

Proof. Let A be a β-γ-g.closed set such that A ⊆ B ⊆ β-γCl(A). Let
U be a β-γ-open set of X such that B ⊆ U . Since A is β-γ-g.closed, we
have β-γCl(A) ⊆ U . Now β-γCl(A) ⊆ β-γCl(B) ⊆ β-γCl[β-γCl(A)] = β-
γCl(A) ⊆ U . That is β-γCl(B) ⊆ U , U is β-γ-open. Therefore B is a
β-γ-g.closed set in X.



β-γ-Irresolute and β-γ-Closed Graph 35

Theorem 3.11 Let γ : τ → P (X) be an operation. Then for each x ∈ X,
either {x} is β-γ-closed or X − {x} is β-γ-g.closed set in (X, τ).

Proof. Suppose that {x} is not β-γ-closed, then by Definition 3.1, X−{x}
is not β-γ-open. Let U be any β-γ-open set such that X−{x} ⊆ U , so U = X.
Hence β-γCl(X − {x}) ⊆ U . Therefore X − {x} is β-γ-g.closed.

Definition 3.12 A space X is said to be β-γ-T 1
2

space if every β-γ-g.closed

set in (X, τ) is β-γ-closed.

Theorem 3.13 A space X is a β-γ-T 1
2

space if and only if {x} is β-γ-closed

or β-γ-open in (X, τ).

Proof. Suppose {x} is not β-γ-closed. Then it follows from assumption
and Theorem 3.11 that {x} is β-γ-open.
Conversely, Let F be β-γ-g.closed set in (X, τ). Let x be any point in β-
γCl(F ), then {x} is β-γ-open or β-γ-closed.

1. Suppose {x} is β-γ-open. Then by Theorem 3.4, we have {x} ∩ F 6= φ,
hence x ∈ F . This implies β-γCl(F ) ⊆ F , therefore F is β-γ-closed.

2. Suppose {x} is β-γ-closed. Assume x /∈ F , then x ∈ β-γCl(F ) − F .
This is not possible by Theorem 3.8. Thus we have x ∈ F . Therefore
β-γCl(F ) = F and hence F is β-γ-closed.

Definition 3.14 [1] A topological space (X, τ) with an operation γ on τ is
said to be

1. β-γ-T0 if for each pair of distinct points x, y in X, there exists a β-γ-open
set U such that either x ∈ U and y /∈ U or x /∈ U and y ∈ U .

2. β-γ-T1 if for each pair of distinct points x, y in X, there exist two β-γ-
open sets U and V such that x ∈ U but y /∈ U and y ∈ V but x /∈ V .

3. β-γ-T2 if for each distinct points x, y in X, there exist two disjoint β-γ-
open sets U and V containing x and y respectively.

Definition 3.15 [1] A subset A of a topological space X is called a β-γD-
set if there are two β-γ-open sets U and V such that U 6= X and A = U − V .

Definition 3.16 [1] A topological space (X, τ) with an operation γ on τ is
said to be

1. β-γ-D0 if for any pair of distinct points x and y of X there exists a β-
γD-set of X containing x but not y or a β-γD-set of X containing y but
not x.



36 Hariwan Z. Ibrahim

2. β-γ-D1 if for any pair of distinct points x and y of X there exist two
β-γD-sets U and V such that x ∈ U but y /∈ U and y ∈ V but x /∈ V .

3. β-γ-D2 if for any pair of distinct points x and y of X there exist disjoint
β-γD-sets G and E of X containing x and y, respectively.

Definition 3.17 A topological space (X, τ) with an operation γ on τ , is
said to be β-γ-symmetric if for x and y in X, x ∈ β-γCl({y}) implies y ∈ β-
γCl({x}).

Proposition 3.18 If (X, τ) is a topological space with an operation γ on
τ , then the following are equivalent:

1. (X, τ) is a β-γ-symmetric space.

2. {x} is β-γ-g.closed, for each x ∈ X.

Proof. (1) ⇒ (2). Assume that {x} ⊆ U ∈ β-γO(X), but β-γCl({x}) 6⊆
U . Then β-γCl({x})∩X−U 6= φ. Now, we take y ∈ β-γCl({x})∩X−U , then
by hypothesis x ∈ β-γCl({y}) ⊆ X − U and x /∈ U , which is a contradiction.
Therefore {x} is β-γ-g.closed, for each x ∈ X.
(2) ⇒ (1). Assume that x ∈ β-γCl({y}), but y /∈ β-γCl({x}). Then {y} ⊆
X − β-γCl({x}) and hence β-γCl({y}) ⊆ X − β-γCl({x}). Therefore x ∈
X − β-γCl({x}), which is a contradiction and hence y ∈ β-γCl({x}).

Proposition 3.19 A topological space (X, τ) is β-γ-T1 if and only if the
singletons are β-γ-closed sets.

Proof. Let (X, τ) be β-γ-T1 and x any point of X. Suppose y ∈ X −{x},
then x 6= y and so there exists a β-γ-open set U such that y ∈ U but x /∈ U .
Consequently y ∈ U ⊆ X −{x}, that is X −{x} = ∪{U : y ∈ X −{x}} which
is β-γ-open.
Conversely, suppose {p} is β-γ-closed for every p ∈ X. Let x, y ∈ X with
x 6= y. Now x 6= y implies y ∈ X − {x}. Hence X − {x} is a β-γ-open set
contains y but not x. Similarly X − {y} is a β-γ-open set contains x but not
y. Accordingly X is a β-γ-T1 space.

Corollary 3.20 If a topological space (X, τ) with an operation γ on τ is a
β-γ-T1 space, then it is β-γ-symmetric.

Proof. In a β-γ-T1 space, every singleton is β-γ-closed (Proposition 3.19)
and therefore is β-γ-g.closed. Then by Proposition 3.18, (X, τ) is β-γ-symmetric.

Corollary 3.21 For a topological space (X, τ) with an operation γ on τ ,
the following statements are equivalent:
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1. (X, τ) is β-γ-symmetric and β-γ-T0.

2. (X, τ) is β-γ-T1.

Proof. By Corollary 3.20 and Remark 3.8 [1], it suffices to prove only
(1)⇒ (2).
Let x 6= y and as (X, τ) is β-γ-T0, we may assume that x ∈ U ⊆ X − {y} for
some U ∈ β-γO(X). Then x /∈ β-γCl({y}) and hence y /∈ β-γCl({x}). There
exists a β-γ-open set V such that y ∈ V ⊆ X−{x} and thus (X, τ) is a β-γ-T1
space.

Remark 3.22 Let (X, τ) be a topological space and γ be an operation on
τ , then the following statements are hold:

1. Every β-γ-T1 space is β-γ-T 1
2
.

2. Every β-γ-T 1
2

space is β-γ-T0.

Proposition 3.23 If (X, τ) is a β-γ-symmetric space with an operation γ
on τ , then the following statements are equivalent:

1. (X, τ) is a β-γ-T0 space.

2. (X, τ) is a β-γ-T 1
2

space.

3. (X, τ) is a β-γ-T1 space.

Proof. (1)⇔ (3). Obvious from Corollary 3.21.
(3)⇒ (2) and (2)⇒ (1). Directly from Remark 3.22.

Corollary 3.24 For a β-γ-symmetric space (X, τ), the following are equiv-
alent:

1. (X, τ) is β-γ-T0.

2. (X, τ) is β-γ-D1.

3. (X, τ) is β-γ-T1.

Proof. (1)⇒ (3). Follows from Corollary 3.21.
(3)⇒ (2)⇒ (1). Follows from Remark 3.8 [1]and Corollary 3.11 [1].

Definition 3.25 Let A be a subset of a topological space (X, τ) and γ be
an operation on τ . The β-γ-kernel of A, denoted by β-γker(A) is defined to
be the set

β-γker(A) = ∩{U ∈ β-γO(X): A ⊆ U}.
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Proposition 3.26 Let (X, τ) be a topological space with an operation γ on
τ and x ∈ X. Then y ∈ β-γker({x}) if and only if x ∈ β-γCl({y}).

Proof. Suppose that y /∈ β-γker({x}). Then there exists a β-γ-open set
V containing x such that y /∈ V . Therefore, we have x /∈ β-γCl({y}). The
proof of the converse case can be done similarly.

Proposition 3.27 Let (X, τ) be a topological space with an operation γ on
τ and A be a subset of X. Then, β-γker(A) = {x ∈ X: β-γCl({x})∩A 6= φ}.

Proof. Let x ∈ β-γker(A) and suppose β-γCl({x}) ∩ A = φ. Hence
x /∈ X −β-γCl({x}) which is a β-γ-open set containing A. This is impossible,
since x ∈ β-γker(A). Consequently, β-γCl({x})∩A 6= φ. Next, let x ∈ X such
that β-γCl({x})∩A 6= φ and suppose that x /∈ β-γker(A). Then, there exists
a β-γ-open set V containing A and x /∈ V . Let y ∈ β-γCl({x})∩A. Hence, V
is a β-γ-neighbourhood of y which does not contain x. By this contradiction
x ∈ β-γker(A) and the claim.

Proposition 3.28 If a singleton {x} is a β-γD-set of (X, τ), then β-γker({x}) 6=
X.

Proof. Since {x} is a β-γD-set of (X, τ), then there exist two subsets U1, U2 ∈
β-γO(X, τ) such that {x} = U1 − U2, {x} ⊆ U1 and U1 6= X. Thus, we have
that β-γker({x}) ⊆ U1 6= X and so β-γker({x}) 6= X.

Proposition 3.29 For a β-γ-T 1
2

topological space (X, τ) with at least two

points, (X, τ) is a β-γ-D1 space if and only if β-γker({x}) 6= X holds for every
point x ∈ X.

Proof. Necessity. Let x ∈ X. For a point y 6= x, there exists a β-γD-set
U such that x ∈ U and y /∈ U . Say U = U1 − U2, where Ui ∈ β-γO(X, τ) for
each i ∈ {1, 2} and U1 6= X. Thus, for the point x, we have a β-γ-open set U1

such that {x} ⊆ U1 and U1 6= X. Hence, β-γker({x}) 6= X.
Sufficiency. Let x and y be a pair of distinct points of X. We prove that
there exist β-γD-sets A and B containing x and y, respectively, such that
y /∈ A and x /∈ B. Using Theorem 3.13, we can take the subsets A and B for
the following four cases for two points x and y.
Case1. {x} is β-γ-open and {y} is β-γ-closed in (X, τ). Since β-γker({y}) 6=
X, then there exists a β-γ-open set V such that y ∈ V and V 6= X. Put
A = {x} and B = {y}. Since B = V − (X − {y}), then V is a β-γ-open set
with V 6= X and X−{y} is β-γ-open, and B is a required β-γD-set containing
y such that x /∈ B. Obviously, A is a required β-γD-set containing x such that
y /∈ A.
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Case 2. {x} is β-γ-closed and {y} is β-γ-open in (X, τ). The proof is similar
to Case 1.
Case 3. {x} and {y} are β-γ-open in (X, τ). Put A = {x} and B = {y}.
Case 4. {x} and {y} are β-γ-closed in (X, τ). Put A = X − {y} and B =
X − {x}.
For each case of the above, the subsets A and B are the required β-γD-sets.
Therefore, (X, τ) is a β-γ-D1 space.

Definition 3.30 Let (X, τ) and (Y, σ) be two topological spaces and γ, β
operations on τ , σ, respectively. A function f : (X, τ) → (Y, σ) is said to be
β-γ-irresolute if for each x ∈ X and each β-β-open set V containing f(x),
there is a β-γ-open set U in X containing x such that f(U) ⊆ V .

Theorem 3.31 Let f : (X, τ) → (Y, σ) be a mapping, then the following
statements are equivalent:

1. f is β-γ-irresolute.

2. f(β-γCl(A)) ⊆ β-βCl(f(A)) holds for every subset A of (X, τ).

3. f−1(B) is β-γ-closed in (X, τ), for every β-β-closed set B of (Y, σ).

Proof. (1)⇒(2). Let y ∈ f(β-γCl(A)) and V be any β-β-open set containing
y. Then there exists a point x ∈ X and a β-γ-open set U such that f(x) = y
and x ∈ U and f(U) ⊆ V . Since x ∈ β-γCl(A), we have U ∩A 6= φ and hence
φ 6= f(U ∩ A) ⊆ f(U) ∩ f(A) ⊆ V ∩ f(A). This implies y ∈ β-βCl(f(A)).
Therefore we have f(β-γCl(A)) ⊆ β-βCl(f(A)).
(2)⇒(3). Let B be a β-β-closed set in (Y, σ). Therefore β-βCl(B) = B. By
using (2) we have f(β-γCl(f−1(B)) ⊆ β-βCl(B) = B. Therefore we have
β-γCl(f−1(B)) ⊆ f−1(B). Hence f−1(B) is β-γ-closed.
(3)⇒(1). Obvious.

Definition 3.32 A mapping f : (X, τ) → (Y, σ) is said to be β-γ-closed if
for any β-γ-closed set A of (X, τ), f(A) is a β-β-closed in (Y, σ).

Theorem 3.33 Suppose that f is β-γ-irresolute mapping and f is β-γ-
closed. Then:

1. For every β-γ-g.closed set A of (X, τ) the image f(A) is β-β-g.closed.

2. For every β-β-g.closed set B of (Y, σ) the inverse set f−1(B) is β-γ-
g.closed.

Proof.
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1. Let V be any β-β-open set in (Y, σ) such that f(A) ⊆ V . By using
Theorem 3.31 f−1(V ) is β-γ-open. Since A is β-γ-g.closed and A ⊆
f−1(V ), we have β-γCl(A) ⊆ f−1(V ), and hence f(β-γCl(A)) ⊆ V . By
assumption f(β-γCl(A)) is a β-β-closed set. Therefore β-βCl(f(A)) ⊆
β-βCl(f(β-γCl(A))) = f(β-γCl(A)) ⊆ V . This implies f(A) is β-β-
g.closed.

2. Let U be β-γ-open set of (X, τ) such that f−1(B) ⊆ U . Let F = β-
γCl(f−1(B)) ∩ (X − U), then F is β-γ-closed set in (X, τ). Since f
is β-γ-closed this implies f(F) is β-β-closed in (Y, σ). Since f(F ) ⊆
f(β-γCl(f−1(B))) ∩ f(X − U) ⊆ β-βCl(f(f−1(B))) ∩ f(X − U) ⊆ β-
βCl(B)∩ (Y −B). This implies f(F ) = φ, and hence F = φ. Therefore
β-γCl(f−1(B)) ⊆ U . Hence f−1(B) is β-γ-g.closed in (X, τ).

Theorem 3.34 Let f : (X, τ) → (Y, σ) is β-γ-irresolute and β-γ-closed.
Then:

1. If f is injective and (Y, σ) is β-β-T 1
2
, then (X, τ) is β-γ-T 1

2
.

2. If f is surjective and (X, τ) is β-γ-T 1
2
, then (Y, σ) is β-β-T 1

2
.

Proof.

1. Let A be a β-γ-g.closed set of (X, τ). By Theorem 3.33, f(A) is β-β-
g.closed. Since (Y, σ) is β-β-T 1

2
, this implies that f(A) is β-β-closed.

Since f is β-γ-irresolute, then by Theorem 3.31, we have A = f−1(f(A))
is β-γ-closed. Hence (X, τ) is β-γ-T 1

2
.

2. Let B be a β-β-g.closed set of (Y, σ). By Theorem 3.33, f−1(B) is β-γ-
g.closed in X. Since (X, τ) is β-γ-T 1

2
, so f−1(B) is β-γ-closed. Since f

is surjective and β-γ-closed, so f(f−1(B)) = B is β-β-closed.

Theorem 3.35 If f : (X, τ)→ (Y, σ) is a β-γ-irresolute surjective function
and E is a β-βD-set in Y , then the inverse image of E is a β-γD-set in X.

Proof. Let E be a β-βD-set in Y . Then there are β-β-open sets U1 and U2

in Y such that E = U1 − U2 and U1 6= Y . By the β-γ-irresolute of f , f−1(U1)
and f−1(U2) are β-γ-open in X. Since U1 6= Y and f is surjective, we have
f−1(U1) 6= X. Hence, f−1(E) = f−1(U1)− f−1(U2) is a β-γD-set.

Theorem 3.36 If (Y, σ) is β-β-D1 and f : (X, τ)→ (Y, σ) is β-γ-irresolute
bijective, then (X, τ) is β-γ-D1.



β-γ-Irresolute and β-γ-Closed Graph 41

Proof. Suppose that Y is a β-β-D1 space. Let x and y be any pair of distinct
points in X. Since f is injective and Y is β-β-D1, there exist β-βD-set Gx

and Gy of Y containing f(x) and f(y) respectively, such that f(x) /∈ Gy

and f(y) /∈ Gx. By Theorem 3.35, f−1(Gx) and f−1(Gy) are β-γD-set in X
containing x and y, respectively, such that x /∈ f−1(Gy) and y /∈ f−1(Gx).
This implies that X is a β-γ-D1 space.

Theorem 3.37 A topological space (X, τ) is β-γ-D1 if for each pair of dis-
tinct points x, y ∈ X, there exists a β-γ-irresolute surjective function f :
(X, τ) → (Y, σ), where Y is a β-β-D1 space such that f(x) and f(y) are
distinct.

Proof. Let x and y be any pair of distinct points in X. By hypothesis, there
exists a β-γ-irresolute, surjective function f of a space X onto a β-β-D1 space
Y such that f(x) 6= f(y). Then, there exist disjoint β-βD-set Gx and Gy in Y
such that f(x) ∈ Gx and f(y) ∈ Gy. Since f is β-γ-irresolute and surjective,
by Theorem 3.35, f−1(Gx) and f−1(Gy) are disjoint β-γD-sets in X containing
x and y, respectively. Hence, X is β-γ-D1 space.

4 β-γ-Continuous and β-γ-Closed Graphs

Definition 4.1 A function f : (X, τ)→ (Y, σ) is said to be β-γ-continuous
if for every open set V of Y , f−1(V ) is β-γ-open in X.

Theorem 4.2 The following are equivalent for a function f : (X, τ) →
(Y, σ):

1. f is β-γ-continuous.

2. The inverse image of every closed set in Y is β-γ-closed in X.

3. For each subset A of X, f(β-γCl(A)) ⊆ Cl(f(A)).

4. For each subset B of Y , β-γCl(f−1(B)) ⊆ f−1(Cl(B)).

Proof. (1)⇔ (2). Obvious.
(3)⇔ (4). LetB be any subset of Y . Then by (3), we have f(β-γCl(f−1(B))) ⊆
Cl(f(f−1(B))) ⊆ Cl(B). This implies β-γCl(f−1(B)) ⊆ f−1(Cl(B)).

Conversely, let B = f(A) where A is a subset of X. Then, by (4), we have,
β-γCl(f−1(f(A))) ⊆ f−1(Cl(f(A))). Thus, f(β-γCl(A)) ⊆ Cl(f(A)).
(2) ⇒ (4). Let B ⊆ Y . Since f−1(Cl(B)) is β-γ-closed and f−1(B) ⊆
f−1(Cl(B)), then β-γCl(f−1(B)) ⊆ f−1(Cl(B)).
(4)⇒ (2). LetK ⊆ Y be a closed set. By (4), β-γCl(f−1(K)) ⊆ f−1(Cl(K)) =
f−1(K). Thus, f−1(K) is β-γ-closed.
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Theorem 4.3 If f : X → Y is a β-γ-continuous injective function and Y
is T2, then X is β-γ-T2.

Proof. Let x and y in X be any pair of distinct points, then there exist
disjoint open sets A and B in Y such that f(x) ∈ A and f(y) ∈ B. Since f
is β-γ-continuous, f−1(A) and f−1(B) are β-γ-open in X containing x and y
respectively, we have f−1(A) ∩ f−1(B) = φ. Thus, X is β-γ-T2.

Definition 4.4 For a function f : (X, τ) → (Y, σ), the graph G(f) =
{(x, f(x)) : x ∈ X} is said to be β-γ-closed if for each (x, y) /∈ G(f), there
exist a β-γ-open set U containing x and an open set V containing y such that
(U × V ) ∩G(f) = φ.

Lemma 4.5 The function f : (X, τ) → (Y, σ) has an β-γ-closed graph if
and only if for each x ∈ X and y ∈ Y such that y 6= f(x), there exist a
β-γ-open set U and an open set V containing x and y respectively, such that
f(U) ∩ V = φ.

Proof. It follows readily from the above definition.

Theorem 4.6 If f : (X, τ) → (Y, σ) is an injective function with the β-γ-
closed graph, then X is β-γ-T1.

Proof. Let x and y be two distinct points of X. Then f(x) 6= f(y). Thus there
exist a β-γ-open set U and an open set V containing x and f(y), respectively,
such that f(U) ∩ V = φ. Therefore y /∈ U and it follows that X is β-γ-T1.

Theorem 4.7 If f : (X, τ) → (Y, σ) is an injective β-γ-continuous with a
β-γ-closed graph G(f), then X is β-γ-T2.

Proof. Let x1 and x2 be any distinct points of X. Then f(x1) 6= f(x2), so
(x1, f(x2)) ∈ (X × Y )−G(f). Since the graph G(f) is β-γ-closed, there exist
a β-γ-open set U containing x1 and open set V containing f(x2) such that
f(U)∩ V = φ. Since f is β-γ-continuous, f−1(V ) is a β-γ-open set containing
x2 such that U ∩ f−1(V ) = φ. Hence X is β-γ-T2.

Recall that a space X is said to be T1 if for each pair of distinct points x
and y of X, there exist an open set U containing x but not y and an open set
V containing y but not x.

Theorem 4.8 If f : (X, τ) → (Y, σ) is an surjective function with the
β-γ-closed graph, then Y is T1.

Proof. Let y1 and y2 be two distinct points of Y . Since f is surjective, there
exists x in X such that f(x) = y2. Therefore (x, y1) /∈ G(f). By Lemma 4.5,
there exist β-γ-open set U and an open set V containing x and y1 respectively,
such that f(U) ∩ V = φ. We obtain an open set V containing y1 which does
not contain y2. It follows that y2 /∈ V . Hence, Y is T1.
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Definition 4.9 A function f : (X, τ)→ (Y, σ) is said to be β-γ-W-continuous
if for each x ∈ X and each open set V of Y containing f(x), there exists a
β-γ-open set U in X containing x such that f(U) ⊆ Cl(V ).

Theorem 4.10 If f : (X, τ)→ (Y, σ) is β-γ-W-continuous and Y is Haus-
dorff, then G(f) is β-γ-closed.

Proof. Suppose that (x, y) /∈ G(f), then f(x) 6= y. By the fact that Y is
Hausdorff, there exist open sets W and V such that f(x) ∈ W , y ∈ V and
V ∩W = φ. It follows that Cl(W ) ∩ V = φ. Since f is β-γ-W-continuous,
there exists a β-γ-open set U containing x such that f(U) ⊆ Cl(W ). Hence,
we have f(U) ∩ V = φ. This means that G(f) is β-γ-closed.

Definition 4.11 A subset A of a space X is said to be β-γ-compact relative
to X if every cover of A by β-γ-open sets of X has a finite subcover.

Theorem 4.12 Let f : (X, τ) → (Y, σ) have a β-γ-closed graph. If K is
β-γ-compact relative to X, then f(K) is closed in Y .

Proof. Suppose that y /∈ f(K). For each x ∈ K, f(x) 6= y. By lemma
4.5, there exists a β-γ-open set Ux containing x and an open neighbourhood
Vx of y such that f(Ux) ∩ Vx = φ. The family {Ux : x ∈ K} is a cover of
K by β-γ-open sets of X and there exists a fnite subset K0 of K such that
K ⊆ ∪{Ux : x ∈ K0}. Put V = ∩{Vx : x ∈ K0}. Then V is an open
neighbourhood of y and f(K) ∩ V = φ. This means that f(K) is closed in Y .

Theorem 4.13 If f : (X, τ) → (Y, σ) has a β-γ-closed graph G(f), then
for each x ∈ X. {f(x)} = ∩{Cl(f(A) : A is β-γ-open set containing x}.

Proof. Suppose that y 6= f(x) and y ∈ ∩{Cl(f(A)) : A is β-γ-open set
containing x}. Then y ∈ Cl(f(A)) for each β-γ-open set A containing x.
This implies that for each open set B containing y, B ∩ f(A) 6= φ. Since
(x, y) /∈ G(f) and G(f) is a β-γ-closed graph, this is a contradiction.

Definition 4.14 A function f : (X, τ)→ (Y, σ) is called a β-γ-open if the
image of every β-γ-open set in X is open in Y .

Theorem 4.15 If f : (X, τ) → (Y, σ) is a surjective β-γ-open function
with a β-γ-closed graph G(f), then Y is T2.

Proof. Let y1 and y2 be any two distinct points of Y . Since f is surjective
f(x) = y1 for some x ∈ X and (x, y2) ∈ (X×Y )−G(f). This implies that there
exist a β-γ-open set A of X and an open set B of Y such that (x, y2) ∈ (A×B)
and (A × B) ∩ G(f) = φ. We have f(A) ∩ B = φ. Since f is β-γ-open, then
f(A) is open such that f(x) = y1 ∈ f(A). Thus, Y is T2.
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