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Abstract
The theory of increasing convex along- rays (ICAR)functions and desreas-

ing convex along -rays(DCAR)functions,definded on a convex cone in a locally
convex topological vector space X,is well developed.In this article ,we peresent
a suitable extension of this theory for ICAR functions, definded on the whole
of the space X.
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1 Introduction

The role of convex analysis in optimization is well-knowne.One of the major
properties of aconvex function is its representation as the upper envelope of a
family of affine functions.A function is said to be abstract convex ,if and only if
it can be represented as the upper envelope of a class of function,usually terms
as elementary functions.One of the first studies in abstrac convexity concerned
the analysis of increasing and positively homogeneous(IPH) functions.And we
study increasing and convex along rays(ICAR)functions over topological vector
space. We shall use the following notations:

2 Main Results

Let H be a set of arbitrary functions h : X → R+∞. A function f : X →
R+∞ is called abstract convex with respect to H (H-convex) if there exists a
setU ⊆ H, such that f(x) = suph(x) : h ∈ U}. Let X be a topological vector
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space. A setK ⊆ X is called conic, if λk ⊆ K for all λ > 0 We assume that
X is equipped with a closed convex pointed cone K (the letter means that
K ∩−K = 0). The increasing property of our functions will be understood to
be with respect to the orderinginduced on X by K:

x ≤ y ⇐⇒ y − x ∈ K

Definition 2.1. A functionf : X −→ R+∞ is called convex along rays
(shortly CAR) if the function fx(α) = f(αx) is convex on the ray [0,+∞) for
each x ∈ X.

Definition 2.2. A function p : X −→ R+∞ is said to be IPH (Increasing
and Positively Homogeneous) if

(i) x, y ∈ K, x ≤ y =⇒ p(x) ≤ p(y).
(ii)p(αx) = αp(x) for all x ∈ X and α > 0.

Also, the function f : X → R+∞ is called decreasing if x ≤ y =⇒ f(x) ≤
f(y). In the sequel, we shall study the ICAR and DCAR functions. Consider
the coupling function ` : X ×X → R+ defined by

`(x, y) := max{λ ≥ 0 : λy ≤ x}

with the conventions maxR := +∞ , max∅ := 0

3 DCAR Functions

In this section, we shall study DCAR functions defined on X.

Definition 3.1. Function f : X → R+∞ to be hyperbolically convex,if the
function ϕ : R++ → R+∞ definded by ϕ(t) = f(t−1) is convex.

Notice that an hyperbolically convex function need not be convex.However,
in this article,we will consider only decreasing hyperbolically convex func-
tions,which are necessarily convex:

Theorem 3.2. Every decreasing hyperbolically convex function f : X →
R+∞ is convex.

Proof The equality ϕ(t) = f(t−1) ,ϕ(t−1) = f(t), show that f is the com-
position of an increasing convex function whit a convex function.

Definition 3.3. A function f : X → R+∞ is called hyperbolically DCAR ,if
it is desreasing and for every x ∈ X the unction fx(α) = f(αx) is hyperbolically
convex on the halfline (0,+∞).In other words, f is hyperbolically DCAR if only
if f is desreasing and the function α 7→ f(( 1

α
)x) is convex.
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Corollary 3.4. Every hyperbolically DCAR function f : X → R+∞ is
DCAR.

Proof by definition (3.3) f is desreasing and fx is hyperbolically convex on
the halfline (0,+∞) . thus f is DCAR.

Let
lx(y) := l(x, y) x ∈ X, y ∈ X

Note that the function lx is positively homogeneous of degree −1 and decreas-
ing. For each x ∈ X ,γ ∈ R consider the function hx,γ(y) := lx(y)− γ.We can
identify hx,γ(y) whit the pair (x, γ) ∈ X × R.Let H := {hx,γ(y) : x ∈ X, γ ∈
R}.

Proposition 3.5. [5]Let f : R+ −→ R+∞ be an increasing lsc convex
function. Then there exists a closed convex set V ⊂ R+ ×R such that f(t) =
sup
v∈V
{v1t− v2} for each t ∈ R+.

Theorem 3.6. A function g : X ′ −→ R+∞ is H-convex if and only if it is
hyperbolically DCAR and lsc-along-rays.

Proof One can easily check thatH consists of lsc-along-rays hyperbolically
DCAR functions; hence every H-convex function is hyperbolically DCAR and
lsc-along-rays.

Conversely, in order to prove that g is mathcalH-convex ,we need to intro-
duce some ntation. For x ∈ X,define ϕx : R++ −→ R+∞ by ϕx(t) := tg(tx)
whit conjugate ϕ∗ .consider the set

V := {(x, ν) : x = −ϕ∗x′(ν)x′for somex′ ∈ X ′and ν ∈ Rsuch thatϕ∗x′(ν) ≤ 0}

Let x′ ∈ X ′ and ν ∈ R,be as in the definition of V , and let y ∈ X ′ and α > 0
be such that αy ≤ x := −ϕ∗x′(ν)x′.Since this ineguality implies that x 6= 0,and
henceϕ∗x′(ν) < 0,one has

α + ν =
α

−ϕ∗x′(ν)
(
−ϕ∗x′(ν)

α
ν −−ϕ∗x′(ν))

≤ α

−ϕ∗x′(ν)
ϕx′(
−ϕ∗x′(ν)

α
) = g(

−ϕ∗x′(ν)

α
x′)

= g(
x

α
) ≤ g(y);

hence
hx,−ν(y) := l(x, y) + ν ≤ g(y)

Thus
hx,−ν : (x, ν) ∈ V ⊂ supp(g,H
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It follows from [2,proposition 9] that

g(y) = ϕy(1) = sup
v∈dom(ϕy)∗

{v − (ϕy)
∗(ν)} = sup

v∈dom(ϕy)∗
{v + l(−(ϕy)

∗(ν)y, y}

= sup
v∈dom(ϕy)∗

h−(ϕy)∗(ν)y,−ν(y).

Therfore,
g = sup

h∈supp(g,H)

h

4 ICAR Functions Defined on L′

Let X ′ = X\(−K) and L′ = {Ly : y ∈ X ′}.Note that L′ is a conic set in
the vector space PH(X) of all positively homogeneous of degree one functions
p defined on X.We consider an arbitrary topology on PH(X) such thatL′ is
closed (for example,the topology of pointwise convergence).

Theorem 4.1. The mapping ψ : X ′ → L′ defined by ψ(y) := ly is a bijection
fromX ′ ontoL′,and

y1 ≤ y2 ⇐⇒ `y2 ≤ `y1 y1, y2 ∈ X ′

and antihomogeneous (positively homogeneous of degree 1):

lαy =
1

α
ly y ∈ X ′, α > 0

Proof Since, by the definition of L′, ψ′is obviously onto, we only have to
prove that ψ′ is one-to-one. To this aim, assume thaty1, y2 ∈ X ′ are such
thatly1 = ly2 . Thus1 = l(y1, y1) = l(y1, y2) .Hence, we get y2 ≤ y1. By
symmetry it follows that y2 ≥ y1. Since K is pointed, we conclude that y2 = y1.

Assume now that ly2 ≤ ly1 .Then either y2 = 0,whence `y2 = +∞ = `y1 so
that y1 = y2 ,or y2 6= 0 and hence,

1 = `y2(y2) ≤ `y1(y2) = max{λ ≥ 0 : λy1 ≤ y2}

Which implies that .y1 ≤ y2,converse follows from definition of l .
For each function g : X ′ → R+∞ consider the function g̃ := goψ−1 .In

other words ,g̃ is the function defined onL′by g̃(`y) := g(y).It follows from
(4.1) that g is decreasing if and only if g̃ is inreasing and g is an hyperbolically
DCAR function if and only if g̃ is an ICAR function defined on L. Clearly g is
lsc-along-rays if and only if g̃ is lsc-along-rays.

For each x ∈ X defined x̃ by

x̃(`) := `(x) ∀l ∈ L′
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Thus if ` = `y

x̃(`y) = `y(x) = `(x, y).

Note that x̃ is a positively homogeneous of degree one function.Indeed,if l = ly
and λ > 0, then

x̃(λ`y) = x̃(` y
λ
) = `(x,

y

λ
) = λ`(x, y) = λx̃(`y)

We now show that x̃ is increasing.Let ly1 , ly2 ∈ L′ and ly1 ≥ ly2 , then

`(x, y1) ≥ `(x, y2)

hence
x̃(`y1) ≥ x̃(`y2).

Thus x̃ is an IPH function.
Denote by H the set of all functions of the formhx,γ whit x ∈ X ′ and γ ∈ R

defined on L′ by hx,γ(l) := x̃(l)− γ.
The proof of the following proposition is similar to (3.6),and therefore we

omit it.

Proposition 4.2. A function g̃ : L′ −→ R+∞ is H̃-convex if and only if g̃
is ICAR and lsc-along-rays.

From proposition (4.2) it follow that a function g̃ : L′ −→ R+∞ is conjugate
of a function f : X −→ R+∞ if and only if it is ICAR and lsc-along -rays.
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