Gen. Math. Notes, Vol. 11, No. 2, August 2012, pp.20-34
ISSN 2219-7184; Copyright © ICSRS Publication, 2012
www.i-csrs.org
Available free online at http://www.geman.in

Somewhat ν-Continuity

S. Balasubramanian ${ }^{1}$, C. Sandhya ${ }^{2}$ and P. Aruna Swathi Vyjayanthi ${ }^{3}$
${ }^{1}$ Department of Mathematics
Government Arts College (Autonomous), Karur- 639005(T.N.)
E-mail: mani55682@rediffmail.com
${ }^{2}$ Department of Mathematics
C.S.R.Sarma College, Ongole- 523001(A.P.)
E-mail: sandhya_karavadi@yahoo.co.uk
${ }^{3}$ Research Scholar
Dravidian University, Kuppam- 517425(A.P.)
E-mail: vyju_9285@rediffmail.com

(Received: 10-7-12/Accepted: 17-8-12)

Abstract

The object of the present paper is to study the basic properties of somewhat $\nu-$ continuous functions.

Keywords: Somewhat continuous function; Somewhat b-continuous function.

1 Introduction

b-open[1] sets are introduced by Andrijevic in 1996. K.R.Gentry introduced somewhat continuous functions in the year 1971. V.K.Sharma and the present authors of this paper defined and studied basic properties of ν-open sets and ν-continuous functions in the year 2006 and 2010 respectively. T.Noiri and N.Rajesh introduced somewhat b-continuous functions in the year 2011. Inspired with these developements we introduce in this paper somewhat ν-continuous functions, somewhat ν-irresolute functions, somewhat ν-open and somewhat $\mathrm{M}-\nu$-open functions and study its basic properties and interrelation with other type of such functions available in the literature. Throughout the paper (X, τ) and (Y, σ) (or simply X and Y) represent topological spaces on which no separation axioms are assumed unless
otherwise mentioned.

2 Preliminaries

For $A \subset(X ; \tau), \bar{A}$ and A^{o} denote the closure of A and the interior of A in X , respectively. A subset A of X is said to be b-open[1] if $A \subset(\bar{A})^{\circ} \cap \overline{A^{o}}$.

Definition 2.1: A function f is said to be
(i) somewhat continuous[7][resp:somewhat b-continuouscite[8]] if for $U \in \sigma$ and $f^{-1}(U) \neq \phi, \exists V \in \tau[$ resp: $V \in b O(\tau)] \ni V \neq \phi$ and $V \subset f^{-1}(U)$.
(ii)somewhat open[7][resp: somewhat b-open[8]] provided that if $U \in \tau$ and $U \neq \phi, \exists V \in \sigma[\mathrm{resp}: V \in b O(\sigma)] \ni V \neq \phi$ and $V \subset f(U)$.

It is clear that every open function is somewhat open and every somewhat open is somewhat b-open. But the converses are not true.

Definition 2.2: A topological space (X, τ) is said to be
(i) resolvable [6]) if there exists a dense set A in (X, τ) such that $X-A$ is also dense in (X, τ). Otherwise, (X, τ) is called irresolvable.
(ii)b-resolvable[8]) if there exists a b-dense set A in (X, τ) such that $X-A$ is also b-dense in (X, τ). Otherwise, (X, τ) is called b-irresolvable.

Definition 2.3: If X is a set and τ and σ are topologies on X , then τ is said to be equivalent [7] to σ provided if $U \in \tau$ and $U \neq \phi$, then there is an open [7] set V in X such that $V \neq \phi$ and $V \subset U$ and if $U \in \sigma$ and $U \neq \phi$, then there is an open set V in (X, τ) such that $V \neq \phi$ and $U \supset V$.

3 Somewhat ν-Continuous Functions:

Definition 3.1: A function f is said to be somewhat ν-continuous if for $U \in \sigma$ and $f^{-1}(U) \neq \phi$, there exists a non-empty ν-open set V in X such that $V \subset f^{-1}(U)$.

Example 1: Let $X=\{a, b, c\}, \tau=\{\phi,\{a\},\{b, c\}, X\}$ and $\sigma=\{\phi,\{a\}, X\}$. Define a function $f:(X, \tau) \rightarrow(X, \sigma)$ by $f(\mathrm{a})=\mathrm{a}, f(\mathrm{~b})=\mathrm{c}$ and $f(\mathrm{c})=\mathrm{b}$. Then f is somewhat ν-continuous.

Example 2: Let $X=\{a, b, c\}, \tau=\{\phi,\{a\},\{b, c\}, X\}$ and $\sigma=\{\phi,\{a\}, X\}$. Define a function $f:(X, \tau) \rightarrow(X, \sigma)$ by $f(\mathrm{a})=\mathrm{c}, f(\mathrm{~b})=\mathrm{a}$ and $f(\mathrm{c})=\mathrm{b}$. Then f is not somewhat ν-continuous.

Note 1: Composition of two somewhat ν-continuous functions need not be somewhat ν-continuous in general.

However, we have the following

Theorem 3.1: If f is somewhat ν-continuous and g is continuous, then $g \circ f$ is somewhat $\nu-$ continuous.

Corollary 3.1: If f is somewhat ν-continuous and g is r-continuous[resp: r-irresolute], then $g \circ f$ is somewhat ν-continuous.

Definition 3.2: $A \subset X$ is said to be ν-dense in X if there is no proper ν-closed set C in X such that $M \subset C \subset X$.

Theorem 3.2: For a surjective function f, the following statements are equivalent:
(i) f is somewhat ν-continuous.
(ii) If C is a closed subset of Y such that $f^{-1}(C) \neq X$, then there is a proper ν-closed subset D of X such that $f^{-1}(C) \subset D$.
(iii)If M is a ν-dense subset of X , then $f(\mathrm{M})$ is a dense subset of Y .

Proof: $(\mathrm{i}) \Rightarrow($ ii $)$: Let C be a closed subset of Y such that $f^{-1}(C) \neq X$. Then $Y-C$ is an open set in Y such that $f^{-1}(Y-C)=X-f^{-1}(C) \neq \phi$ By (i), there exists a $V \in \nu O(X) \ni V \neq \phi$ and $V \subset f^{-1}(Y-C)=X-f^{-1}(C)$. This means that $X-V \supset f^{-1}(C)$ and $X-V=D$ is a proper ν-closed set in X. $($ ii $) \Rightarrow(\mathrm{i}):$ Let $U \in \sigma$ and $f^{-1}(U) \neq \phi$ Then $Y-U$ is closed and $f^{-1}(Y-U)=$ $X-f^{-1}(U) \neq X$. By (ii), there exists a proper $\nu-$ closed set D such that $D \supset f^{-1}(Y-U)$. This implies that $X-D \subset f^{-1}(U)$ and $X-D$ is ν-open and $X-D \neq \phi$.
$($ ii $) \Rightarrow($ iii $)$: Let M be a ν-dense set in X . Suppose that $f(\mathrm{M})$ is not dense in Y. Then there exists a proper closed set C in Y such that $f(M) \subset C \subset Y$. Clearly $f^{-1}(C) \neq X$. By (ii), there exists a proper ν-closed set D such that $M \subset f^{-1}(C) \subset D \subset X$. This is a contradiction to the fact that M is ν-dense in X.
(iii) \Rightarrow (ii): Suppose (ii) is not true. there exists a closed set C in Y such that $f^{-1}(C) \neq X$ but there is no proper ν-closed set D in X such that $f^{-1}(C) \subset D$. This means that $f^{-1}(C)$ is ν-dense in X . But by (iii), $f\left(f^{-1}(C)\right)=C$ must be dense in Y, which is a contradiction to the choice of C .

Theorem 3.3: Let f be a function and $X=A \cup B$, where $A, B \in R O(X)$. If the restriction functions $f_{\mid A}:\left(A ; \tau_{\mid A}\right) \rightarrow(Y, \sigma)$ and $f_{\mid B}:(B ; \mid B) \rightarrow(Y, \sigma)$ are somewhat ν-continuous, then f is somewhat ν-continuous.
Proof: Let $U \in \sigma$ such that $f^{-1}(U) \neq \phi$. Then $\left(f_{\mid A}\right)^{-1}(U) \neq \phi$ or $\left(f_{\mid B}\right)^{-1}(U) \neq$
ϕ or both $\left(f_{\mid A}\right)^{-1}(U) \neq \phi$ and $\left(f_{\mid B}\right)^{-1}(U) \neq \phi$. Suppose $\left(f_{\mid A}\right)^{-1}(U) \neq \phi$, Since $f_{\mid A}$ is somewhat ν-continuous, there exists a ν-open set V in A such that $V \neq \phi$ and $V \subset\left(f_{\mid A}\right)^{-1}(U) \subset f^{-1}(U)$. Since V is $\nu-$ open in A and A is r-open in X, V is ν-open in X . Thus f is somewhat ν-continuous.

The proof of other cases are similar.
Definition 3.3: If X is a set and τ and σ are topologies on X , then τ is said to be ν-equivalent to σ provided if $U \in \tau$ and $U \neq \phi$, then there is a ν-open set V in X such that $V \neq \phi$ and $V \subset U$ and if $U \in \sigma$ and $U \neq \phi$, then there is a ν-open set V in (X, τ) such that $V \neq \phi$ and $U \supset V$.

Now, consider the identity function f and assume that τ and σ are ν-equivalent. Then f and f^{-1} are somewhat ν-continuous. Conversely, if the identity function f is somewhat ν-continuous in both directions, then τ and σ are ν-equivalent.

Theorem 3.4: Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a somewhat ν-continuous surjection and τ^{*} be a topology for X , which is ν-equivalent to τ. Then $f:\left(X, \tau^{*}\right) \rightarrow(Y, \sigma)$ is somewhat $\nu-$ continuous.
Proof: Let $V \in \sigma$ such that $f^{-1}(V) \neq \phi$. Since $f:(X, \tau) \rightarrow(Y, \sigma)$ is somewhat ν-continuous, there exists a nonempty ν-open set U in (X, τ) such that $U \subset f^{-1}(V)$. But by hypothesis τ^{*} is ν-equivalent to τ. Therefore, there exists a ν-open set $U^{*} \in\left(X ; \tau^{*}\right)$ such that $U^{*} \subset U$. But $U \subset f^{-1}(V)$. Then $U^{*} \subset f^{-1}(V)$; hence $f:\left(X, \tau^{*}\right) \rightarrow(Y, \sigma)$ is somewhat $\nu-$ continuous.

Theorem 3.5: Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a somewhat $\nu-$ continuous surjection and σ^{*} be a topology for Y , which is equivalent to σ. Then $f:(X, \tau) \rightarrow$ (Y, σ^{*}) is somewhat ν-continuous.
Proof: Let $V^{*} \in \sigma^{*}$ such that $f^{-1}\left(V^{*}\right) \neq \phi$ Since σ^{*} is equivalent to σ, there exists a nonempty open set V in (Y, σ) such that $V \subset V^{*}$. Now $\phi \neq f^{-1}(V) \subset f^{-1}\left(V^{*}\right)$. Since $f:(X, \tau) \rightarrow(Y, \sigma)$ is somewhat ν-continuous, there exists a nonempty ν-open set U in (X, τ) such that $U \subset f^{-1}(V)$. Then $U \subset f^{-1}\left(V^{*}\right)$; hence $f:(X, \tau) \rightarrow\left(Y, \sigma^{*}\right)$ is somewhat ν-continuous.

Definition 3.4: A function f is said to be somewhat ν-open provided that if $U \in \tau$ and $U \neq \phi$, then there exists a non-empty ν-open set V in Y such that $V \subset f(U)$.

Example 3: Let $X=\{a, b, c\}, \tau=\{\phi,\{a\}, X\}$ and $\sigma=\{\phi,\{a\},\{b, c\}, X\}$. Define a function $f:(X, \tau) \rightarrow(X, \sigma)$ by $f(a)=a, f(b)=c$ and $f(c)=b$. Then f is somewhat ν-open and somewhat open.

Example 4: Let $X=\{a, b, c\}, \tau=\{\phi,\{a\},\{b, c\}, X\}$ and $\sigma=\{\phi,\{a\}, X\}$. Define a function $f:(X, \tau) \rightarrow(X, \sigma)$ by $f(a)=b, f(b)=c$ and $f(c)=a$. Then f is not somewhat ν-open and not somewhat open.

Example 5: Let $X=\{a, b, c\}, \tau=\{\phi,\{a\}, X\}$, and $\sigma=\{\phi,\{a\},\{a, b\}, X\}$. Then the identity function $f:(X, \tau) \rightarrow(X, \sigma)$ is somewhat open but not somewhat ν-open.

Theorem 3.6: Let f be an open function and g be somewhat ν-open. Then $g \circ f$ is somewhat ν-open.

Theorem 3.7: For a bijective function f, the following are equivalent:
(i) f is somewhat ν-open.
(ii) If C is a closed subset of X , such that $f(C) \neq Y$, then there is a ν-closed subset D of Y such that $D \neq Y$ and $D \supset f(C)$.
Proof: (i) \Rightarrow (ii): Let C be any closed subset of X such that $f(C) \neq Y$. Then $X-C$ is open in X and $X-C \neq \phi$. Since f is somewhat $\nu-$ open, there exists a $\nu-$ open set $V \neq \phi$ in Y such that $V \subset f(X-C)$. Put $D=Y-V$. Clearly D is ν-closed in Y and we claim $D \neq Y$. If $\mathrm{D}=\mathrm{Y}$, then $V=\phi$, which is a contradiction. Since $V \subset f(X-C), D=Y-V \supset(Y-f(X-C))=f(C)$.
$($ ii $) \Rightarrow(\mathrm{i})$: Let U be any nonempty open subset of X . Then $C=X-U$ is a closed set in X and $f(X-U)=f(C)=Y-f(U)$ implies $f(C) \neq Y$. Therefore, by (ii), there is a ν-closed set D of Y such that $D \neq Y$ and $f(C) \subset D$. Clearly $V=Y-D$ is a ν-open set and $V \neq \phi$. Also, $V=Y-D \subset Y-f(C)=$ $Y-f(X-U)=f(U)$.

Theorem 3.8: The following statements are equivalent:
(i) f is somewhat ν-open.
(ii)If A is a ν-dense subset of Y , then $f^{-1}(A)$ is a dense subset of X .

Proof: $(\mathrm{i}) \Rightarrow($ ii $):$ Suppose A is a ν-dense set in Y. If $f^{-1}(A)$ is not dense in X , then there exists a closed set B in X such that $f^{-1}(A) \subset B \subset X$. Since f is somewhat ν-open and $X-B$ is open, there exists a nonempty $\nu-$ open set C in Y such that $C \subset f(X-B)$. Therefore, $C \subset f(X-B) \subset f\left(f^{-1}(Y-A)\right) \subset Y-A$. That is, $A \subset Y-C \subset Y$. Now, $Y-C$ is a $\nu-$ closed set and $A \subset Y-C \subset Y$. This implies that A is not a ν-dense set in Y , which is a contradiction. Therefore, $f^{-1}(A)$ is a dense set in X.
$($ ii $) \Rightarrow(\mathrm{i})$: Suppose A is a nonempty open subset of X. We want to show that $\nu(f(A))^{o} \neq \phi$. Suppose $\nu(f(A))^{o}=\phi$. Then, $\nu \overline{(f(A))}=Y$. Therefore, by (ii), $f^{-1}(Y-f(A))$ is dense in X. But $f^{-1}(Y-f(A)) \subset X-A$. Now, $X-A$ is closed. Therefore, $f^{-1}(Y-f(A)) \subset X-A$ gives $X=\overline{\left(f^{-1}(Y-f(A))\right)} \subset X-A$. This implies that $A=\phi$, which is contrary to $A \neq \phi$. Therefore, $\nu(f(A))^{\circ} \neq \phi$.

Hence f is somewhat ν-open.
Theorem 3.9: Let f be somewhat ν-open and A be any r-open subset of X. Then $f_{\mid A}:\left(A ; \tau_{\mid A}\right) \rightarrow(Y, \sigma)$ is somewhat ν-open.

Proof: Let $U \in \tau_{\mid A}$ such that $U \neq \phi$. Since U is r-open in A and A is open in X, U is r -open in X and since by hypothesis f is somewhat ν-open function, there exists a ν-open set V in Y , such that $V \subset f(U)$. Thus, for any open set U of A with $U \neq \phi$, there exists a ν-open set V in Y such that $V \subset f(U)$ which implies $f_{\mid A}$ is a somewhat ν-open function.

Theorem 3.10: Let f be a function and $X=A \cup B$, where $A, B \in R O(X)$. If the restriction functions $f_{\mid A}$ and $f_{\mid B}$ are somewhat ν-open, then f is somewhat ν-open.
Proof: Let U be any open subset of X such that $U \neq \phi$. Since $X=A \cup B$, either $A \cap U \neq \phi$ or $B \cap U \neq \phi$ or both $A \cap U \neq \phi$ and $B \cap U \neq \phi$. Since U is open in X, U is open in both A and B .
Case (i): If $A \cap U \neq \phi \in R O(A)$. Since $f_{\mid A}$ is somewhat $\nu-$ open, $\exists V \in \nu O(Y)$ $\ni V \subset f(U \cap A) \subset f(U)$, which implies that f is somewhat ν-open.
Case (ii): If $B \cap U \neq \phi \in R O(B)$. Since $f_{\mid B}$ is somewhat $\nu-$ open, $\exists V \in \nu O(Y)$ $\ni V \subset f(U \cap B) \subset f(U)$, which implies that f is somewhat $\nu-$ open.
Case (iii): If both $A \cap U \neq \phi$ and $B \cap U \neq \phi$. Then by case (i) and (ii) f is somewhat ν-open.

Remark 1: Two topologies τ and σ for X are said to be ν-equivalent if and only if the identity function $f:(X, \tau) \rightarrow(Y, \sigma)$ is somewhat ν-open in both directions.

Theorem 3.11: Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a somewhat open function. Let τ^{*} and σ^{*} be topologies for X and Y , respectively such that τ^{*} is equivalent to τ and σ^{*} is ν-equivalent to σ. Then $f:\left(X ; \tau^{*}\right) \rightarrow\left(Y ; \sigma^{*}\right)$ is somewhat ν-open.

4 Somewhat ν-Irresolute Functions:

Definition 4.1: A function f is said to be somewhat ν-irresolute if for $U \in \nu O(\sigma)$ and $f^{-1}(U) \neq \phi$, there exists a non-empty ν-open set V in X such that $V \subset f^{-1}(U)$.

Example 6 Let $X=\{a, b, c\}, \tau=\{\phi,\{a\},\{b, c\}, X\}$ and $\sigma=\{\phi,\{a\}, X\}$. Define a function $f:(X, \tau) \rightarrow(X, \sigma)$ by $f(\mathrm{a})=\mathrm{c}, f(\mathrm{~b})=\mathrm{a}$ and $f(\mathrm{c})=\mathrm{b}$. Then f is somewhat ν-irresolute.

Note 2: Composition of two somewhat ν-irresolute functions need not be somewhat ν-irresolute.

However, we have the following

Theorem 4.1: If f is somewhat ν-irresolute and g is ν-irresolute, then $g \circ f$ is somewhat ν-irresolute.

Theorem 4.2: For a surjective function f, the following statements are equivalent:
(i) f is somewhat ν-irresolute.
(ii) If C is a ν-closed subset of Y such that $f^{-1}(C) \neq X$, then there is a proper $\nu-$ closed subset D of X such that $f^{-1}(C) \subset D$.
(iii)If M is a ν-dense subset of X , then $f(\mathrm{M})$ is a ν-dense subset of Y.

Proof: $(\mathrm{i}) \Rightarrow\left(\right.$ ii): Let C be a ν-closed subset of Y such that $f^{-1}(C) \neq X$. Then $Y-C$ is an ν-open set in Y such that $f^{-1}(Y-C)=X-f^{-1}(C) \neq \phi$ By (i), there exists a ν-open set $V \in \nu O(X) \ni V \neq \phi$ and $V \subset f^{-1}(Y-C)=X-f^{-1}(C)$. This means that $X-V \supset f^{-1}(C)$ and $X-V=D$ is a proper ν-closed set in X.
(ii) $\Rightarrow(\mathrm{i})$: Let $U \in \nu O(\sigma)$ and $f^{-1}(U) \neq \phi$ Then $Y-U$ is ν-closed and $f^{-1}(Y-U)=X-f^{-1}(U) \neq X$. By (ii), there exists a proper ν-closed set D such that $D \supset f^{-1}(Y-U)$. This implies that $X-D \subset f^{-1}(U)$ and $X-D$ is $\nu-$ open and $X-D \neq \phi$.
$($ ii $) \Rightarrow($ iii $)$: Let M be a ν-dense set in X. Suppose that $f(\mathrm{M})$ is not ν-dense in Y. Then there exists a proper ν-closed set C in Y such that $f(M) \subset C \subset Y$. Clearly $f^{-1}(C) \neq X$. By (ii), there exists a proper ν-closed set D such that $M \subset f^{-1}(C) \subset D \subset X$. This is a contradiction to the fact that M is ν-dense in X .
(iii) \Rightarrow (ii): Suppose (ii) is not true, there exists a ν-closed set C in Y such that $f^{-1}(C) \neq X$ but there is no proper ν-closed set D in X such that $f^{-1}(C) \subset D$. This means that $f^{-1}(C)$ is ν-dense in X. But by (iii), $f\left(f^{-1}(C)\right)=C$ must be ν-dense in Y, which is a contradiction to the choice of C .

Theorem 4.3: Let f be a function and $X=A \cup B$, where $A, B \in R O(X)$. If the restriction functions $f_{\mid A}:\left(A ; \tau_{\mid A}\right) \rightarrow(Y, \sigma)$ and $f_{\mid B}:\left(B ;{ }_{\mid B}\right) \rightarrow(Y, \sigma)$ are somewhat ν-irresolute, then f is somewhat ν-irresolute.
Proof: Let $U \in \nu O(\sigma)$ such that $f^{-1}(U) \neq \phi$. Then $\left(f_{\mid A}\right)^{-1}(U) \neq \phi$ or $\left(f_{\mid B}\right)^{-1}(U) \neq \phi$ or both $\left(f_{\mid A}\right)^{-1}(U) \neq \phi$ and $\left(f_{\mid B}\right)^{-1}(U) \neq \phi$. Suppose $\left(f_{\mid A}\right)^{-1}(U) \neq$ ϕ, Since $f_{\mid A}$ is somewhat ν-irresolute, there exists a ν-open set V in A such that $V \neq \phi$ and $V \subset\left(f_{\mid A}\right)^{-1}(U) \subset f^{-1}(U)$. Since V is $\nu-$ open in A and A is r-open in X, V is ν-open in X . Thus f is somewhat ν-irresolute.

The proof of other cases are similar.
Now, consider the identity function f and assume that τ and σ are ν-equivalent. Then f and f^{-1} are somewhat ν-irresolute. Conversely, if the identity function f is somewhat ν-irresolute in both directions, then τ and σ are ν-equivalent.

Theorem 4.4: Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a somewhat ν-irresolute surjection and τ^{*} be a topology for X , which is ν-equivalent to τ. Then $f:\left(X, \tau^{*}\right) \rightarrow(Y, \sigma)$ is somewhat ν-irresolute.
Proof: Let $V \in \nu O(\sigma)$ such that $f^{-1}(V) \neq \phi$. Since $f:(X, \tau) \rightarrow(Y, \sigma)$ is somewhat ν-irresolute, there exists a nonempty ν-open set U in (X, τ) such that $U \subset f^{-1}(V)$. But by hypothesis τ^{*} is ν-equivalent to τ. Therefore, there exists a ν-open set $U^{*} \in\left(X ; \tau^{*}\right)$ such that $U^{*} \subset U$. But $U \subset f^{-1}(V)$. Then $U^{*} \subset f^{-1}(V)$; hence $f:\left(X, \tau^{*}\right) \rightarrow(Y, \sigma)$ is somewhat ν-irresolute.

Theorem 4.5: Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a somewhat ν-irresolute surjection and σ^{*} be a topology for Y , which is equivalent to σ. Then $f:(X, \tau) \rightarrow$ $\left(Y, \sigma^{*}\right)$ is somewhat ν-irresolute.
Proof: Let $V^{*} \in \nu O\left(\sigma^{*}\right)$ such that $f^{-1}\left(V^{*}\right) \neq \phi$ Since $\nu O\left(\sigma^{*}\right)$ is equivalent to $\nu O(\sigma)$, there exists a nonempty ν-open set V in (Y, σ) such that $V \subset V^{*}$. Now $\phi=f^{-1}(V) \subset f^{-1}\left(V^{*}\right)$. Since $f:(X, \tau) \rightarrow(Y, \sigma)$ is somewhat ν-irresolute, there exists a nonempty ν-open set U in (X, τ) such that $U \subset f^{-1}(V)$. Then $U \subset f^{-1}\left(V^{*}\right)$; hence $f:(X, \tau) \rightarrow\left(Y, \sigma^{*}\right)$ is somewhat ν-irresolute.

Definition 4.4: A function f is said to be somewhat $\mathrm{M}-\nu$-open provided that if $U \in \nu O(\tau)$ and $U \neq \phi$, then there exists a non-empty ν-open set V in Y such that $V \subset f(U)$.

Example 7: Let $X=\{a, b, c\}, \tau=\{\phi,\{a\},\{b, c\}, X\}$ and $\sigma=\{\phi,\{a\},\{b\}$, $\{a, b\}, X\}$. Define a function $f:(X, \tau) \rightarrow(X, \sigma)$ by $f(a)=a, f(b)=c$ and $f(c)=b$. Then f is somewhat M- ν-open.

Example 8: Let $X=\{a, b, c\}, \tau=\{\phi,\{a\},\{b\},\{a, b\}, X\}$ and $\sigma=$ $\{\phi,\{a\},\{b, c\}, X\}$. Define a function $f:(X, \tau) \rightarrow(X, \sigma)$ by $f(\mathrm{~b})=\mathrm{c}, f(\mathrm{a})=\mathrm{a}$,$f(\mathrm{c})=\mathrm{b}$. Then f is not somewhat $\mathrm{M}-\nu-$ open

Theorem 4.6: Let f be an r-open function and g somewhat $\mathrm{M}-\nu$-open. Then $g \circ f$ is somewhat $\mathrm{M}-\nu$-open.

Theorem 4.7: For a bijective function f, the following are equivalent:
(i) f is somewhat $\mathrm{M}-\nu-$ open.
(ii) If C is a ν-closed subset of X , such that $f(C) \neq Y$, then there is a ν-closed
subset D of Y such that $D \neq Y$ and $D \supset f(C)$.
Proof: (i) \Rightarrow (ii): Let C be any ν-closed subset of X such that $f(C) \neq Y$. Then $X-C$ is ν-open in X and $X-C \neq \phi$. Since f is somewhat ν-open, there exists a ν-open set $V \neq \phi$ in Y such that $V \subset f(X-C)$. Put $D=Y-V$. Clearly D is ν-closed in Y and we claim $D \neq Y$. If $\mathrm{D}=\mathrm{Y}$, then $V=\phi$, which is a contradiction. Since $V \subset f(X-C), D=Y-V \supset(Y-f(X-C))=f(C)$. $(\mathrm{ii}) \Rightarrow(\mathrm{i})$: Let U be any nonempty ν-open subset of X . Then $C=X-U$ is a $\nu-$ closed set in X and $f(X-U)=f(C)=Y-f(U)$ implies $f(C) \neq Y$. Therefore, by (ii), there is a ν-closed set D of Y such that $D \neq Y$ and $f(C) \subset D$. Clearly $V=Y-D$ is a ν-open set and $V \neq \phi$. Also, $V=Y-D \subset Y-f(C)=$ $Y-f(X-U)=f(U)$.

Theorem 4.8: The following statements are equivalent:
(i) f is somewhat $\mathrm{M}-\nu-$ open.
(ii)If A is a ν-dense subset of Y , then $f^{-1}(A)$ is a ν-dense subset of X .

Proof: (i) \Rightarrow (ii): Suppose A is a ν-dense set in Y. If $f^{-1}(A)$ is not ν-dense in X , then there exists a ν-closed set B in X such that $f^{-1}(A) \subset B \subset X$. Since f is somewhat ν-open and $X-B$ is ν-open, there exists a nonempty ν-open set C in Y such that $C \subset f(X-B)$. Therefore, $C \subset f(X-B) \subset$ $f\left(f^{-1}(Y-A)\right) \subset Y-A$. That is, $A \subset Y-C \subset Y$. Now, $Y-C$ is a $\nu-$ closed set and $A \subset Y-C \subset Y$. This implies that A is not a ν-dense set in Y , which is a contradiction. Therefore, $f^{-1}(A)$ is a ν-dense set in X .
$($ ii $) \Rightarrow(\mathrm{i})$: Suppose A is a nonempty ν-open subset of X. We want to show that $\nu(f(A))^{o} \neq \phi$. Suppose $\nu(f(A))^{o}=\phi$. Then, $\nu \overline{\nu(f(A))}=Y$. Therefore, by (ii), $f^{-1}(Y-f(A))$ is ν-dense in X. But $f^{-1}(Y-f(A)) \subset X-A$. Now, $X-A$ is ν-closed. Therefore, $f^{-1}(Y-f(A)) \subset X-A$ gives $X=\overline{\left(f^{-1}(Y-f(A))\right)} \subset$ $X-A$. This implies that $A=\phi$, which is contrary to $A \neq \phi$. Therefore, $\nu(f(A))^{o} \neq \phi$. Hence f is somewhat M- $\nu-$ open.

Theorem 4.9: Let f be somewhat $\mathrm{M}-\nu-$ open and A be any r-open subset of X. Then $f_{\mid A}:\left(A ; \tau_{\mid A}\right) \rightarrow(Y, \sigma)$ is somewhat M- $\nu-$ open.
Proof: Let $U \in \nu O\left(\tau_{\mid A}\right)$ such that $U \neq \phi$. Since U is r-open in A and A is open in X, U is r-open in X and since by hypothesis f is somewhat $\mathrm{M}-\nu$-open function, there exists a ν-open set V in Y , such that $V \subset f(U)$. Thus, for any ν-open set U of A with $U \neq \phi$, there exists a ν-open set V in Y such that $V \subset f(U)$ which implies $f_{\mid A}$ is a somewhat $\mathrm{M}-\nu-$ open function.

Theorem 4.10: Let f be a function and $X=A \cup B$, where $A, B \in R O(X)$. If the restriction functions $f_{\mid A}$ and $f_{\mid B}$ are somewhat M- $\nu-$ open, then f is somewhat M- ν-open.
Proof: Let U be any ν-open subset of X such that $U \neq \phi$. Since $X=A \cup B$, either $A \cap U \neq \phi$ or $B \cap U \neq \phi$ or both $A \cap U \neq \phi$ and $B \cap U \neq \phi$. Since U is
ν-open in X, U is ν-open in both A and B .
Case (i): If $A \cap U \neq \phi \in R O(A)$. Since $f_{\mid A}$ is somewhat M- $\nu-$ open, \exists $V \in \nu O(Y)$ ı $V \subset f(U \cap A) \subset f(U)$, which implies that f is somewhat M-ν-open.
Case (ii): If $B \cap U \neq \phi \in R O(B)$. Since $f_{\mid B}$ is somewhat M- ν-open, \exists $V \in \nu O(Y) \ni V \subset f(U \cap B) \subset f(U)$, which implies that f is somewhat M-ν-open.
Case (iii): If both $A \cap U \neq \phi$ and $B \cap U \neq \phi$. Then by case (i) and (ii) f is somewhat $\mathrm{M}-\nu$-open.

Remark 2: Two topologies τ and σ for X are said to be ν-equivalent if and only if the identity function $f:(X, \tau) \rightarrow(Y, \sigma)$ is somewhat $\mathrm{M}-\nu$-open in both directions.

Theorem 4.11: Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a somewhat open function. Let τ^{*} and σ^{*} be topologies for X and Y , respectively such that τ^{*} is equivalent to τ and σ^{*} is ν-equivalent to σ. Then $f:\left(X ; \tau^{*}\right) \rightarrow\left(Y ; \sigma^{*}\right)$ is somewhat ν-open.

5ν - Resolvable Spaces and ν - Irresolvable Spaces:

Definition 5.1: (X, τ) is said to be $\nu-$ resolvable if A and $X-A$ are ν-dense in (X, τ). Otherwise, (X, τ) is called ν-irresolvable.

Example 9: Let $X=\{a, b, c\}$ and τ an indiscrete topology on X. Then (X, τ) is resolvable and ν-resolvable.

Example 10: Let $X=\{a, b, c\}$ and $\tau=\{\phi,\{a\},\{a, b\}, X\}$ on X . Then (X, τ) is not resolvable but X is ν-resolvable.

Example 11: Let $X=\{a, b, c\}$ and $\tau=\{\phi,\{a\},\{b, c\}, X\}$ on X . Then (X, τ) is not resolvable and also not ν-resolvable.

Theorem 5.1: The following statements are equivalent:
(i) X is ν-resolvable;
(ii) X has a pair of ν-dense sets A and B such that $A \subset B$.

Proof: (i) \Rightarrow (ii): Suppose that (X, τ) is $\nu-$ resolvable. There exists a $\nu-$ dense set A such that $X-A$ is ν-dense. Set $\mathrm{B}=X-A$, then we have $\mathrm{A}=X-B$. $($ ii $) \Rightarrow(\mathrm{i})$: Suppose that the statement (ii) holds. Let (X, τ) be ν-irresolvable. Then $X-B$ is not ν-dense and $\nu \overline{(A)} \subset \nu \overline{(X-B)} \neq X$. Hence A is not ν-dense. This contradicts the assumption.

Theorem 5.2: The following statements are equivalent:
(i) (X, τ) is ν-irresolvable;
(ii) For any ν-dense set A in $\mathrm{X}, \nu(A)^{o} \neq \phi$.

Proof: (i) \Rightarrow (ii): Let A be any $\nu-$ dense set of X . Then we have $\nu \overline{(X-A)} \neq X$; hence $\nu(A)^{o} \neq \phi$.
(ii) \Rightarrow (i): If X is a ν-resolvable space. Then there exists a ν-dense set A in X such that A^{c} is also ν-dense in X. It follows that $\nu(A)^{o}=\phi$, which is a contradiction; hence X is ν-irresolvable.

Definition 5.2: (X, τ) is said to be strongly ν-irresolvable if for a nonempty set A in $\mathrm{X} \nu(A)^{o}=\phi$ implies $\nu(\nu \bar{A})^{o}=\phi$.

Theorem 5.3: If (X, τ) is a strongly ν-irresolvable space and $\nu \bar{A}=X$ for a nonempty subset A of X, then $\nu \overline{\left(\nu(A)^{\circ}\right)}=X$.

Theorem 5.4: If (X, τ) is a strongly ν-irresolvable space and $\nu(\nu \overline{(A)})^{o} \neq$ ϕ for any nonempty subset A in X, then $\nu(A)^{\circ} \neq \phi$.

Theorem 5.5: Every strongly ν-irresolvable space is ν-irresolvable.
Proof: This follows from Theorems 3.2 and 3.3.
However, the converse of above theorem is not true in general as it can be seen from the following example.

Example 12: Let $X=\{a, b, c\}$ and $\tau=\{\phi,\{a\}, X\}$. Then (X, τ) is ν-irresolvable but not strongly ν-irresolvable.

Theorem 5.6: If f is somewhat ν-open and $\nu(A)^{o}=\phi$ for a nonempty set A in Y, then $\left(f^{-1}(A)\right)^{o}=\phi$.
Proof: Let A be a nonempty set in Y such that $\nu(A)^{o}=\phi$. Then $\nu \overline{(Y-A)}=$ Y. Since f is somewhat ν-open and $Y-A$ is ν-dense in Y, by theorem 3.5, $f^{-1}(Y-A)$ is dense in X. Then, $\overline{\left(X-f^{-1}(A)\right)}=X$; hence $\left(f^{-1}(A)\right)^{o}=\phi$.

Theorem 5.7: Let f be a somewhat ν-open function. If X is irresolvable, then Y is ν-irresolvable.
Proof: Let A be a nonempty set in Y such that $\overline{\nu(A)}=Y$. We show that $\nu(A)^{o} \neq \phi$. Suppose not, then $\nu \overline{(Y-A)}=Y$. Since f is somewhat ν-open and $Y-A$ is ν-dense in Y , we have by theorem $3.5 f^{-1}(Y-A)$ is dense in X. Then $\left(f^{-1}(A)\right)^{o}=\phi$. Now, since A is ν-dense in $\mathrm{Y}, f^{-1}(A)$ is dense in X. Therefore, for the dense set $f^{-1}(A)$, we have $\left(f^{-1}(A)\right)^{o}=\phi$, which is a contradiction to Theorem 3.2. Hence we must have $\nu(A)^{o} \neq \phi$ for all ν-dense sets A in Y. Hence by Theorem 3.2, Y is ν-irresolvable.

6 Further Properties:

Defintion 6.1: A function f is said to be somewhat semi-continuous[resp: somewhat pre-continuous; somewhat β-continuous; somewhat $\mathrm{r} \alpha$-continuous] if for each $U \in \sigma$ and $f^{-1}(U) \neq \phi$ there exists $V \in S O(Y)$ [resp: $V \in P O(Y) ; V \in$ $\beta O(Y) ; V \in r \alpha O(Y)] \ni V \neq \phi$ and $V \subset f^{-1}(U)$.

Theorem 6.1: The following are equivalent:
(i) f is swt. ν.c.
(ii) $f^{-1}(V)$ is ν-open for every clopen set V in Y .
(iii) $f^{-1}(V)$ is ν-closed for every clopen set V in Y .
(iv) $f(\overline{(A)}) \subseteq \nu \overline{(f(A))}$.

Corollary 6.1: The following are equivalent.
(i) f is swt. $\nu . \mathrm{c}$.
(ii)For each x in X and each $V \in \sigma(Y, f(x)) \exists U \in \nu O(X, x)$ such that $f(U) \subset V$.

Theorem 6.2: Let $\Sigma=\left\{U_{i}: i \in I\right\}$ be any cover of X by regular open sets in X , then f is swt. $\nu . c$. iff $f_{/ U_{i}}$: is swt. $\nu . c$., for each $i \in I$.

Theorem 6.3: If f is ν-irresolute[resp: ν-continuous] and g is swt. $\nu . c .,[r e s p:$ swt.c.,] then $g \circ f$ is swt. $\nu . c$.

Theorem 6.4: If f is ν-irresolute, ν-open and $\nu O(X)=\tau$ and g be any function, then $g \circ f$ is swt. $\nu . c$ iff g is swt. $\nu . c$.

Corollary 6.2: If f is ν-irresolute, ν-open and bijective, g is a function. Then g is swt. $\nu . c$. iff $g \circ f$ is swt. $\nu . c$.

Theorem 6.5: If $g: X \rightarrow X \times Y$, defined by $g(x)=(x, f(x))$ for all $x \in X$ be the graph function of f. Then g is swt. $\nu . c$ iff f is swt. $\nu . c$.
Proof: Let $V \in \sigma(Y)$, then $X \times V$ is open in $X \times Y$. Since $g: X \rightarrow X \times Y$ swt. $\nu . c ., f^{-1}(V)=f^{-1}(X \times V) \in \nu O(X)$. Thus f is swt. $\nu . c$.
Conversely, let $x \in X$ and $F \in \sigma(X \times Y, g(x))$. Then $F(\{x\} \times Y) \in \sigma(x \times$ $Y, g(x))$. Also $x \times Y$ is homeomorphic to Y. Hence $\{y \in Y:(x, y) \in$ $F\} \in \sigma(Y)$. Since f is swt. $\nu . c$. $\left\{f^{-1}(y):(x, y) \in F\right\} \in \nu O(X)$. Further $x \in\left\{f^{-1}(y):(x, y) \in F\right\}=g^{-1}(F)$. Hence $g^{-1}(F)$ is ν-open. Thus g is swt. $\nu . c$.

Theorem 6.6: (i) If $f: X \rightarrow \Pi Y_{\lambda}$ is swt. $\nu . c$, then $P_{\lambda} \circ f: X \rightarrow Y_{\lambda}$ is swt. ν.c for each $\lambda \in \Lambda$, where $P_{\lambda}: \Pi Y_{\lambda}$ onto Y_{λ}.
(ii) $f: \Pi X_{\lambda} \rightarrow \Pi Y_{\lambda}$ is swt. $\nu . \mathrm{c}$, iff $f_{\lambda}: X_{\lambda} \rightarrow Y_{\lambda}$ is swt. $\nu . \mathrm{c}$ for each $\lambda \in \Lambda$.

Remark 1: Algebraic sum and product of swt. $\nu . c$ functions is not in general swt. $\nu . c$.
The pointwise limit of a sequence of swt. $\nu . c$ functions is not in general swt. $\nu . c$.
However we can prove the following:
Theorem 6.7: The uniform limit of a sequence of swt. $\nu . c$ functions is swt. $\nu . c$.

Note 1 Pasting Lemma is not true for swt. $\nu . c$ functions. However we have the following weaker versions.

Theorem 6.8: Pasting Lemma Let X and Y be topological spaces such that $X=A \cup B$ and let $f_{/ A}$ and $g_{/ B}$ are swt. $\nu . c[$ resp: swt.r.c] maps such that $f(x)=g(x)$ for all $x \in A \cap B$. If $A ; B \in R O(X)$ and $\nu \mathrm{O}(\mathrm{X})[$ resp: $\mathrm{RO}(\mathrm{X})]$ is closed under finite unions, then the combination $\alpha: X \rightarrow Y$ is swt. $\nu . c$.
Proof: Let $F \in \sigma(Y)$, then $\alpha^{-1}(F)=f^{-1}(F) \cup g^{-1}(F)$ where $f^{-1}(F) \in$ $\nu O(A)$ and $g^{-1}(F) \in \nu O(B) \Rightarrow f^{-1}(F) \in \nu O(X)$ and $g^{-1}(F) \in \nu O(X)$ $\Rightarrow f^{-1}(F) \cup g^{-1}(F) \in \nu O(X) \Rightarrow \alpha^{-1}(F) \in \nu O(X)$. Hence α is swt. $\nu . c$.

Theorem 6.9: (i) If f is swt.s.c, then f is swt. $\nu . c$.
(ii) If f is swt.r.c, then f is swt. ν.c.
(iii)If f is swt.r $\alpha . \mathrm{c}$, then f is swt. $\nu . \mathrm{c}$.

7 Covering and Separation Properties:

Theorem 7.1: If f is swt. $\nu . c$. surjection and X is ν-compact, then Y is compact.
Proof: Let $\left\{G_{i}: i \in I\right\}$ be any open cover for Y and f is swt. $\nu . c$., $\exists U_{i} \in$ $\nu O(X) \ni U_{i} \subset f^{-1}\left(G_{i}\right)$. Thus $\left\{U_{i}\right\}$ forms a ν-open cover for X such that $\left\{U_{i}\right\} \subset\left\{f^{-1}\left(G_{i}\right)\right\}$ and hence have a finite subcover, since X is ν-compact. Since f is surjection, $Y=f(X)=\cup_{i=1}^{n} f\left(U_{i}\right) \subset \cup_{i=1}^{n} G_{i}$. Therefore Y is compact.

Theorem 7.2: If f is swt. $\nu . c$. , surjection and X is ν-compact[ν-lindeloff] then Y is mildly compact[mildly lindeloff].
Proof: Let $\left\{U_{i}: i \in I\right\}$ be clopen cover for Y. For each $x \in X, \exists U_{x} \in I \ni$ $f(x) \in U_{x}$ and $V_{x} \in \nu O(X, x) \ni f\left(V_{x}\right) \subset U_{x}$. Since $\left\{V_{i}: i \in I\right\}$ is a cover of X by ν-open sets of X, \exists a finite subset I_{0} of $I \ni X=\cup\left\{V_{x}: x \in I_{0}\right\}$. Therefore $Y=\cup\left\{f\left(V_{x}\right): x \in I_{0}\right\} \subset \cup\left\{U_{x}: x \in I_{0}\right\}$. Hence Y is mildly compact.

Theorem 7.3: If f is swt. $\nu . c$. , surjection and X is s-closed then Y is mildly compact[mildly lindeloff].

Proof:Let $\left\{V_{i}: V_{i} \in \sigma(Y) ; i \in I\right\}$ be a cover of Y, then $\left\{f^{-1}\left(V_{i}\right): i \in I\right\}$ is ν-open cover of $\mathrm{X}\left[\right.$ by Thm 3.1] and so there is finite subset I_{0} of I , such that $\left\{f^{-1}\left(V_{i}\right): i \in I_{0}\right\}$ covers X. Therefore $\left\{V_{i}: i \in I_{0}\right\}$ covers Y since f is surjection. Hence Y is mildly compact.

Corollary 7.1: (i) If f is swt. $\nu . c[r e s p: ~ s w t . r . c]$ surjection and X is ν lindeloff then Y is mildly lindeloff.
(ii) If f is swt. ν.c.[resp: swt. $\nu . \mathrm{c}$. .; swt.r.c] surjection and X is locally ν-compact[resp: ν Lindeloff; locally ν-lindeloff], then Y is locally compact[resp: Lindeloff; locally lindeloff].
(iii)If f is swt. $\nu . c .$, surjection and X is semi-compact[semi-lindeloff; β-compact; β-lindeloff] then Y is mildly compact[mildly lindeloff].
(iv) If f is swt.r.c., surjection and X is ν-compact[s-closed], then Y is compact[mildly compact; mildly lindeloff].

Theorem 7.4: If f is swt. $\nu . c .$, [resp: swt.r.c.] surjection and X is ν connected, then Y is connected.

Corollary 7.2: The inverse image of a disconnected space under a swt. $\nu . c .,[r e s p:$ swt.r.c.] surjection is ν-disconnected.
 $U T_{i}$, then X is $\nu-T_{i} ; \mathrm{i}=0,1,2$.
Proof: Let $x_{1} \neq x_{2} \in X$. Then $f\left(x_{1}\right) \neq f\left(x_{2}\right) \in Y$ since f is injective. For Y is $U T_{2} \exists V_{j} \in C O(Y) \ni f\left(x_{j}\right) \in V_{j}$ and $\cap V_{j}=\phi$ for $\mathrm{j}=1,2$. By Theorem 7.1, $\exists U_{j} \in \nu O\left(X, x_{j}\right) \ni x_{j} \in U_{j} \subset f^{-1}\left(V_{j}\right)$ for $\mathrm{j}=1,2$ and $\cap f^{-1}\left(V_{j}\right)=\phi$ for $\mathrm{j}=1,2$. Thus X is $\nu-T_{2}$.

Theorem 7.6: If f is swt. $\nu . c .[$ resp: swt.r.c.], injection; closed and Y is $U T_{i}$, then X is $\nu-T_{i} ; \mathrm{i}=3,4$.
Proof:(i) Let x in X and F be a closed subset of X not containing x , then $f(\mathrm{x})$ and $f(\mathrm{~F})$ be a closed subset of Y not containing $f(\mathrm{x})$, since f is closed and injection. Since Y is ultraregular, $f(\mathrm{x})$ and $f(\mathrm{~F})$ are separated by disjoint clopen sets U and V respectively. Hence $\exists A, B \in \nu O(X) \ni x \in A \subset f^{-1}(U) ; F \subset B \subset$ $f^{-1}(V)$ and $f^{-1}(U) \cap f^{-1}(V)=\phi$. Thus X is $\nu-T_{3}$.
(ii) Let F_{j} and $f\left(F_{j}\right)$ are disjoint closed subsets of X and Y respectively for $\mathrm{j}=$ 1,2 , since f is closed and injection. For Y is ultranormal, $f\left(F_{j}\right)$ are separated by disjoint clopen sets V_{j} respectively for $\mathrm{j}=1,2$. Hence $\exists U_{j} \in \nu O(X) \ni$ $F_{j} \subset U_{j} \subset f^{-1}\left(V_{j}\right)$ and $\cap f^{-1}\left(V_{j}\right)=\phi$ for $\mathrm{j}=1,2$. Thus X is $\nu-T_{4}$.

Theorem 7.7: If f is swt. ν.c.[resp: swt.r.c.], injection and
(i) Y is $U C_{i}$ [resp: $\left.U D_{i}\right]$ then X is $\nu C_{i}\left[\right.$ resp: $\left.\nu D_{i}\right] \mathrm{i}=0,1,2$.
(ii) Y is $U R_{i}$, then X is $\nu-R_{i} \mathrm{i}=0,1$.
(iii) Y is $U T_{2}$, then the graph $G(f)$ of f is ν-closed in $X \times Y$.
(iv) Y is $U T_{2}$, then $A=\left\{\left(x_{1}, x_{2}\right) \mid f\left(x_{1}\right)=f\left(x_{2}\right)\right\}$ is ν-closed in $X \times X$.

Theorem 7.8: If f is swt.r.c.[resp: swt.c.]; g is swt. $\nu . c[r e s p: ~ s w t . r . c] ; ~ a n d ~$ Y is $U T_{2}$, then $E=\{x \in X: f(x)=g(x)\}$ is ν-closed in X .

References

[1] D. Andrijevic, On b-open sets, Math. Vesnik, 48(1996), 59-64.
[2] A.A. El-Atik, A study of some types of mappings on topological spaces, M.Sc. Thesis, (1997), Tanta University, Egypt.
[3] S. Balasubramanian, C. Sandhya and P.A.S. Vyjayanthi, On $\nu-T_{i}, \nu-R_{i}$ and $\nu-C_{i}$ axioms, Scientia Magna, 4(4) (2008), 86-103.
[4] S. Balasubramanian, C. Sandhya and P.A.S. Vyjayanthi, On ν-compact spaces, Scientia Magna, 5(1) (2009), 78-82.
[5] S. Balasubramanian and P.A.S. Vyjayanthi, On νD-sets and separation axioms, Int. Journal of Math. Analysis, 4(19) (2010), 909-919.
[6] M. Ganster, Preopen sets and resolvable spaces, Kyungpook Math. J., 27(2) (1987), 135-143.
[7] K.R. Gentry and H.B. Hoyle, Somewhat continuous functions, Czechslovak Math. J., 21(96) (1971), 5-12.
[8] T. Noiri and N. Rajesh, Somewhat b-continuous functions, J. Adv. Res. in Pure Math., 3(3) (2011), 1-7.

