Gen. Math. Notes, Vol. 10, No. 2, June 2012, pp.22-29
ISSN 2219-7184; Copyright © ICSRS Publication, 2012
www.i-csrs.org
Available free online at http://www.geman.in

A New Type of Weak Continuity

G. Shanmugam ${ }^{1}$ and N. Rajesh ${ }^{2}$
${ }^{1}$ Department of Mathematics, Jeppiaar Engineering College
Chennai- 600119, Tamilnadu, India
E-mail: gsm.maths@gmail.com
${ }^{2}$ Department of Mathematics, Rajah Serfoji Govt. College
Thanjavur- 613005, Tamilnadu, India
E-mail: nrajesh_topology@yahoo.co.in

(Received: 21-4-12 / Accepted: 19-6-12)

Abstract

In this paper, we introduce a new class of functions called weakly sgacontinuous functions and investigate some of their fundamental properties.

Keywords: sgo-open set, weakly sga-continuous function, sga-connected space, sga-compact space, sga-closed graph.

1 Introduction

Generalized open sets play a very important role in General Topology and they are now the research topics of many topologists worldwide. Indeed a significant theme in General Topology and Real analysis concerns the variously modified forms of continuity, seperation axioms etc. by utiliaing generalized open sets. One of the most well known notions and also an inspiration source is the notion of α-open [3] sets introduced by Njastad in 1965. Quite recently, as generalization of closed sets called sgo-closed sets were introduced and studied by the present author [4]. In [5] the authors, introduced the notion of $\operatorname{sg} \alpha$-continuity and investigated its fundamental properties. In this paper, we introduce a new class of functions called weakly sgo-continuous functions and investigate some of their fundamental properties.

2 Preliminaries

Throughout this paper (X, τ) and (Y, σ) (or simply X and Y) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space $(X, \tau), \mathrm{Cl}(A), \operatorname{Int}(A)$ and A^{c} denote the closure of A, the interior of A and the complement of A in X, respectively.

Definition 2.1 A subset A of a space X is called semi-open [2] (resp. α-open $[3])$ if $A \subset \mathrm{Cl}(\operatorname{Int}(A))($ resp.$A \subset \operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(A))))$. The complement of α-open set is called α-closed.

The α-closure of a subset A of X, denoted by $\alpha \operatorname{Cl}(A)$ is defined to be the intersection of all α-closed sets containing A in X.

Definition 2.2 A subset A of a space X is called sgo-closed [4] if $\alpha \operatorname{Cl}(A) \subset U$ whenever $A \subset U$ and U is semiopen in X. The complement of sga-closed set is called sga-open. The family of all sga-open subsets of (X, τ) is denoted by $\operatorname{sg\alpha } O(\tau)$.

The family of all $\operatorname{sg\alpha } \alpha$-open (resp. sg α-closed) sets of X is denoted by $\operatorname{sg} \alpha(\tau)$ (resp. $\operatorname{sg} \alpha C(X)$). We set $\operatorname{sg\alpha } O(X, x)=\{U \mid U \in \operatorname{sg\alpha }(\tau)$ and $x \in U\}$. In [4] shown that the set $\operatorname{sg\alpha }(\tau)$ forms a topology, which is finer than τ.

Definition 2.3 The intersection of all sga-closed sets containing A is called the sgo-closure [4] of A and is denoted by $\operatorname{sg\alpha }-\mathrm{Cl}(A)$. A set A is sgo-closed if and only if $\operatorname{sg\alpha }-\mathrm{Cl}(A)=A$ [4].

Lemma 2.4 [4] Let A be a subset of a topological space (X, τ). Then $x \in$ $\operatorname{sg} \alpha-\mathrm{Cl}(A)$ if and only if $U \cap A \neq \varnothing$ for every $U \in \operatorname{sg\alpha } O(X, x)$.

Definition 2.5 A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be sga-continuous [5] (resp. sgo-irresolute [6]) if $f^{-1}(V) \in \operatorname{sg\alpha }(\tau)$ for every open set V of Y (resp. $V \in \operatorname{sg} \alpha(\sigma))$.

Definition 2.6 A topological space (X, τ) is said to be sgo-regular [7] if for each closed set F and each $x \notin F$, there exist disjoint sga-open sets U and V such that $x \in U$ and $F \subset V$.

Lemma 2.7 For a topological space (X, τ), the following are equivalent:
(i) X is sga-regular;
(ii) for each open set U and each $x \in U$, there exists $V \in \operatorname{sg\alpha }(\tau)$ such that $x \in V \subset \operatorname{sg\alpha }-\mathrm{Cl}(V) \subset U$.

3 Weakly sgo-Continuous Functions

Definition 3.1 A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is called weakly sga-continuous if for each $x \in X$ and each open set V containing $f(x)$ there exists $U \in$ $\operatorname{sg\alpha o}(X, x)$ such that $f(U) \subseteq \operatorname{sg\alpha }-\mathrm{Cl}(V)$.

It is clear that every $s g \alpha$-continuous function is weakly $s g \alpha$-continuous but not converse.

Example 3.2 Let $X=\{a, b, c\}, \tau=\{\varnothing,\{b\}, X\}$ and $\sigma=\{\varnothing,\{a\}, X\}$. Then the identity function $f:(X, \tau) \rightarrow(X, \sigma)$ is weakly sgo-continuous but not sga-continuous.

Theorem 3.3 Let (X, τ) be a sgo-regular space. Then $f:(X, \tau) \rightarrow(Y, \sigma)$ is a sgo-continuous if and only if it is weakly sgo-continuous.

Proof: The proof follows from Lemma 2.7.
Theorem 3.4 For a function $f:(X, \tau) \rightarrow(Y, \sigma)$, the following properties are equivalent:
(i) f is weakly sga-continuous;
(ii) $f^{-1}(V) \subset \operatorname{sg\alpha }-\operatorname{Int}\left(f^{-1}(\operatorname{sg} \alpha-\mathrm{Cl}(V))\right)$ for every open set V of Y;
(iii) $\operatorname{sg\alpha }-\mathrm{Cl}\left(f^{-1}(\operatorname{sg\alpha } \alpha-\operatorname{Int}(F))\right) \subset f^{-1}(F)$ for every closed set F of Y;
(iv) sga- $\mathrm{Cl}\left(f^{-1}(\operatorname{sg} \alpha-\operatorname{Int}(\mathrm{Cl}(B)))\right) \subset f^{-1}(\mathrm{Cl}(B))$ for every subset B of Y;
(v) $f^{-1}(\operatorname{Int}(B)) \subset \operatorname{sg\alpha }-\operatorname{Int}\left(f^{-1}(\operatorname{sg\alpha }-\mathrm{Cl}(\operatorname{Int}(B)))\right)$ for every subset B of Y;
(vi) $\operatorname{sg\alpha } \alpha-\mathrm{Cl}\left(f^{-1}(V)\right) \subset f^{-1}(\operatorname{sg} \alpha-\mathrm{Cl}(V))$ for every open set V of Y.

Proof: (i) \Rightarrow (ii): Let V be an open subset of Y and $x \in f^{-1}(V)$. Then $f(x) \in V$. There exists $U \in \operatorname{sg\alpha } O(X, x)$ such that $f(U) \subset \operatorname{sg\alpha }-\mathrm{Cl}(V)$. Thus, we obtain $x \in U \subset f^{-1}(\operatorname{sg} \alpha-\mathrm{Cl}(V))$. This implies that $x \in \operatorname{sg} \alpha-\operatorname{Int}\left(f^{-1}(\operatorname{sg} \alpha-\right.$ $\mathrm{Cl}(V))$) and consequently $f^{-1}(V) \subset \operatorname{sg} \alpha-\operatorname{Int}\left(f^{-1}(\operatorname{sg} \alpha-\mathrm{Cl}(V))\right)$.
(ii) \Rightarrow (iii): Let F be any closed set of Y. Then $Y \backslash F$ is open in Y. By (ii), we have $\operatorname{sg} \alpha-\mathrm{Cl}\left(f^{-1}(\operatorname{sg} \alpha-\operatorname{Int}(F))\right) \subset f^{-1}(F)$.
(iii) \Rightarrow (iv): Let B be any subset of Y. Then $\mathrm{Cl}(B)$ is closed in Y and by (iii), we obtain $\operatorname{sg} \alpha-\mathrm{Cl}\left(f^{-1}(\operatorname{sg} \alpha-\operatorname{Int}(\mathrm{Cl}(B)))\right) \subset f^{-1}(\mathrm{Cl}(B))$.
$($ iv $) \Rightarrow(\mathrm{v})$: Let B be any subset of Y. Then we have $f^{-1}(\operatorname{Int}(B))=X \backslash$ $f^{-1}(\mathrm{Cl}(Y \backslash B)) \subset X \backslash \operatorname{sg} \alpha-\mathrm{Cl}\left(f^{-1}(\operatorname{sg} \alpha-\operatorname{Int}(\mathrm{Cl}(Y \backslash B)))\right)=\operatorname{sg\alpha } \alpha-\operatorname{Int}\left(f^{-1}(\operatorname{sg} \alpha-\right.$ $\mathrm{Cl}(\operatorname{Int}(B))))$.
$(\mathrm{v}) \Rightarrow(\mathrm{vi})$: Let V be any open subset of Y. Suppose that $x \notin f^{-1}(\operatorname{sg\alpha }-\mathrm{Cl}(V))$.

Then $f(x) \notin \operatorname{sg\alpha }-\mathrm{Cl}(V)$ and there exists $U \in \operatorname{sg\alpha } O(Y, f(x))$ such that $U \cap$ $V=\varnothing$; hence $\operatorname{sg} \alpha-\mathrm{Cl}(U) \cap V=\varnothing$. By (v), we have $x \in f^{-1}(U) \subset s g \alpha-$ $\operatorname{Int}\left(f^{-1}(\operatorname{sg} \alpha-\mathrm{Cl}(U))\right)$ and hence there exists $W \in \operatorname{sg\alpha } O(X, x)$ such that $W \subset$ $f^{-1}(s g \alpha-\mathrm{Cl}(U))$. Since $s g \alpha-\mathrm{Cl}(U) \cap V=\varnothing, W \cap f^{-1}(V)=\varnothing$ and by Lemma $2.4 x \notin \operatorname{sg\alpha }-\mathrm{Cl}\left(f^{-1}(V)\right)$. Therefore, we obtain $\operatorname{sg\alpha }-\mathrm{Cl}\left(f^{-1}(V)\right) \subset f^{-1}($ sg $\alpha-$ $\mathrm{Cl}(V))$.
$(\mathrm{vi}) \Rightarrow(\mathrm{i})$: Let $x \in X$ and V any open subset of Y containing $f(x)$. By (vi), we have $x \in f^{-1}(V) \subset f^{-1}(\operatorname{Int}(\operatorname{sg\alpha } \alpha-\mathrm{Cl}(V))) \subset f^{-1}(\operatorname{sg} \alpha-\operatorname{Int}(\operatorname{sg} \alpha-\mathrm{Cl}(V)))=$ $X \backslash f^{-1}(\operatorname{sg\alpha } \alpha-\mathrm{Cl}(Y \backslash \operatorname{sg} \alpha-\mathrm{Cl}(V))) \subset X \backslash \operatorname{sg\alpha } \alpha-\mathrm{Cl}\left(f^{-1}(Y \backslash \operatorname{sg} \alpha-\mathrm{Cl}(V))\right)=\operatorname{sg} \alpha-$ $\operatorname{Int}\left(f^{-1}(\operatorname{sg} \alpha-\mathrm{Cl}(V))\right)$. Therefore, there exists $U \in \operatorname{sg\alpha } O(X, x)$ such that $U \subset$ $\operatorname{sg} \alpha-\mathrm{Cl}(V)$. This shows that f is weakly $\operatorname{sg} \alpha$-continuous.

Definition 3.5 A function $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to have a strongly sgoclosed graph [8] if for $(x, y) \in(X \times Y) \backslash G(f)$, there exists $U \in \operatorname{sg\alpha } O(X, x)$ and an open set V of Y containing y such that $(U \times V) \cap G(f)=\varnothing$.

Lemma 3.6 [8] Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a function. Then its graph $G(f)$ is strongly sga-closed in $X \times Y$ if and only if for each point $(x, y) \in(X \times Y) \backslash$ $G(f)$, there exist a sgo-open set U of X and an open set V of Y, containing x and y, respectively, such that $f(U) \cap V=\varnothing$.

Theorem 3.7 If $f:(X, \tau) \rightarrow(Y, \sigma)$ is a weakly sga-continuous function and (Y, σ) is a Hausdorff space, then the graph $G(f)$ is a sga-closed set of $X \times Y$.

Proof: Let $(x, y) \in(X \times Y) \backslash G(f)$. Then, we have $y \neq f(x)$. Since (Y, σ) is Hausdorff, there exist disjoint open sets W and V such that $f(x) \in W$ and $y \in$ V. Since f is weakly $s g \alpha$-continuous, there exists a $s g \alpha$-open set U containing x such that $f(U) \subseteq \operatorname{sg\alpha }-\mathrm{Cl}(W)$. Since W and V are disjoint subsets of Y, we have $V \cap s g \alpha-\mathrm{Cl}(W)=\varnothing$. This shows that $(U \times V) \cap G(f)=\varnothing$ and hence by Lemma 3.6 $G(f)$ is $s g \alpha$-closed.

Definition 3.8 By a weakly sga-continuous retraction, we mean a weakly sga-continuous function $f: X \rightarrow A$, where $A \subset X$ and $f \mid A$ is the identity function on A.

Theorem 3.9 Let A be a subset of X and $f:(X, \tau) \rightarrow(Y, \sigma)$ be a weakly sgo-continuous restraction of X onto A. If (X, τ) is a Hausdorff space, then A is a sga-closed set in X.

Proof: Supoose that A is not $s g \alpha$-closed in X. Then there exists a point $x \in \operatorname{sg} \alpha-\mathrm{Cl}(A) \backslash A$. Since f is weakly $\operatorname{sg} \alpha$-continuous restraction, we have $f(x)$ $\neq x$. Since X is Hausdorff, there exist disjoint open sets U and V of X such that $x \in U$ and $f(x) \in V$. Thus, we get $U \cap \operatorname{sg\alpha } \alpha \mathrm{Cl}(V)=\varnothing$. Now, let $W \in$
$\operatorname{sg\alpha } O(X, x)$. Then $U \cap W \in \operatorname{sg} \alpha O(X, x)$ and hence $(U \cap W) \cap A \neq \varnothing$, because $x \in \operatorname{sg} \alpha-\mathrm{Cl}(A)$. Let $y \in(U \cap W) \cap A$. Since $y \in A, f(y) \in U$ and hence $f(y)$ $\notin s g \alpha-\mathrm{Cl}(V)$. This gives that $f(W) \nsubseteq s g \alpha-\mathrm{Cl}(V)$. This contradicts that f is weakly $s g \alpha$-continuous. Hence A is $s g \alpha$-closed in X.

Definition 3.10 A space (X, τ) is called sga-connected [5] if X cannot be written as the disjoint union of two nonempty sga-open sets.

Theorem 3.11 Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a weakly sga-continuous surjective function. If X is sga-connected, then Y is connected.

Proof: Suppose that (Y, σ) is not connected. Then there exist nonempty disjoint open sets V_{1} and V_{2} in Y such that $V_{1} \cup V_{2}=Y$. Since f is surjective, $f^{-1}\left(V_{1}\right)$ and $f^{-1}\left(V_{2}\right)$ are nonempty disjoint subsets of X such that $f^{-1}\left(V_{1}\right) \cup$ $f^{-1}\left(V_{2}\right)=X$. By Theorem 3.4, we have $f^{-1}\left(V_{i}\right) \subseteq \operatorname{sg\alpha } \alpha-\operatorname{Int}\left(f^{-1}\left(\operatorname{sg\alpha } \alpha \mathrm{Cl}\left(V_{i}\right)\right)\right)$, $i=1,2$. Since V_{i} is open and closed and every closed set is $s g \alpha$-closed, we obtain $f^{-1}\left(V_{i}\right) \subseteq \operatorname{sg\alpha } \alpha \operatorname{Int}\left(f^{-1}\left(V_{i}\right)\right)$ and hence $f^{-1}\left(V_{i}\right)$ is $s g \alpha$-open for $i=1,2$. This implies that (X, τ) is not $\operatorname{sg} \alpha$-connected.

Definition 3.12 A space (X, τ) is said to be ultra sgo-Urysohn if for each pair of distinct points x and y in X, there exist open sets U, V containing x, y respectively such that $\operatorname{sg} \alpha-\mathrm{Cl}(U) \cap \operatorname{sg\alpha }-\mathrm{Cl}(V)=\varnothing$.

Definition 3.13 A space (X, τ) is said to be sga- T_{2} [8] if for each pair of distinct points x and y in X, there exist $U \in \operatorname{sg\alpha } O(X, x)$ and $V \in \operatorname{sg\alpha } O(X, y)$ such that $U \cap V=\varnothing$.

Theorem 3.14 Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a weakly sga-continuous injective function. If Y is ultra sga-Urysohn, then X is sga- T_{2}.

Proof: Let x_{1} and x_{2} be any two distinct points of X. Since f is injective, $f\left(x_{1}\right) \neq f\left(x_{2}\right)$. Since (Y, σ) is ultra $s g \alpha$-Urysohn, there exist $V_{1}, V_{2} \in \sigma$ such that $f\left(x_{1}\right) \in V_{1}, f\left(x_{2}\right) \in V_{2}$ and $\operatorname{sg\alpha } \mathrm{Cl}\left(V_{1}\right) \cap \operatorname{sg\alpha }-\mathrm{Cl}\left(V_{2}\right)=\varnothing$. This gives $f^{-1}\left(\operatorname{sg} \alpha-\mathrm{Cl}\left(V_{1}\right)\right) \cap f^{-1}\left(\operatorname{sg} \alpha-\mathrm{Cl}\left(V_{2}\right)\right)=\varnothing$ and hence $\operatorname{sg} \alpha-\operatorname{Int}\left(f^{-1}(\operatorname{sg} \alpha-\right.$ $\left.\left.\mathrm{Cl}\left(V_{1}\right)\right)\right) \cap \operatorname{sg\alpha } \alpha-\operatorname{Int}\left(f^{-1}\left(\operatorname{sg\alpha } \mathrm{Cl}\left(V_{2}\right)\right)\right)=\varnothing$. Since f is weakly sg α-continuous, $x_{i} \in f^{-1}\left(V_{i}\right) \subset \operatorname{sg} \alpha-\operatorname{Int}\left(f^{-1}\left(\operatorname{sg} \alpha-\operatorname{Cl}\left(V_{i}\right)\right)\right), i=1,2$. By Theorem 3.4 and this indicates that the space (X, τ) is $s g \alpha-T_{2}$.

4 Additional Properties

Definition 4.1 For a function $f:(X, \tau) \rightarrow(Y, \sigma)$, the graph $G(f)$ is said to be ultra sgo-closed if for each $(x, y) \in(X \times Y) \backslash G(f)$, there exist $U \in$ $\operatorname{sg\alpha } O(X, x), V \in \operatorname{sg\alpha } O(Y, y)$ such that $(U \times \operatorname{sg\alpha }-\mathrm{Cl}(V)) \cap G(f)=\varnothing$.

Lemma 4.2 The function $f:(X, \tau) \rightarrow(Y, \sigma)$ has a ultra sgo-closed graph if and only if for every $(x, y) \in(X \times Y) \backslash G(f)$ there exist $U \in \operatorname{sg\alpha } O(X, x), V \in$ $\operatorname{sg\alpha } O(Y, y)$ and $f(U) \cap \operatorname{sg\alpha }-\mathrm{Cl}(V)=\varnothing$.

Proof: It is an immediate consequence of Definition 4.1.
Theorem 4.3 Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a weakly sga-continuous function. If (Y, σ) is ultra sgo-Urysohn, then the graph $G(f)$ is ultra sgo-closed.

Proof: Let $(x, y) \in(X \times Y) \backslash G(f)$. Then $y \neq f(x)$. Since Y is ultra sgo-Urysohn, there exist open sets V and W containing x and y, repectively such that $\operatorname{sg\alpha }-\mathrm{Cl}(V) \cap \operatorname{sg\alpha }-\mathrm{Cl}(W)=\varnothing$. Since f is weakly sg α-continuous, there exist $U \in \operatorname{sg} \alpha O(X, x)$ such that $f(U) \subset \operatorname{sg\alpha } \alpha \mathrm{Cl}(U)$. This implies that $f(U) \cap s g \alpha-\mathrm{Cl}(W)=\varnothing$. So, by Lemma $4.2 G(f)$ is ultra $s g \alpha$-closed.

Theorem 4.4 If $f:(X, \tau) \rightarrow(Y, \sigma)$ is an injective weakly sga-continuous function with a ultra sga-closed graph, then the space (X, τ) is sgo- T_{2}.

Proof: Let x and y be any distinct points of X. Then, since f is injective, we have $f(x) \neq f(y)$. Then we have $(x, f(y)) \in(X \times Y) \backslash G(f)$. Since $G(f)$ is ultra sgo-closed, by Lemma 4.2 there exist $U \in \operatorname{sg\alpha } O(X, x)$ and an open set V of Y containing $f(y)$ such that $f(U) \cap s g \alpha-\mathrm{Cl}(V)=\varnothing$. Since f is weakly $\operatorname{sg\alpha }$-continuous, there exists $W \in \operatorname{sg\alpha } O(X, y)$ such that $f(W) \subset \operatorname{sg\alpha }-\mathrm{Cl}(V)$. Therefore, we have $f(U) \cap G(f)=\varnothing$. Since f is injective, we obtain $U \cap W$ $=\varnothing$. This shows that (X, τ) is a $s g \alpha-T_{2}$ space.

Theorem 4.5 If $f:(X, \tau) \rightarrow(Y, \sigma)$ is a sgo-continuous function and (Y, σ) is a T_{2} space, then the graph $G(f)$ is ultra-sgo-closed.

Proof: Let $(x, y) \in(X \times Y) \backslash G(f)$. The T_{2} ness of Y gives the existence of an open set V containing y such that $f(x) \notin \mathrm{Cl}(V)$. Now $\mathrm{Cl}(V)$ is a closed set in Y. So, $Y \backslash \mathrm{Cl}(V)$ is an open set in Y containing $f(x)$. Therefore, by the sga-continuity of f there exist $U \in \operatorname{sg\alpha } O(X, x)$ such that $f(U) \subseteq Y \backslash \mathrm{Cl}(V)$, hence $f(U) \cap \mathrm{Cl}(V)=\varnothing$. Since $\operatorname{sg} \alpha-\mathrm{Cl}(A) \subseteq \mathrm{Cl}(A)$ for every subset A of X, once obtain $f(U) \cap \operatorname{sg} \alpha-\mathrm{Cl}(V)=\varnothing$. By Lemma $4.2, G(f)$ is ultra sgo-closed.

Theorem 4.6 If $f:(X, \tau) \rightarrow(Y, \sigma)$ is a sgo-irresolute function and (Y, σ) is a sgo- T_{2} space, then the graph $G(f)$ is ultra sga-closed.

Proof: Similar proof of Theorem 4.5.
Definition 4.7 A space (X, τ) is said to be
(i) sga-compact [5] if every cover of X by sga-open sets has a finite subcover;
(ii) sga-closed [5] if every cover of X by sga-open sets has a finite subcover whose sga-closure cover X.

Definition 4.8 A subset A of a space X is said to be sga-closed relative to X [5] if for every cover $\left\{V_{\alpha}: \alpha \in \Lambda\right\}$ of A by sg α-open sets of X, there exists a finite subset Λ_{0} of Λ such that $A \subset \bigcup\left\{\operatorname{sg} \alpha-\mathrm{Cl}\left(V_{\alpha}\right) \mid \alpha \in \Lambda_{0}\right\}$.

Theorem 4.9 If $f:(X, \tau) \rightarrow(Y, \sigma)$ is a weakly sga-continuous function and A is a sgo-compact subset of (X, τ), then $f(A)$ is sga-closed relative to (Y, σ).

Proof: Let $\left\{V_{i} \mid i \in \Lambda\right\}$ be any cover of $f(K)$ by open sets of (Y, σ). For each $x \in X$, there exists $\alpha(x) \in \Lambda$ such that $f(x) \in V_{\alpha(x)}$. Since f is weakly sgo-continuous, there exists $U(x) \in \operatorname{sg\alpha } O(X, x)$ such that $f(U(x)) \subset \operatorname{sg} \alpha$ $\mathrm{Cl}\left(V_{\alpha(x)}\right)$. The family $\{U(x) \mid x \in A\}$ is a cover of A by $\operatorname{sg} \alpha$-open sets of X. Since A is sgo-compact, there exists a finite number of points, say, x_{1}, x_{2}, \ldots. . x_{n} in A such that $A \subset \bigcup\left\{U\left(x_{k}\right) \mid x_{k} \in A, 1 \leq K \leq n\right\}$. Therefore, we obtain $f(A) \subset \bigcup\left\{f\left(U\left(x_{k}\right)\right) \mid x_{k} \in A, 1 \leq K \leq n\right\} \subset \bigcup\left\{s g \alpha-\operatorname{Cl}\left(V_{\alpha\left(x_{k}\right)}\right) \mid x_{k} \in A, 1\right.$ $\leq K \leq n\}$. This shows that $f(A)$ is $s g \alpha$-closed relative to (Y, σ).

Corollary 4.10 If $f:(X, \tau) \rightarrow(Y, \sigma)$ is a weakly sga-continuous surjective function and the space (X, τ) is sgo-compact, then (Y, σ) is a sgo-closed space.

Definition 4.11 Let A be a subset of a topological space (X, τ). Then the sgofrontier [5] of A, denoted by $\operatorname{sg\alpha }-F r(A)$ is defined as $\operatorname{sg\alpha }-F r(A)=\operatorname{sg\alpha }-\mathrm{Cl}(A)$ $\cap \operatorname{sg} \alpha-\mathrm{Cl}(X \backslash A)$.

Theorem 4.12 The set of all points $x \in X$ at which a function $f:(X, \tau) \rightarrow$ (Y, σ) is not weakly sga-continuous if and only if the union of sga-frontier of the inverse images of the closure of open sets containing $f(x)$.

Proof: Necessity. Suppose that f is not weakly sga-continuous at $x \in$ X. Then there exists an open set V of Y containing $f(x)$ such that $f(U) \nsubseteq$ $\operatorname{sg\alpha } \alpha-\mathrm{Cl}(V)$ for every $U \in \operatorname{sg} \alpha O(X, x)$. Then $U \cap\left(X \backslash f^{-1}(\operatorname{sg} \alpha-\mathrm{Cl}(V))\right) \neq \varnothing$ for every $U \in \operatorname{sg\alpha } O(X, x)$ and hence by Lemma $2.4 x \in \operatorname{sg\alpha } \alpha-\mathrm{Cl}\left(X \backslash f^{-1}(\operatorname{sg} \alpha-\right.$ $\mathrm{Cl}(V)))$. On the other hand, we have $x \in f^{-1}(V) \subset s g \alpha-\mathrm{Cl}\left(f^{-1}(\operatorname{sg} \alpha-\mathrm{Cl}(V))\right)$ and hence $x \in \operatorname{sg} \alpha-\operatorname{Fr}\left(f^{-1}(\operatorname{sg} \alpha-\mathrm{Cl}(V))\right)$.
Sufficiency. Suppose that f is weakly $\operatorname{sg\alpha } \alpha$-continuous at $x \in X$ and let V be any open set of Y containing $f(x)$. Then by Theorem 3.4, we have $x \in$ $f^{-1}(V) \subset \operatorname{sg} \alpha-\operatorname{Int}\left(f^{-1}(\operatorname{sg} \alpha-\mathrm{Cl}(V))\right)$. Therefore, $x \in \operatorname{sg} \alpha-F r\left(f^{-1}(\mathrm{Cl}(V))\right)$ for each open set V of Y containing $f(x)$.

References

[1] S.G. Crossley and S.K. Hildebrand, Semi-closure, Texas J. Sci., 22(1971), 99-112.
[2] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
[3] O. Nijastad, On some classes nearly open sets, Pacific J. Math., 15(1965), 961-970.
[4] N. Rajesh and B. Krsteska, Semigeneralized α-closed sets, Antarctica J. Math., 6(1) (2009), 1-12.
[5] N. Rajesh, B. Krsteska and G. Shanmugam, Semigeneralized α-continuous functions (submitted).
[6] N. Rajesh, B. Krsteska and G. Shanmugam, On new types of generalized homeomorphisms (submitted).
[7] N. Rajesh and G. Shanmugam, On $s g \alpha$-regular and $s g \alpha$-normal spaces (submitted).
[8] N. Rajesh and G. Shanmugam, Characterizations of $s g \alpha-T_{0}, s g \alpha-T_{1}$ and sg $\alpha-T_{2}$ topological spaces (submitted).

