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Abstract

Recently, Acu and Owa [1] further studied the work of Kanas and Ronning
[2] by investigating the classes of close - to - convex and α− convex functions
normalised with f (w) = f ′ (w) − 1 = 0 and w is a fixed point in E. Ghanim
and Darus introduced another subclass using the fixed point. Necessary and
sufficient conditions were provided for this class. The aim of this paper is
to continue the investigation by extending this class of functions to the class
Sn (α) defined by the Salagean [4], our result extends some existing ones and
new ones are derived.

Keywords: univalent functions, starlike function, convex function, close-
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1 Introduction

Let A denote the class of functions of the form

f (z) = z +
∞∑
k=2

akz
k (1)



Coefficient Inequality for Functions... 17

which are analytic in the unit disk E = [z = |z| < 1]. Let S ⊂ A be the class
of functions univalent in E
Here we recall the following definitions of the well known classes of starlike,
convex, close-to-convex and α− convex functions.
S∗ =

{
f ∈ A : Re

[
zf ′(z)
f(z)

]
> 0, z ∈ E

}
Sc =

{
f ∈ A : Re

[
1 + zf ′′(z)

f ′(z)

]
> 0, z ∈ E

}
CC =

{
f ∈ A : ∃ g ∈ S∗, Re

[
zf ′(z)
g(z)

]
> 0, z ∈ E

}
Let w be a fixed point in E and A (w) = {f ∈ A (w) : f (w) = f ′ (w)− 1 = 0}
The following classes were introduced in [2] and further studied in [1]
S (w) = {f ∈ A (w) : f ∈ S}
ST (w) = S∗ (w) =

{
f ∈ S (w) : Re

[
(z−w)f ′(z)

f(z)

]
> 0, z ∈ E

}
CV (w) = Sc (w) =

{
f ∈ S (w) : Re

[
1 + (z−w)f ′′(z)

f ′(z)

]
> 0, z ∈ E

}
See details in [1].

2 Preliminary Notes

Let p (w) denote the class of all functions

p (z) = 1 +
∞∑
k=1

Bk (z − w)k (2)

that are regular in E and satisfying p (w) = 1 and Rep (z) > 0 for z ∈ E,
where

|Bk| ≤
2

(1 + d) (1− d)k
(3)

and d = |w| and k ≥ 1. See [1, 2, 3].
Definition 1.1 [4]: A function f(z) ∈ A (w) is said to be in the class Swn (α) if
and only if

Re
Dn+1f (z)

Dnf (z)
> α (4)

where 0 ≤ α < 1, n = 0, 1, 2, 3, . . . and z ∈ E and Dn is the Salagean differen-
tial operator and it is defined as follows:
D0f (z) = f (z) , D′f (z) = zf ′ (z) , . . . , Dnf (z) = z (Dn−1f (z))

′

3 Main Results

These are the main results of the paper.
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Theorem 3.1. Let f ∈ Swn (α) and f (z) = (z − w) +
∑∞
k=2 ak (z − w)k.

Then

|a2| ≤
1− α

2n−1 (1− d2)
(5)

|a3| ≤
(1− α) (1 + d) + 2 (1− α)2

3n (1− d2)2
(6)

|a4| ≤
2 (1− α) (1 + d)2 + 2 (1− α)2 (5 + 3d− 2α)

3.4n (1− d2)3
(7)

|a5| ≤
3 (1− α) (1 + d)3 + 11 (1− α)2 (1 + d)2 + 4 (1− α)3 (4 + 3d− α)

2.3.5n (1− d2)4
(8)

where d = |w|

Proof. Let us define
Dn+1f(z)
Dnf(z)

− α
1− α

= p (z) (9)

From equation(9) we have

Dn+1f (z)− αDnf (z)

(1− α)Dnf (z)
= p (z) (10)

which readily yields

Dn+1f (z) = αDnf (z) + (1− α)Dnf (z) p (z) (11)

On comparing the coefficients in equation (11) the results follows.

Remarks Putting α = 0 and n = 0 in the results of Theorem 3.1 above,
we obtain the coefficient bounds of Kanas and Ronning [2] immediately. With
different choices of α and n different coefficients bounds can be obtained.

Theorem 3.2. Let f ∈ Swn (α) . Then,

|a3 − µa22| ≤
(1− α) (1 + d) + 2 (1− α)2

3n (1− d2)2
− µ (1− α)2

22(n−1) (1− d2)2
(12)

|a2a4−a23| ≤
(1− α)2 (1 + d)2 + (1− α)3 (5 + 3d− 2α)

3.23n−2 (1− d2)4
−(1− α)2 (1 + d)2 + 4 (1− α)4

32n (1− d2)4
(13)
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where µ ≥ 1

Proof. The proof is immediate from Theorem 3.1

Theorem 3.3. Let w be a fixed point in E and f ∈ Swn (α) and

f (z) = (z − w) +
∞∑
k=2

bk (z − w)k (14)

with respect to function g (z) ∈ S∗ (w), where

g (z) = (z − w) +
∞∑
k=2

ak (z − w)k (15)

Then,

|bk| ≤
1

kn+1

kn|ak|+ k−1∑
ρ=1

(k − ρ)n |ak−ρ|
2 (1− α)

(1 + d) (1− d)k−ρ

 (16)

where d = |w|, k ≥ 2 and aρ = 1

Proof. Let f ∈ Swn (α) with respect to the function g ∈ S∗ (w)
Then there exists a function p ∈ P (w) such that

Dn+1f(z)
Dng(z)

− α
1− α

= p (z) (17)

where p (z) = 1 +
∑∞
k=1Bk (z − w)k

Using the hypothesis through identification of (z − w)k coefficients, we have

kn+1bn = knak +
k−1∑
ρ=1

(1− α) (k − ρ)n ak−ρBk−ρ (18)

where a1 and k ≥ 2. From equation(18) we have the result.

Remarks If we use the estimates in Theorem 3.1, we obtain some estimates
for the coefficients bk, k = 2, 3, 4, . . .. Also, at α = 0, n = 0, we obtain the
results of Acu and Owa [2].
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