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Abstract

A theory of the diffraction Fresnel transform is extended to certain spaces
of Schwartz distributions. The diffraction Fresnel transform is obtained as a
continuous function in the space of Boehmians. Convergence with respect to δ
and ∆ convergences is shown to be well defined .
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1 Introduction

Integral transforms play an important role in various fields of science. In optics,
several integral transforms are of great importance. Some of these transforms
are: the Fresnel transform [10, 12, 25, 26]; the fractional Fourier transform [5,
6, 11, 13, 18]; the linear canonical transform [22, 23]; the wavelet transform [20,
21]; the diffraction Fresnel transform [27,28] and, many others. The wavelet
transform is described in [20, 21] as

Ωf (µ, λ) = 1√
µR
f (x)ψ∗

(
x−λ
µ

)
dx (1.1)

where ψ (x) is named as mother wavelet satisfying Rdxψ (x) = 0. The parame-
ters λ and µ are, respectively, the translate and dilate of w, whereas, w∗ is the
conjugate of w. The optical diffraction transform is described by the Fresnel
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integration [27, 28]

F (x2) = 1√
2πiγ1R

f (x1)Kx2 (x1) dx1 (1.2)

where K (α1, γ1, γ2, α2;x1, x2) = exp
(

i
2γ1

(α1x
2
1 − 2x1x2 + α2x

2
2)
)

is the trans-

form kernel whose parameters α1, γ1, γ2, α2 represent a ray transfer Matrix M,
in an optical system, with α1α2 − γ1γ2 = 1.

We consider the combined optical transform obtained jointly from (1.1)
and (1.2), named as the Fresnel-wavelet transform [10, Equ. (36)]

Fw (λ, µ, x2) = 1√
2πiγ1R

K (α1, γ1, γ2, α2;x1, x2, λ, µ) f (x1) dx. (1.3)

where

K (α1, γ1, γ2, α2;x1, x2, λ, µ) = exp
(

i
2γ1

(
α1(x1−λ)2

µ2
− 2x2(x1−λ)

µ
+ α2x

2
2

))
is the transform kernel.

Parameters: α1, γ1, γ2, and α2 appearing in the above expression are ele-
ments of a 2× 2 matrix with unit determinant. Since the general single-mode
squeezing operator F in the generalized Fresnel transform is in wave optics,
applications of F is a faithful representation in the Fresnel-wavelet transform
[10]. Hence, the combined Fresnel-wavelet transform can be more conveniently
studied by the general single-more squeezed operation.

In the literature, it has not yet been reported that the Fresnel-wavelet
transform is extended to a space of generalized functions . Thus, we, in this
article, aim at extending the Fresnel-wavelet transform to certain generalized
function space ( Boehmian space). Such extension is mainly related to the fact
that the optical Fresnel-wavelet transform of a good function is certainly a C∞

function.

We spread the article into five sections: In Section 2, we introduce the
notion of Boehmian spaces. In Section 3, we consider the Boehmian space
B? from [4]. Section 4 is devoted for a general construction of the space
BFw , where images of the extended Fresnel-wavelet transform lie. In the last
section, we establish that the optical Fresnel-wavelet transform of an arbitrary
Boehmian in B? is another Boehmian in BFw . Moreover, we discuss linearity
and continuity conditions with respect to certain types of convergence.

Let ε (R+) be the test function space of all C∞ functions of arbitrary sup-
ports and ε

′
(R+) be its strong duals of distributions of compact supports.

The kernel function K (α1, γ1, γ2, α2;x1, x2, λ, µ) of the Fresnel-wavelet trans-
form is clearly in ε (R+) . This leads to define the distributional transform on
the dual of distributions of compact support by the relation Fw (λ, µ, x2) =

1√
2πiγ1

〈f (x1) , K (α1, γ1, γ2, α2;x1, x2, λ, µ)〉 , for every f ∈ ε′ (R+).
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2 General Boehmian Spaces

Let G be a linear space and H be a subspace of G. Assume to each pair of
elements f, g ∈ G and ψ, φ ∈ H, is assigned the product f • g such that:
φ • ψ ∈ H and φ • ψ = ψ • φ,∀φ, ψ ∈ H, (f • φ) • ψ = f • (φ • ψ) ,and
(f + g) • φ = f • φ+ g • φ , k (f • φ) = (kf) • φ, k ∈ C. A family of sequences
∆ from H, is said to be delta sequence if for each f, g ∈ G, (ψn) , (δn) ∈ ∆,
the following should satisfy: f • δn = g • δn (n = 1, 2, ...) , implies f = g, and
(φn • ψn) ∈ ∆. Let O be a class of pair of sequences

O =
{

((fn) , (φn)) : (fn) ⊆ GN, (φn) ∈ ∆
}
,

for each n ∈ N. An element ((fn) , (φn)) ∈ O is said to be a quotient of se-
quences, denoted by fn

φn
if fi•φj = fj •φi,∀i, j ∈ N. Two quotients of sequences

fn
φn

and gn
ψn

are equivalent, fn
φn
∼ gn

ψn
, if fi •ψj = gj •φi,∀i, j ∈ N. The relation ∼

is an equivalent relation on O and hence, splits O into equivalence classes. The

equivalence class containing fn
φn

is denoted by
[
fn
φn

]
.These equivalence classes

are called Boehmians and the space of all Boehmians is denoted by B•. The
sum of two Boehmians and multiplication by a scalar is defined in a natural

way
[
fn
φn

]
+
[
gn
ψn

]
=
[

(fn•ψn)+(gn•φn)
φn•ψn

]
and α

[
fn
φn

]
=
[
α fn
φn

]
, α ∈ C. The op-

eration • and the differentiation are defined by
[
fn
φn

]
•
[
gn
ψn

]
=
[
fn•gn
φn•ψn

]
and

Dα
[
fn
φn

]
=
[
Dαfn
φn

]
. The relationship between the notion of convergence and

the product • are given by:
1−If fn → f as n→∞ in G and, φ ∈ H is any fixed element, thenfn •

φ→ f • φ, as n→∞ in G.
2−If fn → f as n→∞ in G and (δn) ∈ ∆, then fn • δn → f as n→∞

in G. In B• two types of convergence:

δ−convergence : Let (βn) ∈ B• then βn
δ→ β, if there is (δn) ∈ ∆,

(βn • δn) , (β • δn) ∈ G,∀k, n ∈ N,and (βn • δk) → (β • δk) as n → ∞,in G, ∀
k ∈ N.

∆−convergence : (βn) in B• is ∆−convergent to β in B•, βn
∆→ β, if

there is (δn) ∈ ∆ such that (βn − β) • δn ∈ G,∀n ∈ N, and (βn − β) • δn → 0
as n→∞ in G. For further analysis, see [1-4, 8, 14, 15, 17].

3 The Boehmian Space B?

Let f and g be C∞ functions , over R+. Then the convolution between f and
g is defined by [4, Equ.3.2]

(f . g) (x) =R+ f
(
xy−1

)
φ (y) y−1dy, (3.1)
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where x is a non-negative real number.
In the rest of investigations, it is more convenient to use the noation ?

instead of the used one, .. Further, we retain likewise notations and the results
established in [4].

Let D = D (R+), be the Schwartz’ space of all C∞ complex-valued func-
tions which are compactly supported in R+. Then, we recall the following
definition [4]

Definition 3.1. Let S =
{
φ ∈ D (R+) : φ ≥ 0 and R+φ = 1

}
and ∆ be the

set of all delta sequences φn, n = 0, 1, 2, ..., from S, such that supp φn → 0 as
n→∞. Then, (φn) ∈ ∆ if and only if (φn) ∈ D (R+) , and

∆1 R+φn = 1,∀n ∈ N;
∆2 φn ≥ 0,∀n ∈ N;
∆3 inf {ε > 0 : suppφn ⊆ (0, ε)} → 0,as n→∞.
The following are proved in [4]

Lemma 3.2. Let f ∈ C∞ (R+) and φ ∈ S, then f ? φ ∈ C∞ (R+) .

Lemma 3.3. Let f, g ∈ C∞ (R+) , φ, ψ ∈ S and, α ∈ C( The set of complex
numbers ) . Then, the following are true

(1) (f + g) ? φ = f ? φ+ g ? φ.
(2) (αf ? φ) = α (f ? φ) .
(3) φ ? ψ = ψ ? φ.
(4) f ? (φ ? ψ) = (f ? φ) ? ψ.

Theorem 3.4. If lim
n→∞

fn = f , in C∞ (R+) , and φ ∈ S , then

lim
n→∞

fn ? φ = f ? φ in C∞ (R+) .

Lemma 3.5. Let fn → f , in C∞ (R+) , and (δn) ∈ ∆. Then,fn ? δn → f
in C∞ (R+) .

Theorem 3.6 . Given (φn) , (ψn) ∈ ∆. Then, (φn ? ψn) ∈ ∆..
After this sequence of results, the desired Boehmian space B? was con-

structed in [4].
In B?, it is needful to have the following definition:

Definition 3.7. Let
[
fn
δn

]
,
[
gn
φn

]
∈ B? . Then, the convolution of two

Boehmians is defined as[
fn
δn

]
?
[
gn
φn

]
=
[
fn?gn
δn?φn

]
, for all n ∈ N. (3.2)

Equ.(3.2) is well-defined by Theorem 3.6 and Lemma 3.2.
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Differentiation is defined by

Dα
[
fn
φn

]
=
[
Dαfn
φn

]
.

Addition and scalar multiplication is defined in B? as[
fn
φn

]
+
[
gn
ψn

]
=
[

(fn?ψn)+(gn?φn)
φn?ψn

]
andα

[
fn
φn

]
=
[
α fn
φn

]
, α ∈ C.

4 The Boehmian Space BFw

Let S
(
R3

+

)
, be the space of rapidly decreasing functions onR3

+ = R+×R+×R+

[19, 7]. Then the Fresnel-wavelet transform of f ∈ S
(
R3

+

)
is indeed a C∞ (R+)

function. Let f ∈ S
(
R3

+

)
and ψ ∈ C∞ (R+) .

We define a mapping ⊗ : S
(
R3

+

)
→ C∞ (R+) by

(f ⊗ ψ) (λ, µ, x2) =

∫
R+

f
(
λt−1, µt−1, x2

)
ψ (t) dt. (4.1)

Following theorem is very needful

Lemma 4.1. Let f ∈ S
(
R3

+

)
and ψ ∈ C∞ (R+) then

f ⊗ ψ ∈ S
(
R3

+

)
.

Proof. To show f ⊗ ψ ∈ S, we establish the following three relations

Dλ (f ⊗ ψ) (λ, µ, x2) = (Dλf ⊗ ψ) (λ, µ, x2) ; (4.2)

Dµ (f ⊗ ψ) (λ, µ, x2) = (Dλf ⊗ ψ) (λ, µ, x2) ; (4.3)

and

Dx2 (f ⊗ ψ) (λ, µ, x2) = (Dx2f ⊗ ψ) (λ, µ, x2) . (4.4)

To establish (4.2), let µ0, x20 > 0 be fixed and, λ0 vary over R+ then
Dλ (f ⊗ ψ) (λ0, µ0, x20) =

lim
λ→λ0R+

f(λt−1,µ0t−1,x20)−f(λ0t−1,µ0t−1,x20)
λ−λ0 ψ (t) dt

=R+ Dλf (λ0t
−1, µ0t

−1, x20)ψ (t) dt
= (Dλf ⊗ ψ) (λ0, µ0, x20) .

Thus,

Dλ (f ⊗ ψ) (λ0, µ0, x20) = (Dλf ⊗ ψ) (λ0, µ0, x20) .
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Proof of (4.3) and (4.4) is analogous. Induction on the partial differention
with respect to λ,µ and x2 yields

Dk
λ (f ⊗ ψ) = Dk

λf ⊗ ψ,Dk
µ (f ⊗ ψ) = Dk

µ ⊗ ψ and Dk
x2

(f ⊗ ψ) = Dk
x2
f ⊗ ψ.

(5.5)
Hence, using the topology of S we have

‖f ∗ ψ‖S ≤ ‖ψ‖L1 ‖f‖S (1)

Lemma 4.2 f ⊗ ψn → f for every f ∈ S
(
R3

+

)
and (ψn) ∈ ∆.

Proof. Using (4.2)− (4.4) , mean value theorem and ∆3 we write∣∣λiDk
λ (f ⊗ ψn − f) (λ, µ, x2)

∣∣ =
∣∣λi (Dk

λf ⊗ ψn −Dk
λf
)

(λ, µ, x2)
∣∣ .

Hence, using (4.1) , we get∣∣λiDk
λ (f ⊗ ψn − f) (λ, µ, x2)

∣∣ ≤
R+

∣∣λiDk
λ (f (λt−1, µt−1,κ2)− f (λ, µ, x2))ψ (t)

∣∣ dt.
Hence the above expression approaches 0 as n→∞.
It can be similarly proved that∣∣µiDk

µ (f ⊗ ψn − f) (λ, µ, x2)
∣∣ and

∣∣xi2Dk
x2

(f ⊗ ψn − f) (λ, µ, x2)
∣∣ approach

0 as n→∞.
This completes the proof of the lemma.

Lemma 4.3 fn⊗ψ → f ⊗ψ for every fn, f ∈ S
(
R3

+

)
and ψ ∈ C∞ (R+) .

Proof. Employing (4.1)-(4.4) the lemma can easily be established in a
manner similar to that of above Lemma . The Boehmian space BFw (S,⊗,∆)
is therefore established. Operations such as addition, scalar multiplication,
Differentiation and the operation ⊗ between two Boehmians in BFw can be
defined similarly as done in the previous section.

5 Fresnel-Wavelet Transform of Boehmians

Following is lemma suggesting a new definition for the Fresnel-wavelet trans-
form of a Boehmian in the space B?.

Lemma 5.1 Given f ∈ S
(
R3

+

)
and ψ ∈ C∞ (R+) then

Fw (f ? ψ) (λ, µ, x2) = f ⊗ Fwψ,

Proof. The Fresnel-Wavelet transform is written in the form

Fw (f (x1)) (λ, µ, x2) =

∫
R+

f (x1)K
′

λ,µ,x2
(x1) dx1 (5.1)
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where K
′

λ,µ,x2
(x1) = K (α1, γ1, γ2, α2;x1, x2, λ, µ) and

K (α1, γ1, γ2, α2;x1, x2, λ, µ) = exp
(
α1

(x1−λ)2

µ
− 2x2

(x1−λ)2

µ
+ α2x

2
2

)
.

Hence

Fw (f ? ψ) (λ, µ, x2) =

∫
R+

(f ? ψ) (x1)K
′

λ,µ,x2
(x1) (x1) dx1

=

∫
R+

(∫
R+

f
(
x1y

−1
)
ψ (y) y−1dy

)
K
′

λ,µ,x2
(x1) dx1.

The substitution x1 = yt implies

Fw (f ? ψ) (λ, µ, x2) =

∫
R+

f (t)

(∫
R+

ψ (y)K
′

λt−1,µt−1,x2
(y) dy

)
dt

= (Fwψ ⊗ f) (λ, µ, x2) .

This completes the proof. Hence, we define the Fresnel-wavelet transform
of a Boehmian in B? as

S
[
fn
∂n

]
=
[
Fwfn
∂n

]
. (5.2)

in the space BFw

(
S
(
R3

+

)
,⊗,∆

)
.

The definition, in (5.2) , is well defined. For, if fn
δn
∼ fn

δn
in B? then

fn ? δm = gm ? δm. Applying the Fresnel-wavelet transform and Theorem 5.1

imply Fwfn⊗δm = Fwgm⊗δn,. Hence Fwfn
δn
∼ Fwgn

δn
. Therefore

[
Fwfn
δn

]
=
[
Fwgn
δn

]
in BFw.

Theorem 5.2. The S : B? → BFw is linear.

Proof. is obvious.

Theorem 5.3: The S : B? → BFw is continuous with respect to ∆ con-
vergence.

Proof. If βv
∆→ β in B? then (βv → β) ? δv =

[
fv?δi
δi

]
for some δi ∈ ∆, fn ∈

C∞ (R+) and fv → 0 as v → ∞. Thus Fwfv → 0 in S
(
R3

+

)
since fv → 0 as

v →∞. Hence we conclude Fwβv
∆→ Fwβ as v →∞. This completes the proof

of te theorem.

Theorem 5.4. S : B? → BFw is continuous with respect to the δ conver-
gence.
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Proof. Let βv
δ→ β as v → ∞ in B? then using [15] there can be found

fv,,j, fj such that
fv,j → fj , as v →∞, (5.3)

where [
fv,j
δj

]
= βv and

[
fj
δj

]
= β

Applying the Fresnel-wavelet transform on (5.3) we get

Fwfv,j → Fwfj as v →∞.

Thus [
Fwfv,j
δj

]
→
[
Fwfj
δj

]
.

Hence the theorem.
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