Gen. Math. Notes, Vol. 8, No. 2, February 2012, pp.18-27
ISSN 2219-7184; Copyright © CICSRS Publication, 2012
www.i-csrs.org
Available free online at http://www.geman.in

Optical Fresnel-Wavelet Transforms for Certain Space of Generalized Functions

S.K.Q. Al-Omari
Department of Applied Sciences, Faculty of Engineering Technology Al-Balqa Applied University, Amman 11134, Jordan
E-mail: s.k.q.alomari@fet.edu.jo

(Received: 2-11-11/ Accepted: 14-2-12)

Abstract

A theory of the diffraction Fresnel transform is extended to certain spaces of Schwartz distributions. The diffraction Fresnel transform is obtained as a continuous function in the space of Boehmians. Convergence with respect to δ and Δ convergences is shown to be well defined.

Keywords: Fresnel Transform; Wavelet transform; Distribution space; Boehmian space.

1 Introduction

Integral transforms play an important role in various fields of science. In optics, several integral transforms are of great importance. Some of these transforms are: the Fresnel transform [10, 12, 25, 26]; the fractional Fourier transform [5, $6,11,13,18]$; the linear canonical transform [22, 23]; the wavelet transform [20, 21]; the diffraction Fresnel transform [27,28] and, many others. The wavelet transform is described in $[20,21]$ as

$$
\begin{equation*}
\Omega_{f}(\mu, \lambda)=\frac{1}{\sqrt{\mu}}_{R} f(x) \psi^{*}\left(\frac{x-\lambda}{\mu}\right) d x \tag{1.1}
\end{equation*}
$$

where $\psi(x)$ is named as mother wavelet satisfying ${ }_{R} d x \psi(x)=0$. The parameters λ and μ are, respectively, the translate and dilate of w, whereas, w^{*} is the conjugate of w. The optical diffraction transform is described by the Fresnel
integration [27, 28]

$$
\begin{equation*}
F\left(x_{2}\right)=\frac{1}{\sqrt{2 \pi i \gamma_{1}}} R=\left(x_{1}\right) K_{x_{2}}\left(x_{1}\right) d x_{1} \tag{1.2}
\end{equation*}
$$

where $K\left(\alpha_{1}, \gamma_{1}, \gamma_{2}, \alpha_{2} ; x_{1}, x_{2}\right)=\exp \left(\frac{i}{2 \gamma_{1}}\left(\alpha_{1} x_{1}^{2}-2 x_{1} x_{2}+\alpha_{2} x_{2}^{2}\right)\right)$ is the transform kernel whose parameters $\alpha_{1}, \gamma_{1}, \gamma_{2}, \alpha_{2}$ represent a ray transfer Matrix M, in an optical system, with $\alpha_{1} \alpha_{2}-\gamma_{1} \gamma_{2}=1$.

We consider the combined optical transform obtained jointly from (1.1) and (1.2), named as the Fresnel-wavelet transform [10, Equ. (36)]

$$
\begin{equation*}
F_{w}\left(\lambda, \mu, x_{2}\right)={\frac{1}{\sqrt{2 \pi i \gamma_{1}}} R}_{R} K\left(\alpha_{1}, \gamma_{1}, \gamma_{2}, \alpha_{2} ; x_{1}, x_{2}, \lambda, \mu\right) f\left(x_{1}\right) d x \tag{1.3}
\end{equation*}
$$

where

$$
K\left(\alpha_{1}, \gamma_{1}, \gamma_{2}, \alpha_{2} ; x_{1}, x_{2}, \lambda, \mu\right)=\exp \left(\frac{i}{2 \gamma_{1}}\left(\frac{\alpha_{1}\left(x_{1}-\lambda\right)^{2}}{\mu^{2}}-\frac{2 x_{2}\left(x_{1}-\lambda\right)}{\mu}+\alpha_{2} x_{2}^{2}\right)\right)
$$

is the transform kernel.
Parameters: $\alpha_{1}, \gamma_{1}, \gamma_{2}$, and α_{2} appearing in the above expression are elements of a 2×2 matrix with unit determinant. Since the general single-mode squeezing operator F in the generalized Fresnel transform is in wave optics, applications of F is a faithful representation in the Fresnel-wavelet transform [10]. Hence, the combined Fresnel-wavelet transform can be more conveniently studied by the general single-more squeezed operation.

In the literature, it has not yet been reported that the Fresnel-wavelet transform is extended to a space of generalized functions. Thus, we, in this article, aim at extending the Fresnel-wavelet transform to certain generalized function space (Boehmian space). Such extension is mainly related to the fact that the optical Fresnel-wavelet transform of a good function is certainly a C^{∞} function.

We spread the article into five sections: In Section 2, we introduce the notion of Boehmian spaces. In Section 3, we consider the Boehmian space \mathfrak{B}_{\star} from [4]. Section 4 is devoted for a general construction of the space $\mathfrak{B}_{F w}$, where images of the extended Fresnel-wavelet transform lie. In the last section, we establish that the optical Fresnel-wavelet transform of an arbitrary Boehmian in \mathfrak{B}_{\star} is another Boehmian in $\mathfrak{B}_{F w}$. Moreover, we discuss linearity and continuity conditions with respect to certain types of convergence.

Let $\varepsilon\left(R_{+}\right)$be the test function space of all C^{∞} functions of arbitrary supports and $\varepsilon^{\prime}\left(R_{+}\right)$be its strong duals of distributions of compact supports. The kernel function $K\left(\alpha_{1}, \gamma_{1}, \gamma_{2}, \alpha_{2} ; x_{1}, x_{2}, \lambda, \mu\right)$ of the Fresnel-wavelet transform is clearly in $\varepsilon\left(R_{+}\right)$. This leads to define the distributional transform on the dual of distributions of compact support by the relation $F_{w}\left(\lambda, \mu, x_{2}\right)=$ $\frac{1}{\sqrt{2 \pi i \gamma_{1}}}\left\langle f\left(x_{1}\right), K\left(\alpha_{1}, \gamma_{1}, \gamma_{2}, \alpha_{2} ; x_{1}, x_{2}, \lambda, \mu\right)\right\rangle$, for every $f \in \varepsilon^{\prime}\left(R_{+}\right)$.

2 General Boehmian Spaces

Let G be a linear space and H be a subspace of G. Assume to each pair of elements $f, g \in G$ and $\psi, \phi \in H$, is assigned the product $f \bullet g$ such that: $\phi \bullet \psi \in H$ and $\phi \bullet \psi=\psi \bullet \phi, \forall \phi, \psi \in H,(f \bullet \phi) \bullet \psi=f \bullet(\phi \bullet \psi)$, and $(f+g) \bullet \phi=f \bullet \phi+g \bullet \phi, k(f \bullet \phi)=(k f) \bullet \phi, k \in \mathbf{C}$. A family of sequences Δ from H, is said to be delta sequence if for each $f, g \in G,\left(\psi_{n}\right),\left(\delta_{n}\right) \in \Delta$, the following should satisfy: $f \bullet \delta_{n}=g \bullet \delta_{n}(n=1,2, \ldots)$, implies $f=g$, and $\left(\phi_{n} \bullet \psi_{n}\right) \in \Delta$. Let \mathcal{O} be a class of pair of sequences

$$
\mathcal{O}=\left\{\left(\left(f_{n}\right),\left(\phi_{n}\right)\right):\left(f_{n}\right) \subseteq G^{\mathbf{N}},\left(\phi_{n}\right) \in \Delta\right\}
$$

for each $n \in \mathbb{N}$. An element $\left(\left(f_{n}\right),\left(\phi_{n}\right)\right) \in \mathcal{O}$ is said to be a quotient of sequences, denoted by $\frac{f_{n}}{\phi_{n}}$ if $f_{i} \bullet \phi_{j}=f_{j} \bullet \phi_{i}, \forall i, j \in \mathbb{N}$. Two quotients of sequences $\frac{f_{n}}{\phi_{n}}$ and $\frac{g_{n}}{\psi_{n}}$ are equivalent, $\frac{f_{n}}{\phi_{n}} \sim \frac{g_{n}}{\psi_{n}}$, if $f_{i} \bullet \psi_{j}=g_{j} \bullet \phi_{i}, \forall i, j \in \mathbb{N}$. The relation \sim is an equivalent relation on \mathcal{O} and hence, splits \mathcal{O} into equivalence classes. The equivalence class containing $\frac{f_{n}}{\phi_{n}}$ is denoted by $\left[\frac{f_{n}}{\phi_{n}}\right]$.These equivalence classes are called Boehmians and the space of all Boehmians is denoted by \mathfrak{B}. The sum of two Boehmians and multiplication by a scalar is defined in a natural way $\left[\frac{f_{n}}{\phi_{n}}\right]+\left[\frac{g_{n}}{\psi_{n}}\right]=\left[\frac{\left(f_{n} \bullet \psi_{n}\right)+\left(g_{n} \bullet \phi_{n}\right)}{\phi_{n} \bullet \psi_{n}}\right]$ and $\alpha\left[\frac{f_{n}}{\phi_{n}}\right]=\left[\alpha \frac{f_{n}}{\phi_{n}}\right], \alpha \in \mathbb{C}$. The operation • and the differentiation are defined by $\left[\frac{f_{n}}{\phi_{n}}\right] \bullet\left[\frac{g_{n}}{\psi_{n}}\right]=\left[\frac{f_{n} \bullet g_{n}}{\phi_{n} \bullet \psi_{n}}\right]$ and $D^{\alpha}\left[\frac{f_{n}}{\phi_{n}}\right]=\left[\frac{D^{\alpha} f_{n}}{\phi_{n}}\right]$. The relationship between the notion of convergence and the product - are given by:

1 -If $f_{n} \rightarrow f$ as $n \rightarrow \infty$ in G and, $\phi \in H$ is any fixed element, then $f_{n} \bullet$ $\phi \rightarrow f \bullet \phi$, as $n \rightarrow \infty$ in G.

2 -If $f_{n} \rightarrow f$ as $n \rightarrow \infty$ in G and $\left(\delta_{n}\right) \in \Delta$, then $f_{n} \bullet \delta_{n} \rightarrow f$ as $n \rightarrow \infty$ in G. In \mathfrak{B}. two types of convergence:
δ-convergence : Let $\left(\beta_{n}\right) \in \mathfrak{B}$. then $\beta_{n} \xrightarrow{\delta} \beta$, if there is $\left(\delta_{n}\right) \in \Delta$, $\left(\beta_{n} \bullet \delta_{n}\right),\left(\beta \bullet \delta_{n}\right) \in G, \forall k, n \in \mathbb{N}$, and $\left(\beta_{n} \bullet \delta_{k}\right) \rightarrow\left(\beta \bullet \delta_{k}\right)$ as $n \rightarrow \infty$,in G, \forall $k \in \mathbb{N}$.
Δ-convergence : $\left(\beta_{n}\right)$ in $\mathfrak{B} \bullet$ is Δ-convergent to β in $\mathfrak{B}_{\bullet}, \beta_{n} \xrightarrow{\Delta} \beta$, if there is $\left(\delta_{n}\right) \in \Delta$ such that $\left(\beta_{n}-\beta\right) \bullet \delta_{n} \in G, \forall n \in \mathbb{N}$, and $\left(\beta_{n}-\beta\right) \bullet \delta_{n} \rightarrow 0$ as $n \rightarrow \infty$ in G. For further analysis, see $[1-4,8,14,15,17]$.

3 The Boehmian Space \mathfrak{B}_{\star}

Let f and g be C^{∞} functions, over R_{+}. Then the convolution between f and g is defined by [4, Equ.3.2]

$$
\begin{equation*}
(f \triangleright g)(x)=_{R_{+}} f\left(x y^{-1}\right) \phi(y) y^{-1} d y \tag{3.1}
\end{equation*}
$$

where x is a non-negative real number.
In the rest of investigations, it is more convenient to use the noation \star instead of the used one, \triangleright. Further, we retain likewise notations and the results established in [4].

Let $\mathcal{D}=\mathcal{D}\left(R_{+}\right)$, be the Schwartz' space of all C^{∞} complex-valued functions which are compactly supported in R_{+}. Then, we recall the following definition [4]

Definition 3.1. Let $\mathcal{S}=\left\{\phi \in \mathcal{D}\left(R_{+}\right): \phi \geq 0\right.$ and $\left.{ }_{R_{+}} \phi=1\right\}$ and Δ be the set of all delta sequences $\phi_{n}, n=0,1,2, \ldots$, from \mathcal{S}, such that supp $\phi_{n} \rightarrow 0$ as $n \rightarrow \infty$. Then, $\left(\phi_{n}\right) \in \Delta$ if and only if $\left(\phi_{n}\right) \in \mathcal{D}\left(R_{+}\right)$, and
$\Delta_{1} \mathbf{R}_{+} \phi_{n}=1, \forall n \in \mathbb{N}$;
$\Delta_{2} \phi_{n} \geq 0, \forall n \in \mathbb{N}$;
$\Delta_{3} \inf \left\{\epsilon>0: \operatorname{supp}_{n} \subseteq(0, \epsilon)\right\} \rightarrow 0$, as $n \rightarrow \infty$.
The following are proved in [4]
Lemma 3.2. Let $f \in C^{\infty}\left(R_{+}\right)$and $\phi \in \mathcal{S}$, then $f \star \phi \in C^{\infty}\left(R_{+}\right)$.
Lemma 3.3. Let $f, g \in C^{\infty}\left(R_{+}\right), \phi, \psi \in \mathcal{S}$ and, $\alpha \in \mathbb{C}($ The set of complex numbers). Then, the following are true
(1) $(f+g) \star \phi=f \star \phi+g \star \phi$.
(2) $(\alpha f \star \phi)=\alpha(f \star \phi)$.
(3) $\phi \star \psi=\psi \star \phi$.
(4) $f \star(\phi \star \psi)=(f \star \phi) \star \psi$.

Theorem 3.4. If $\lim _{n \rightarrow \infty} f_{n}=f$, in $C^{\infty}\left(R_{+}\right)$, and $\phi \in \mathcal{S}$, then

$$
\lim _{n \rightarrow \infty} f_{n} \star \phi=f \star \phi \text { in } C^{\infty}\left(R_{+}\right)
$$

Lemma 3.5. Let $f_{n} \rightarrow f$, in $C^{\infty}\left(R_{+}\right)$, and $\left(\delta_{n}\right) \in \Delta$. Then, $f_{n} \star \delta_{n} \rightarrow f$ in $C^{\infty}\left(R_{+}\right)$.

Theorem 3.6. Given $\left(\phi_{n}\right),\left(\psi_{n}\right) \in \Delta$. Then, $\left(\phi_{n} \star \psi_{n}\right) \in \Delta$..
After this sequence of results, the desired Boehmian space \mathfrak{B}_{\star} was constructed in [4].

In \mathfrak{B}_{\star}, it is needful to have the following definition:
Definition 3.7. Let $\left[\frac{f_{n}}{\delta_{n}}\right],\left[\frac{g_{n}}{\phi_{n}}\right] \in \mathfrak{B}_{\star}$. Then, the convolution of two Boehmians is defined as

$$
\begin{equation*}
\left[\frac{f_{n}}{\delta_{n}}\right] \star\left[\frac{g_{n}}{\phi_{n}}\right]=\left[\frac{f_{n} \star g_{n}}{\delta_{n} \star \phi_{n}}\right], \text { for all } n \in \mathbb{N} \tag{3.2}
\end{equation*}
$$

Equ.(3.2) is well-defined by Theorem 3.6 and Lemma 3.2.

Differentiation is defined by

$$
D^{\alpha}\left[\frac{f_{n}}{\phi_{n}}\right]=\left[\frac{D^{\alpha} f_{n}}{\phi_{n}}\right] .
$$

Addition and scalar multiplication is defined in \mathfrak{B}_{\star} as

$$
\left[\frac{f_{n}}{\phi_{n}}\right]+\left[\frac{g_{n}}{\psi_{n}}\right]=\left[\frac{\left(f_{n} \star \psi_{n}\right)+\left(g_{n} \star \phi_{n}\right)}{\phi_{n} \star \psi_{n}}\right] \text { and } \alpha\left[\frac{f_{n}}{\phi_{n}}\right]=\left[\alpha \frac{f_{n}}{\phi_{n}}\right], \alpha \in \mathbb{C} .
$$

4 The Boehmian Space $\mathfrak{B}_{F_{w}}$

Let $S\left(R_{+}^{3}\right)$, be the space of rapidly decreasing functions on $R_{+}^{3}=R_{+} \times R_{+} \times R_{+}$ [19, 7]. Then the Fresnel-wavelet transform of $f \in S\left(R_{+}^{3}\right)$ is indeed a $C^{\infty}\left(R_{+}\right)$ function. Let $f \in S\left(R_{+}^{3}\right)$ and $\psi \in C^{\infty}\left(R_{+}\right)$.

We define a mapping $\otimes: S\left(R_{+}^{3}\right) \rightarrow C^{\infty}\left(R_{+}\right)$by

$$
\begin{equation*}
(f \otimes \psi)\left(\lambda, \mu, x_{2}\right)=\int_{R_{+}} f\left(\lambda t^{-1}, \mu t^{-1}, x_{2}\right) \psi(t) d t \tag{4.1}
\end{equation*}
$$

Following theorem is very needful
Lemma 4.1. Let $f \in S\left(R_{+}^{3}\right)$ and $\psi \in C^{\infty}\left(R_{+}\right)$then

$$
f \otimes \psi \in S\left(R_{+}^{3}\right)
$$

Proof. To show $f \otimes \psi \in S$, we establish the following three relations

$$
\begin{align*}
D_{\lambda}(f \otimes \psi)\left(\lambda, \mu, x_{2}\right) & =\left(D_{\lambda} f \otimes \psi\right)\left(\lambda, \mu, x_{2}\right) \tag{4.2}\\
D_{\mu}(f \otimes \psi)\left(\lambda, \mu, x_{2}\right) & =\left(D_{\lambda} f \otimes \psi\right)\left(\lambda, \mu, x_{2}\right) \tag{4.3}
\end{align*}
$$

and

$$
\begin{equation*}
D_{x_{2}}(f \otimes \psi)\left(\lambda, \mu, x_{2}\right)=\left(D_{x_{2}} f \otimes \psi\right)\left(\lambda, \mu, x_{2}\right) \tag{4.4}
\end{equation*}
$$

To establish (4.2), let $\mu_{0}, x_{20}>0$ be fixed and, λ_{0} vary over R_{+}then

$$
\begin{aligned}
& D_{\lambda}(f \otimes \psi)\left(\lambda_{0}, \mu_{0}, x_{20}\right)= \\
& \lim _{\lambda \rightarrow \lambda_{0} R_{+}} \frac{f\left(\lambda t^{-1}, \mu_{0} t^{-1}, x_{20}\right)-f\left(\lambda_{0} t^{-1}, \mu_{0} t^{-1}, x_{20}\right)}{\lambda-\lambda_{0}} \psi(t) d t \\
&={ }_{R_{+}} D_{\lambda} f\left(\lambda_{0} t^{-1}, \mu_{0} t^{-1}, x_{20}\right) \psi(t) d t \\
&=\left(D_{\lambda} f \otimes \psi\right)\left(\lambda_{0}, \mu_{0}, x_{20}\right)
\end{aligned}
$$

Thus,

$$
D_{\lambda}(f \otimes \psi)\left(\lambda_{0}, \mu_{0}, x_{20}\right)=\left(D_{\lambda} f \otimes \psi\right)\left(\lambda_{0}, \mu_{0}, x_{20}\right)
$$

Proof of (4.3) and (4.4) is analogous. Induction on the partial differention with respect to λ, μ and x_{2} yields

$$
\begin{equation*}
D_{\lambda}^{k}(f \otimes \psi)=D_{\lambda}^{k} f \otimes \psi, D_{\mu}^{k}(f \otimes \psi)=D_{\mu}^{k} \otimes \psi \text { and } D_{x_{2}}^{k}(f \otimes \psi)=D_{x_{2}}^{k} f \otimes \psi \tag{5.5}
\end{equation*}
$$

Hence, using the topology of S we have

$$
\begin{equation*}
\|f * \psi\|_{S} \leq\|\psi\|_{L^{1}}\|f\|_{S} \tag{1}
\end{equation*}
$$

Lemma $4.2 f \otimes \psi_{n} \rightarrow f$ for every $f \in S\left(R_{+}^{3}\right)$ and $\left(\psi_{n}\right) \in \Delta$.
Proof. Using (4.2) - (4.4), mean value theorem and Δ_{3} we write

$$
\left|\lambda^{i} D_{\lambda}^{k}\left(f \otimes \psi_{n}-f\right)\left(\lambda, \mu, x_{2}\right)\right|=\left|\lambda^{i}\left(D_{\lambda}^{k} f \otimes \psi_{n}-D_{\lambda}^{k} f\right)\left(\lambda, \mu, x_{2}\right)\right|
$$

Hence, using (4.1), we get
$\left|\lambda^{i} D_{\lambda}^{k}\left(f \otimes \psi_{n}-f\right)\left(\lambda, \mu, x_{2}\right)\right| \leq$

$$
R_{+}\left|\lambda^{i} D_{\lambda}^{k}\left(f\left(\lambda t^{-1}, \mu t^{-1}, \varkappa_{2}\right)-f\left(\lambda, \mu, x_{2}\right)\right) \psi(t)\right| d t .
$$

Hence the above expression approaches 0 as $n \rightarrow \infty$.
It can be similarly proved that
$\left|\mu^{i} D_{\mu}^{k}\left(f \otimes \psi_{n}-f\right)\left(\lambda, \mu, x_{2}\right)\right|$ and $\left|x_{2}^{i} D_{x_{2}}^{k}\left(f \otimes \psi_{n}-f\right)\left(\lambda, \mu, x_{2}\right)\right|$ approach 0 as $n \rightarrow \infty$.

This completes the proof of the lemma.
Lemma $4.3 f_{n} \otimes \psi \rightarrow f \otimes \psi$ for every $f_{n}, f \in S\left(R_{+}^{3}\right)$ and $\psi \in C^{\infty}\left(R_{+}\right)$.
Proof. Employing (4.1)-(4.4) the lemma can easily be established in a manner similar to that of above Lemma. The Boehmian space $\mathfrak{B}_{F w}(S, \otimes, \Delta)$ is therefore established. Operations such as addition, scalar multiplication, Differentiation and the operation \otimes between two Boehmians in $\mathfrak{B}_{F w}$ can be defined similarly as done in the previous section.

5 Fresnel-Wavelet Transform of Boehmians

Following is lemma suggesting a new definition for the Fresnel-wavelet transform of a Boehmian in the space \mathfrak{B}_{\star}.

Lemma 5.1 Given $f \in S\left(R_{+}^{3}\right)$ and $\psi \in C^{\infty}\left(R_{+}\right)$then

$$
F_{w}(f \star \psi)\left(\lambda, \mu, x_{2}\right)=f \otimes F_{w} \psi,
$$

Proof. The Fresnel-Wavelet transform is written in the form

$$
\begin{equation*}
F_{w}\left(f\left(x_{1}\right)\right)\left(\lambda, \mu, x_{2}\right)=\int_{R_{+}} f\left(x_{1}\right) K_{\lambda, \mu, x_{2}}^{\prime}\left(x_{1}\right) d x_{1} \tag{5.1}
\end{equation*}
$$

where $K_{\lambda, \mu, x_{2}}^{\prime}\left(x_{1}\right)=K\left(\alpha_{1}, \gamma_{1}, \gamma_{2}, \alpha_{2} ; x_{1}, x_{2}, \lambda, \mu\right)$ and

$$
K\left(\alpha_{1}, \gamma_{1}, \gamma_{2}, \alpha_{2} ; x_{1}, x_{2}, \lambda, \mu\right)=\exp \left(\alpha_{1} \frac{\left(x_{1}-\lambda\right)^{2}}{\mu}-2 x_{2} \frac{\left(x_{1}-\lambda\right)^{2}}{\mu}+\alpha_{2} x_{2}^{2}\right) .
$$

Hence

$$
\begin{aligned}
F_{w}(f \star \psi)\left(\lambda, \mu, x_{2}\right) & =\int_{R_{+}}(f \star \psi)\left(x_{1}\right) K_{\lambda, \mu, x_{2}}^{\prime}\left(x_{1}\right)\left(x_{1}\right) d x_{1} \\
& =\int_{R_{+}}\left(\int_{R_{+}} f\left(x_{1} y^{-1}\right) \psi(y) y^{-1} d y\right) K_{\lambda, \mu, x_{2}}^{\prime}\left(x_{1}\right) d x_{1}
\end{aligned}
$$

The substitution $x_{1}=y t$ implies

$$
\begin{aligned}
F_{w}(f \star \psi)\left(\lambda, \mu, x_{2}\right) & =\int_{R_{+}} f(t)\left(\int_{R_{+}} \psi(y) K_{\lambda t^{-1}, \mu t^{-1}, x_{2}}^{\prime}(y) d y\right) d t \\
& =\left(F_{w} \psi \otimes f\right)\left(\lambda, \mu, x_{2}\right) .
\end{aligned}
$$

This completes the proof. Hence, we define the Fresnel-wavelet transform of a Boehmian in \mathfrak{B}_{\star} as

$$
\begin{equation*}
\mathfrak{S}\left[\frac{f_{n}}{\partial_{n}}\right]=\left[\frac{F_{w} f_{n}}{\partial_{n}}\right] . \tag{5.2}
\end{equation*}
$$

in the space $\mathfrak{B}_{F w}\left(S\left(R_{+}^{3}\right), \otimes, \Delta\right)$.
The definition, in (5.2), is well defined. For, if $\frac{f_{n}}{\delta_{n}} \sim \frac{f_{n}}{\delta_{n}}$ in \mathfrak{B}_{\star} then $f_{n} \star \delta_{m}=g_{m} \star \delta_{m}$. Applying the Fresnel-wavelet transform and Theorem 5.1 imply $F_{w} f_{n} \otimes \delta_{m}=F_{w} g_{m} \otimes \delta_{n}$. Hence $\frac{F_{w} f_{n}}{\delta_{n}} \sim \frac{F_{w} g_{n}}{\delta_{n}}$. Therefore $\left[\frac{F_{w} f_{n}}{\delta_{n}}\right]=\left[\frac{F_{w} g_{n}}{\delta_{n}}\right]$ in $\mathfrak{B}_{F w}$.

Theorem 5.2. The $\mathfrak{S}: \mathfrak{B}_{\star} \rightarrow \mathfrak{B}_{F w}$ is linear.
Proof. is obvious.
Theorem 5.3: The $\mathfrak{S}: \mathfrak{B}_{\star} \rightarrow \mathfrak{B}_{F w}$ is continuous with respect to Δ convergence.

Proof. If $\beta_{v} \xrightarrow{\Delta} \beta$ in \mathfrak{B}_{\star} then $\left(\beta_{v} \rightarrow \beta\right) \star \delta_{v}=\left[\frac{f_{v} \star \delta_{i}}{\delta_{i}}\right]$ for some $\delta_{i} \in \Delta, f_{n} \in$ $C^{\infty}\left(R_{+}\right)$and $f_{v} \rightarrow 0$ as $v \rightarrow \infty$. Thus $F_{w} f_{v} \rightarrow 0$ in $S\left(R_{+}^{3}\right)$ since $f_{v} \rightarrow 0$ as $v \rightarrow \infty$. Hence we conclude $F_{w} \beta_{v} \xrightarrow{\Delta} F_{w} \beta$ as $v \rightarrow \infty$. This completes the proof of te theorem.

Theorem 5.4. $\mathfrak{S}: \mathfrak{B}_{\star} \rightarrow \mathfrak{B}_{F w}$ is continuous with respect to the δ convergence.

Proof. Let $\beta_{v} \xrightarrow{\delta} \beta$ as $v \rightarrow \infty$ in \mathfrak{B}_{\star} then using [15] there can be found $f_{v, j}, f_{j}$ such that

$$
\begin{equation*}
f_{v, j} \rightarrow f_{j}, \text { as } v \rightarrow \infty, \tag{5.3}
\end{equation*}
$$

where

$$
\left[\frac{f_{v, j}}{\delta_{j}}\right]=\beta_{v} \text { and }\left[\frac{f_{j}}{\delta_{j}}\right]=\beta
$$

Applying the Fresnel-wavelet transform on (5.3) we get

$$
F_{w} f_{v, j} \rightarrow F_{w} f_{j} \text { as } v \rightarrow \infty .
$$

Thus

$$
\left[\frac{F_{w} f_{w, j}}{\delta_{j}}\right] \rightarrow\left[\frac{F_{w} f_{j}}{\delta_{j}}\right] .
$$

Hence the theorem.

References

[1] S.K.Q. Al-Omari, D. Loonker, P.K. Banerji and S.L. Kalla, Fourier sine(cosine) transform for ultradistributions and their extensions to tempered and ultraBoehmian spaces, Integ. Trans. Spl. Funct. 19(6) (2008), 453-462.
[2] S.K.Q. Al-Omari, The generalized Stieltjes and Fourier transforms of certain spaces of generalized functions, Jord. J. Math. Stat., 2(2) (2009), 55-66.
[3] S.K.Q. Al-Omari, On the distributional Mellin transformation and its extension to Boehmian spaces, Int. J. Contemp. Math. Sciences, 6(17) (2011), 801-810.
[4] S.K.Q. Al-Omari, A Mellin transform for a space of Lebesgue integrable Boehmians, Int. J. Contemp. Math. Sciences, (32) (2011), 1597-1606.
[5] A.W. Lohmann, Image rotation, Wigner rotation, and the fractional Fourier transform, J. Opt. Soc. Am. A, 10(1993), 2181-2186.
[6] A.C. McBride and F.H. Kerr, On Namias's fractional Fourier transforms IMA J. Appl. Math., 39(1987), 159-175.
[7] P.K. Banerji, S.K. Alomari and L. Debnath, Tempered distributional Fourier sine(cosine) transform, Integ. Trans. Spl. Funct., 17(11) (2006),759-768.
[8] T.K. Boehme, The support of Mikusinski operators, Tran.Amer. Math. Soc., 176(1973), 319-334.
[9] D. Mendlovic and H.M. Ozakatas, Fractional Fourier transforms and their optical implementation:I, J. Opt. Soc. Am. A, 10(1993), 1875-1881.
[10] Hong-Yi Fan and Hai-Liang Lu, Wave-function transformations by generalSU $(1,1)$ single-mode squeezing and analogy to Fresnel transformations in wave optics, Optics Communications, 258(2006), 51-58.
[11] H.M. Ozakatas and D. Mendlovic,Fractional Fourier transforms and their optical implementation. II, J. Opt. Soc. Am. A, 10(1993) 2522-2531.
[12] L. Mertz, Transformations in Optics, Wiley, New York, (1965).
[13] L.M. Bernardo and O.D. Soaares, Fractional Fourier transforms and optical systems, Opt.Commun., 110(1994), 517-522.
[14] P. Mikusinski, Fourier transform for integrable Boehmians, Rocky Mountain J. Math., 17(3) (1987), 577-582.
[15] P. Mikusinski, Convergence of Boehmians, Japan, J. Math, 9(1)(1983), 169-179. .
[16] R.S. Pathak, Integral Transforms of Generalized Functions and Their Applications, Gordon and Breach Science Publishers, Australia, Canada, India, Japan, (1997).
[17] R. Roopkumar, Mellin transform for Boehmians, Bull. Institute of Math., Academica Sinica, 4(1) (2009), 75-96.
[18] V. Namias, The fractional order Fourier transform and its application to quantum mechanics, J. Inst. Maths. Appl., 25(1980), 241-265.
[19] A.H. Zemanian, Generalized Integral Transformation, Dover Publications, Inc., New York (1987), First published by Interscience Publishers, New York (1968).
[20] M. Holschneider, Wavelets, An Analysis Tool, Oxford, Clarendon Press, (1995).
[21] M. Holschneider, Wavelet analysis on the circle, J. Math. Phys., 31(1) (1990), 39-44.
[22] R.G. Campos and J. Figueroa, A fast algorithm for the linear canonical transform, Signal Processing, 91(2011), 1444-1447.
[23] M. Moshinsky and C. Quense, Linear canonical transformations and their unitary representations, J. Math. Phys., 12(1971),1772-1783.
[24] B. Rong Wu, S. Ito,Y. Kamimura, and Y.Yamada, , Zero-filling Technique in Fresnel Transform Image Reconstruction for MR Image Denoising, Progress In Electromagnetics Research Symposium 2005, Hangzhou, China, 22-26.
[25] J.W. Goodman, Introductionto Fourier Optics, McGraw-Hill, New York, (1972).
[26] A.W. Lohmann, Image rotation, Wigner rotation, and the fractional Fourier transform, J. Opt. Soc. Am. a, 10(1993), 2181-2186.
[27] H.M. Ozakatas and D. Mendlovic, Fractional Fourier transforms and their optical implementation:II, J. Opt. Soc. A, 10(1993), 2522-2531.

