

Gen. Math. Notes, Vol. 5, No. 2, August 2011, pp. 24-41 ISSN 2219-7184; Copyright © ICSRS Publication, 2011 www.i-csrs.org Available free online at http://www.geman.in

# **Covering Cover Pebbling Number for Even**

# **Cycle Lollipop**

A. Lourdusamy<sup>1</sup>, S. Samuel Jeyaseelan<sup>2</sup> and T. Mathivanan<sup>3</sup>

 <sup>1</sup>Department of Mathematics, St. Xavier 's College (Autonomous), Palayamkottai - 627 002, India. E-mail: lourdugnanam@hotmail.com
 <sup>2</sup>Department of Mathematics,Loyola College (Autonomous), Chennai - 600 002, India. E-mail: samjeya@yahoo.com
 <sup>3</sup>Research scholar, Department of Mathematics, St. Xavier 's College (Autonomous), Palayamkottai-627 002, India. E-mail: tahit\_van\_man@yahoo.com

(Received: 12-5-11/ Accepted: 23-6-11)

#### Abstract

In a graph G with a distribution of pebbles on its vertices, a pebbling move is the removal of two pebbles from one vertex and the addition of one pebble to an adjacent vertex. The covering cover pebbling number, denoted by  $\sigma$  (G), of a graph G, is the smallest number of pebbles, such that, however the pebbles are initially placed on the vertices of the graph, after a sequence pebbling moves, the set of vertices with pebbles forms a covering of G. In this paper we determine the covering cover pebbling number for cycles and even cycle lollipops.

Keywords: Graph, pebbling, covering, lollipop graph.

### **1** Introduction

Pebbling, one of the latest evolutions in graph theory proposed by Lagarias and Saks, has been the topic of vast investigation with significant observations. Having Chung [1] as the forerunner to familiarize pebbling into writings, many other authors too have developed this topic. Hulbert published a survey of pebbling results[3]. Given a connected graph, distribute certain number of pebbles on its vertices in some configuration. Precisely, a configuration on a graph G is a function from V (G) to N  $\cup$  {0} representing a placement of pebbles on G. The size of the configuration is the total number of pebbles placed on the vertices. Support vertices of a configuration C are those on which there is at least one pebble of C. In any configuration, if all the pebbles are placed on a single vertex, it is called a simple configuration. A pebbling move is the removal of two pebbles from one vertex and the addition of one pebble to an adjacent vertex. In (regular) pebbling, the target vertex is selected and the aim is to move a pebble to the target vertex. The minimum number of pebbles, such that regardless of the target vertex, we can pebble that target vertex is called the pebbling number of G. In cover pebbling the aim is to cover all the vertices with pebbles, That is, to move a pebble every vertex of the graph simultaneously. The minimum number of pebbles required such that, regardless of their initial placement on G, there is a sequence of pebbling moves, at the end of which, every vertex has at least one pebble on it, is called the cover pebbling number of G. In [2], the cover pebbling number for complete graphs, paths and trees are determined. The covering cover pebbling number, denoted by  $\sigma$  (G), of a graph G, is the smallest number of pebbles, such that, however the pebbles are initially placed on the vertices of the graph, after a sequence pebbling moves, the set of vertices with pebbles forms a covering of G. The concept of covering cover pebbling number was introduced by A.Lourdusamy and A.Punitha Tharani in [5] and they determined the covering cover pebbling for complete graphs, paths, wheel, star graph, complete r-partite graph and binary trees.

In this paper we determine the covering cover pebbling number for cycles in Section 2. With regard to the covering cover pebbling number of cycles, we find the following theorem in [5].

**Theorem 1.1**[5] Let  $P_n$  be a path on n vertices with  $V = V(P_n) = \{v_1, v_2, v_3, \dots, v_n\}$ 

1, v<sub>n</sub>} and E=E(P<sub>n</sub>)={v<sub>1</sub>v<sub>2</sub>, v<sub>2</sub>v<sub>3</sub>, v<sub>3</sub>v<sub>4</sub>,..., v<sub>n-1</sub>v<sub>n</sub>}. Then 
$$\sigma(P_n) = \left\lfloor \frac{2^n - 1}{3} \right\rfloor$$

In Section 3, we then present the covering cover pebbling number for even cycle lollipop.

## 2 Covering Cover Pebbling Number for Cycles

We begin by proving that placing all the pebbles on one vertex is a "worst case" configuration that determines the covering cover pebbling number of cycles.

**Lemma 2.1** The value of  $\sigma(C_m)$  is attained when the original configuration consists of placing all the pebbles on a single vertex, where  $C_m : v_0v_1v_2 \ldots v_{m-1}v_0$  is a cycle on 'm' vertices.

**Proof.** Assume first that a worst configuration consists of more than one set of consecutively pebbled vertices ("islands"). The maximum number of vertices in each island is at most two. Suppose if any one of the islands consists of three or more pebbled vertices, one could rearrange all the pebbles to the inner one or two vertices of the same island, thereby causing a larger number of pebbles to be needed to cover the edges-a contradiction. Thus, each "island" consists of at most two vertices.

Now, consider the effect of relocating all the pebbles onto a single island. Once, again, we get a contradiction to the fact that there could be more than one island, because we need more pebbles to cover the edges of the graph, after relocating all the pebbles onto a single island. So, our assumption (that a worst configuration consist of more than one island) is wrong.

Next, assume that, the island consists of exactly two vertices. Clearly, a worst initial configuration of pebbles is obtained by placing  $\sigma - 1$  pebbles on one vertex, say  $v_1$  and placing one pebble at an adjacent vertex of  $v_1$ , say  $v_2$ , since, we need more pebbles to cover the edges of the cycle. Note that, after the distribution of  $(\sigma - 1, 1)$  pebbles to  $\{v_1, v_2\}$  respectively, we cover all the edges of the cycle. But if we put all the pebbles on  $v_1$ , we cannot cover at least one edge of the cycle. Hence the result follows.

Since placing all the pebbles on a single vertex is a worst case, we now determine the value of  $\sigma$  (C<sub>m</sub>).

**Theorem 2.2** Let  $C_m : v_0 v_1 v_2 \dots v_{m-1} v_0$  be a cycle on 'm' vertices. Then

$$\sigma(C_m) = \begin{cases} \left[ \frac{2^{k+2} - 5}{3} \right], & \text{if } m = 2k \ (k \ge 2) \\ 2^k - 1, & \text{if } m = 2k - 1 \ (k \ge 2) \end{cases} \end{cases}$$

**Proof.** By Lemma 2.1, we assume all  $\sigma(C_m)$  pebbles are on  $v_0 \in C_m$ . If m = 2k ( $k \ge 2$ ), consider the paths  $P_A$  and  $P_B$  where  $P_A = v_0v_1 \dots v_{k-1}v_k$  and  $P_B = v_0v_{2k-1}v_{2k-2}\dots v_k$ . We can cover the edges of the paths  $P_A$  and  $P_B$ , using  $2\sigma(P_{k+1})$ 

pebbles, since  $l(P_A) = l(P_B) = k$  (Figure  $C_{2k}$ ) and  $\sigma(P_n) = \left| \frac{1}{3} (2^n - 1) \right|$ ,

where  $P_n$  denotes a path on n vertices. Note that,  $v_0$  may be pebbled twice. This happens only when k is odd. Since if k is odd, then the path  $P_{k+1}$  is of odd length. That is, both  $P_A$  and  $P_B$  are of odd length implies  $v_0$  is pebbled twice. Thus,

$$\sigma(C_{2k}) = \begin{cases} 2\sigma(P_{k+1}), & \text{if } k \text{ is even} \\ 2\sigma(P_{k+1}) - 1, & \text{if } k \text{ is odd} \end{cases}$$

$$= \begin{cases} 2\left(\frac{2^{k+1}-2}{3}\right), & \text{if } k \text{ is even} \\ 2\left(\frac{2^{k+1}-1}{3}\right) - 1, & \text{if } k \text{ is odd} \end{cases}$$

$$= \begin{cases} \frac{2^{k+2}-4}{3}, & \text{if } k \text{ is even} \\ \frac{2^{k+2}-5}{3}, & \text{if } k \text{ is odd} \end{cases}$$
Therefore,  $\sigma(C_{2k}) = \left[\frac{2^{k+2}-5}{3}\right]$ 

$$v_{0} \qquad v_{1} \qquad v_{2} \qquad v_{3} \qquad v_{k-3} \qquad v_{k-2} \qquad v_{k-1} \qquad v_{k}$$

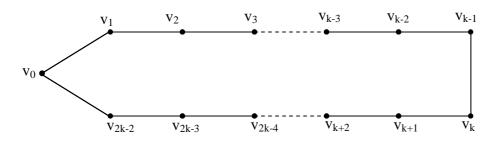
The Cycle 
$$C_{2k}$$
 (k  $\ge 2$ )

**v**<sub>2k-3</sub>

V2k-2

 $v_{k+3}$ 

v<sub>k+2</sub>



The Cycle  $C_{2k-1}$  (k  $\geq 2$ )

Now, consider the case when m = 2k - 1 ( $k \ge 2$ ). Also consider the paths  $P_A$  and  $P_B$  where  $P_A = v_0v_1 \dots v_{k-1}v_k$  and  $P_B = v_kv_{k+1} \dots v_{2k-2}v_0$ . We can cover the edges of the paths  $P_A$  and  $P_B$  using  $\sigma(P_{k+1})$  and  $\sigma(P_k)$  pebbles respectively, since

$$\begin{split} l(P_A) &= k \text{ and} \\ l(P_B) &= k - 1 (Figure \ C_{2k\text{-}1}). \end{split}$$

It is easy to see that we do not pebble  $v_0$  twice. Therefore,

$$\sigma(C_{2k-1}) = \sigma(P_{k+1}) + \sigma(P_k)$$

$$= \begin{cases} \frac{2^{k+1}-2}{3} + \frac{2^k}{3}, & \text{if } k \text{ is even} \\ \frac{2^{k+1}-1}{3} + \frac{2^k-2}{3}, & \text{if } k \text{ is odd} \end{cases}$$

$$= \begin{cases} \frac{2^{k+1}+2^k-3}{3}, & \text{if } k \text{ is even} \\ \frac{2^{k+1}+2^k-3}{3}, & \text{if } k \text{ is odd} \end{cases}$$

$$= \frac{3(2^k-1)}{3}, & k \ge 2 \end{cases}$$

Thus,  $\sigma(C_{2k-1}) = 2^{k} - 1$ .

Therefore,

$$\sigma(C_m) = \begin{cases} \left\lceil \frac{2^{k+2} - 5}{3} \right\rceil, & \text{if } m = 2k \ (k \ge 2) \\ 2^k - 1, & \text{if } m = 2k - 1 \ (k \ge 2) \end{cases}$$

# **3** Covering Cover Pebbling Number for Even Cycle Lollipops

We proceed to determine the covering cover pebbling number for a class of unicyclic graphs, called a class of even cycle lollipop graphs.

**Definition 3.1** [4] For a pair of integers  $m \ge 3$  and  $n \ge 2$ , let L(m, n) be the Lollipop graph of order m + n - 1 obtained from a cycle  $C_m$  by attaching a path of length n - 1 to a vertex of the cycle.

If the cycle  $C_m$  in L(m,n) is even, then we call L(m,n) an even cycle lollipop. We will use the following labeling for the graphs  $C_m$  and  $P_n$ :

Let  $\mathbf{C}_{\mathbf{m}} = \mathbf{v}_0 \mathbf{v}_1 \mathbf{v}_2 \dots \mathbf{v}_{\mathbf{m}-1} \mathbf{v}_0$  and  $\mathbf{P}_{\mathbf{n}} = v_0 v_{p_1} v_{p_2} \dots v_{p_{n-1}}$  be the cycle and the path available in L(m,n).

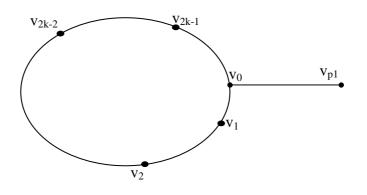
**Theorem 3.2** Let L(m, 2) be a lollipop graph, where m = 2k ( $k \ge 2$ ).

Then,  $\sigma(L(m, 2)) =$ 

$$\begin{cases} 2\sigma(C_m)+1, & \text{if } m=2k \text{ with } k \ge 2 \text{ is even} \\ 2\sigma(C_m), & \text{otherwise} \end{cases}$$

**Proof.** Consider the Lollipop graph L(m,2).

**Case1** Let m = 2k, where  $k \ge 2$  is even Consider the distribution of  $2\sigma(C_m)$  pebbles on  $v_{p_1}$ . Clearly, we cannot cover at least one of the edges of L(m, 2). Thus,  $\sigma(L(m, 2)) \ge 2\sigma(C_m) + 1$ .



Now, consider the distribution of  $2\sigma(C_m) + 1$  pebbles on L(m, 2).

**Case(1A)**  $C_m$  contains at least  $\sigma(C_m)$  pebbles.

If either  $v_{p_1}$  or  $v_0$  contains a pebbles on it, then we are done (by our assumption). So, assume both  $v_0$  and  $v_{p_1}$  have zero pebbles on it. Now, all the  $2\sigma(C_m) + 1$  pebbles are on  $V(C_m) - \{v_o\}$ . We can cover the edges of  $C_m$  using at most  $\sigma(C_m)$  pebbles. So, we have  $\sigma(C_m) + 1$  remaining pebbles to pebble the vertex  $v_0$ . Since  $v_0$  has no pebbles on it, both  $v_{2k-1}$  and  $v_1$  contain at least one pebble each while using  $\sigma(C_m) + 1$  remaining pebbles. But, if any one of the vertices of  $\{v_{2k-1}, v_1\}$  contains two or more pebbles, then we are done. So, both  $v_{2k-1}$  and  $v_1$  have exactly one pebble each. Now, consider the paths  $P_A = v_2v_3 \dots v_k$  and  $P_B = v_kv_{k+1} \dots v_{2k-2}$  which are of length k -2 each. Then, any one of the paths contains at

least 
$$\left\lceil \frac{\sigma(C_m) - 2}{2} \right\rceil = \sigma(P_{k+1}) - 1 =$$

$$\frac{2^{k+1}-2}{3}-1=\frac{2^{k+1}-5}{3}\geq 2^{k-1}$$
, where the first inequality follows

since  $\sigma(C_m) = 2\sigma(P_{k+1})$  and the last inequality follows since k≥4 is even.

(Note that, if k = 2,  $v_2$  is the only remaining vertex in the cycle  $C_4$  and we are done).

Since,  $l(P_A) = l(P_B) = k - 2$ , we can move two pebbles to either  $v_{2k-2}$  or  $v_2$  from the path  $P_B$  or  $P_A$  which contains at least  $2^{k-1}$  pebbles. So, we can put a pebble at  $v_0$  and we are done.

**Case** (1B)  $C_m$  contains  $x < \sigma(C_m)$  pebbles.

There are at least  $2\sigma (C_m) + 1 - x$  pebbles at  $v_{p_1}$ . We can move

$$\left\lfloor \frac{2\sigma(C_m) - x}{2} \right\rfloor$$
 pebbles to v<sub>0</sub>. That is,, from v<sub>p<sub>1</sub></sub>, we can move at least

$$\sigma(C_m) - \left\lfloor \frac{x}{2} \right\rfloor$$
 pebbles to v<sub>0</sub>. Now we have at least x+  $\sigma(C_m) - \left\lfloor \frac{x}{2} \right\rfloor$ 

pebbles in  $C_m$  and we are done. So,  $\sigma(L(m, 2) \le 2 \sigma(C_m) + 1$ . Therefore,  $\sigma(L(m, 2) = 2 \sigma(C_m) + 1$  if m=2k and k is even.

**Case2** Let m=2k, where  $k\geq 3$  is odd.

Consider the distribution of  $2\sigma(C_m)$ -1 pebbles on  $v_{p_1}$ . Clearly we cannot cover at least one of the edges of L(m,2). So,  $\sigma(L(m,2)) \ge 2\sigma(C_m)$ .

Let us now prove that  $\sigma(L(m,2)) \leq 2\sigma(C_m)$ . Consider the distribution of  $2\sigma(C_m)$  pebbles on L(m,2).

**Case** (2A)  $C_m$  contains at least  $\sigma(C_m)$  pebbles.

If either  $v_{p_1}$  or  $v_0$  contains a pebble on it, then we are done (by our assumption).

So, assume both  $v_0$  and  $v_{p_1}$  have zero pebbles. Now, all the  $2\sigma(C_m)$  pebbles are on  $V(C_m) - \{v_o\}$ . We can cover the edges of  $C_m$  using at most  $\sigma(C_m)$  pebbles. So, we have  $\sigma(C_m)$  remaining pebbles to pebble the vertex  $v_0$ . Since  $v_0$  has zero pebbles on it, both  $v_{2k-1}$  and  $v_1$  contain at least one pebble each while using  $\sigma(C_m)$  remaining pebbles. But, if  $v_{2k-1}$  or  $v_1$  contains two or more pebbles, then we are done. So, both  $v_{2k-1}$  and  $v_1$  have exactly one pebble each. Now, consider the paths  $P_A = v_2 v_3 \dots v_k$  and  $P_B = v_k v_{k+1} \dots v_{2k-2}$ . Note that  $P_A$  and  $P_B$  are of length k - 2 each. Then, any one of the paths contains at least  $\left[\frac{\sigma(C_m) - 2}{2}\right] = \sigma(P_{k+1}) - 1 =$ 

$$\frac{2^{k+1}-1}{3} - 1 = \frac{2^{k+1}-4}{3} \ge 2^{k-1}$$
 pebbles, where the last inequality follows since  $k \ge 3$  is odd.

Since,  $l(P_A) = l(P_B) = k - 2$ , we can move two pebbles to either  $v_{2k-2}$  or  $v_2$  from the path  $P_B$  or  $P_A$  which contains at least  $2^{k-1}$  pebbles. So, we can put a pebble at  $v_0$  and we are done.

**Case** (2B)  $C_m$  contains  $x < \sigma(C_m)$  pebbles.

There are at least  $2\sigma(C_m) - x$  pebbles at  $v_{p_1}$ . From these pebbles, we can send

$$\left\lfloor \frac{2\sigma(C_m) - x - 1}{2} \right\rfloor \text{ pebbles to } v_0.$$
  
That is, 
$$\left\lfloor \frac{2\sigma(C_m) - (x+1)}{2} \right\rfloor = \sigma(C_m) - \left\lfloor \frac{x+1}{2} \right\rfloor$$
  
Now,  $C_m$  has at least  $x + \sigma(C_m) - \left\lfloor \frac{x+1}{2} \right\rfloor \ge \sigma(C_m)$  pebbles and we are

done.

Thus  $\sigma(L(m, 2)) \le 2 \sigma(C_m)$ . Therefore,  $\sigma(L(m, 2)) = 2 \sigma(C_m)$ , if m=2k and k is odd.

**Theorem 3.3** *Let* L(m,n) *be a Lollipop graph where*  $m = 2k \ge 4$  *and*  $n \ge 3$ *. Then*  $\sigma(L(m,n)) =$ 

$$\begin{cases} 2^{n-1}\sigma(C_m) + \sigma(P_n), & \text{if } m = 2k \text{ with } k \ge 2 \text{ is even} \\ 2^{n-1}\sigma(C_m) + \sigma(P_{n-1}), & \text{otherwise} \end{cases}$$

**Proof.** Consider the Lollipop graph L(m,n) where  $m = 2k \ge 4$  and  $n \ge 3$ .

**Case1** Let m = 2k with  $k \ge 2$  is even and  $n \ge 3$ . Consider the distribution of  $2^{n-1}\sigma(C_m)+\sigma(P_n)-1$  pebbles on the vertex  $v_{p_{n-1}}$ . Clearly we cannot cover at least one of the edges of L(m, n). Thus,  $\sigma(L(m, n)) \ge 2^{n-1}\sigma(C_m)+\sigma(P_n)$ . Now, consider the distribution of  $2^{n-1}\sigma(C_m) + \sigma(P_n)$  pebbles on L(m, n).

#### **Case** (1A) $C_m$ contains $\sigma(C_m)$ or more pebbles.

If  $P_n$  contains  $\sigma(P_n)$  pebbles then we are done. So assume that  $P_n$  contains less than  $\sigma(P_n)$  pebbles. So,  $C_m$  contains at least  $2^{n-1} \sigma(C_m) + \sigma(P_n) - (\sigma(P_n) - 1) = 2^n$  $^{-1}\sigma(C_m) + 1$  pebbles. From these pebbles we used at most  $\sigma(C_m)$  pebbles to cover the edges of  $C_m$ . We have at least  $(2^{n-1} - 1) \sigma$  ( $C_m$ ) + 1 pebbles in  $C_m$  to cover the edges of  $P_n$ . Now, consider the paths  $P_A : v_0v_1 \dots v_{k-2}v_{k-1}$  and  $P_B : v_kv_{k+1} \dots v_{2k-1}$ . Now we see that either  $P_A$  or  $P_B$  contains

$$\left[\frac{(2^{n-1}-1)\sigma(C_m)}{2}\right] + 1 \text{ pebbles.}$$
  
Then we claim that, 
$$\left[\frac{(2^{n-1}-1)\sigma(C_m)}{2}\right] + 1 \ge 2^{k-1} \sigma(P_n)$$

Suppose not, then.

$$\left[\frac{(2^{n-1}-1)\sigma(C_{m})}{2}\right] + 1 < 2^{k-1} \sigma(P_{n})$$
That is,  $\left[\frac{(2^{n}-2)\sigma(P_{k+1})}{2}\right] + 1 < 2^{k-1} \sigma(P_{n})$ 
That is,  $\left[\frac{(2^{n}-2)}{2}\left(\frac{2^{k+1}-2}{3}\right)\right] + 1 < 2^{k-1} \sigma(P_{n})$ 
That is,  $\left[\frac{(2^{n}-2)}{3}\left(\frac{2^{k+1}-2}{2}\right)\right] + 1 < 2^{k-1} \sigma(P_{n})$ 

That is, 
$$\left[\left(\frac{2^n-2}{3}\right)(2^k-1)\right]+1 < 2^{k-1}\left\lfloor\frac{2^n-1}{3}\right\rfloor$$

which is a contradiction, since  $k \ge 2$  and  $n \ge 3$ .

So, either  $P_A$  or  $P_B$  contains at least  $2^{k-1}\sigma(P_n)$  pebbles. If  $P_A$  contains  $2^{k-1}\sigma(P_n)$  pebbles then we are done (since  $l(P_A) = k - 1$  and  $v_0 \in P_A$ ). So, assume that  $P_B$  contains at least  $2^{k-1}\sigma(P_n)$  pebbles. Also, note, if  $P_B$  contains  $2^k\sigma(P_n)$  pebbles then we are done. So, assume  $P_B$  contains less than  $2^k\sigma(P_n)$  pebbles. This implies that  $P_A$  contains at least  $(2^{n-1} - 1)\sigma(C_m) + 1 - (2^k\sigma(P_n) - 1)$ 

$$= (2^{n-1} - 1)\sigma(C_m) - 2^k \sigma(P_n) + 2$$
 pebbles

But,

$$(2^{n-1} - 1)\sigma(C_m) - 2^k \sigma(P_n) + 2$$
  
=  $(2^{n-1} - 1) [2\sigma(P_{k+1})] - 2^k \sigma(P_n) + 2$  since m = 2k and k is even

$$= \begin{cases} (2^{n}-2)\left(\frac{2^{k+1}-2}{3}\right) - 2^{k}\left(\frac{2^{n}-1}{3}\right) + 2 \text{ if } n \text{ is even} \\ (2^{n}-2)\left(\frac{2^{k+1}-2}{3}\right) - 2^{k}\left(\frac{2^{n}-2}{3}\right) + 2 \text{ if } n \text{ is odd} \end{cases}$$

$$= \begin{cases} \left(\frac{2^{n}-2}{3}\right)(2.2^{k}-2-2^{k})-\frac{2^{k}}{3}+2, & \text{if } n \text{ is even} \\ \left(\frac{2^{n}-2}{3}\right)(2.2^{k}-2-2^{k})+2, & \text{if } n \text{ is odd} \end{cases}$$

$$= \begin{cases} \left(\frac{2^{n}-2}{3}\right)(2^{k}-2) - \frac{2^{k}}{3} + 2, & \text{if } n \text{ is even} \end{cases}$$
$$= \left\{ \left(\frac{2^{n}-2}{3}\right)(2^{k}-2) + 2, & \text{if } n \text{ is odd} \end{cases}$$
$$\ge \left(\frac{2^{n}-2}{3}\right)(2^{k}-2) - \frac{2^{k}}{3}$$
So we can send at least
$$\left| \frac{\left(\frac{2^{n}-2}{3}\right)(2^{k}-2)}{2^{k-1}} - \frac{2^{k}}{3 \cdot 2^{k-1}} \right| \text{ pebbles} \end{cases}$$

to  $v_0$ 

That is, we send at least 
$$\left[ \left( \frac{2^n - 2}{3} \right) \left( 2 - \frac{2}{2^{k-1}} \right) - \frac{2}{3} \right]$$

$$\geq \left\lfloor \left( \frac{2^n - 2}{3} \right) - \frac{2}{3} \right\rfloor$$
 pebbles to v<sub>0</sub> where the inequality follows since k

 $\geq 2.$ 

So, the minimum number of pebbles that we send to  $v_0$  is

$$\left[\frac{2^n-4}{3}\right] = \left\lfloor 4\left(\frac{2^{n-2}-1}{3}\right) \right\rfloor$$

$$\geq 4 \left\lfloor \frac{2^{n-2} - 1}{3} \right\rfloor$$
$$\geq 4 \sigma (P_{n-2})$$
$$= 2\sigma(P_{n-2}) + 2\sigma(P_{n-2})$$
$$\geq 2 \sigma(P_{n-2}) + 2$$

=  $\sigma(P_{n-1})$  + 1, where the last inequality follows since  $\sigma(P_n)$  = 2  $\sigma(P_{n-1})$  + 1 or  $2\sigma(P_{n-1})$ 

So, we send 
$$\sigma(P_{n-1}) + 1$$
 pebbles to  $v_0$  from  $P_A$ . Also we send  $\left\lfloor \frac{\sigma(P_n)}{2} \right\rfloor \ge \sigma(P_{n-1})$  pebbles to  $v_0$  from  $P_B$ . Thus we have  $2 \sigma(P_{n-1}) + 1$  pebbles at  $v_0$  and we are done.

**Case** (1B)  $C_m$  contains  $x < \sigma(C_m)$  pebbles.

There are at least  $2^{n-1} \sigma(C_m) + \sigma(P_n) - x$  pebbles on  $P_n$ . From these we use  $\sigma(P_n)$  pebbles to cover the edges of  $P_n$ . Now we have at least  $2^{n-1} \sigma(C_m) - x$  pebbles in  $P_n$ . We have to use these pebbles to cover the edges of  $C_m$ . From these pebbles,

we can send 
$$\frac{(2^{n-1})\sigma(C_m) - x}{2^{n-1}}$$
 pebbles to v<sub>0</sub>.

That is, v<sub>0</sub> has at least 
$$\sigma(C_m) - \frac{x}{2^{n-1}}$$
 pebbles.

Now, 
$$C_m$$
 contains at least  $x + \sigma(C_m) - \frac{x}{2^{n-1}} \ge \sigma(C_m) + x - \frac{x}{4} \ge \sigma(C_m)$ 

pebbles, since  $n \ge 3$  and so we are done.

Thus,  $\sigma(L(m,\,n)) \leq 2^{n-1} \sigma(C_m \,) + \, \sigma(P_n)$  .

Therefore,  $\sigma(L(m, n)) = 2^{n-1}\sigma(C_m) + \sigma(P_n)$ , if m=2k and k is even.

**Case (2)** Let m = 2k with  $k \ge 3$  is odd and  $n \ge 3$ . Consider the distribution of placing all the  $2^{n-1} \sigma(C_m) + \sigma(P_{n-1}) - 1$  pebbles

on  $v_{p_{n-1}}$ . Clearly we cannot cover at least one of the edges of L(m, n).

Thus  $\sigma(L(m, n)) \ge 2^{n-1} \sigma(C_m) + \sigma(P_{n-1})$ 

Now, consider the distribution of  $2^{n-1} \sigma(C_m) + \sigma(P_{n-1})$  pebbles on L(m, n).

**Case (2A)**  $C_m$  contains at least  $\sigma(C_m)$  pebbles. If  $P_n$  contains  $\sigma(P_n)$  or more pebbles then we are done. So, assume that  $P_n$  contains less than  $\sigma(P_n)$  pebbles. This implies that  $C_m$  contains at least  $2^{n-1} \sigma(C_m) + \sigma(P_{n-1}) - (\sigma(P_n) - 1)$  pebbles.

That is, the minimum number of pebbles that C<sub>m</sub> has is,

$$\begin{cases}
2^{n-1}\sigma(C_m) + \sigma(P_{n-1}) - \sigma(P_n) + 1 \\
= \\
\begin{cases}
2^{n-1}\sigma(C_m) + \sigma(P_{n-1}) - (2\sigma(P_{n-1}+1) + 1, \text{ if n is even}) \\
2^{n-1}\sigma(C_m) + \sigma(P_{n-1}) - (2\sigma(P_{n-1}) + 1, \text{ if n is odd})
\end{cases}$$

$$=\begin{cases} 2^{n-1}\sigma(C_m) - \sigma(P_{n-1}) \text{ if n is even} \\ 2^{n-1}\sigma(C_m) - \sigma(P_{n-1}) + 1 \text{ if n is odd} \\ \ge 2^{n-1}\sigma(C_m) - \sigma(P_{n-1}). \end{cases}$$

From these pebbles, we use  $\sigma(C_m)$  pebbles to cover the edges of  $C_m$ . Consider the paths  $P_A : v_0v_1v_2 \dots v_{k-2}v_{k-1}$  and  $P_B : v_kv_{k+1} \dots v_{2k-1}$  of length k - 1 each. Then any one of the paths contains at least

$$\left[\frac{(2^{n-1}-1)\sigma(C_m) - \sigma(P_{n-1})}{2}\right]$$
 pebbles.

That is, either P<sub>A</sub> or P<sub>B</sub> contains at least,

$$\frac{(2^{n-1}-1)\sigma(C_m)-\sigma(P_{n-1})}{2} \ge 2^{k-1}\sigma(P_n) \text{ pebbles.}$$

Suppose not, then,

$$\frac{(2^{n-1}-1)\sigma(C_m) - \sigma(P_{n-1})}{2} < 2^{k-1}\sigma(P_n)$$
That is,
$$\left[\frac{3\left(\frac{2^{n-1}-1}{3}\right)\sigma(C_m) - \left(\frac{2^{n-1}-1}{3}\right)}{2}\right] < 2^{k-1}\sigma(P_n)$$
That is,
$$\left[\left(\frac{2^{n-1}-1}{3}\right)\left(\frac{3\sigma(C_m) - 1}{2}\right)\right] < 2^{k-1}\sigma(P_n)$$
That is,
$$\left[\left(\frac{2^{n-1}-1}{3}\right)\left(\frac{3(2.\sigma(P_k+1)-1) - 1}{2}\right)\right] < 2^{k-1}\sigma(P_n)$$

(since m = 2k and k is odd)

That is, 
$$\left[\left(\frac{2^{n-1}-1}{3}\right)\left(\frac{2(3.\sigma(p_{k+1}))-4}{2}\right)\right] < 2^{k-1}\sigma(P_n)$$
  
That is, 
$$\left[\left(\frac{2^n-2}{3}\right)\left(\frac{3(2^{k+1}-1)}{2(3)}-1\right)\right] < 2^{k-1}\sigma(P_n) \text{ (since k is)}$$

odd)

That is, 
$$\left[\left(\frac{2^{n}-2}{3}\right)\left(2^{k+1}-\frac{3}{2}\right)\right] < 2^{k-1}\sigma(P_{n}) = 2^{k-1}\left[\frac{2^{n}-1}{3}\right]$$

which is a contradiction, since  $k \ge 3$  is odd and  $n \ge 3$ .

If  $P_A$  contains at least  $2^{k-1}\sigma(P_n)$  pebbles, then we are done, since  $l(P_A) = k-1$ .So we assume that  $P_B$  contains at least  $2^{k-1}\sigma(P_n)$  pebbles. Also, note that if  $P_B$  contains  $2^k\sigma(P_n)$  pebbles then we are done, since  $l(P_B \cup \{v_0\}) = k$ ). Assume that  $P_B$  contains less than  $2^k\sigma(P_n)$  pebbles. Then the minimum number of pebbles that  $P_A$  has is,

$$(2^{n-1}-1)\sigma(C_m) - \sigma(P_{n-1}) - (2^k\sigma(P_n)-1)$$

$$= \begin{cases} (2^{n-1}-1)\sigma(C_m) - \sigma(P_{n-1}) - 2^k (2\sigma(P_{n-1})+1) + 1 \text{ if } n \text{ is even} \\ (2^{n-1}-1)\sigma(C_m) - \sigma(P_{n-1}) - 2^k (2\sigma(P_{n-1})+1 \text{ if } n \text{ is odd} \end{cases}$$
  
$$\geq (2^{n-1}-1)\sigma(C_m) - \sigma(P_{n-1}) - 2^{k+1}\sigma(P_{n-1}) \\ = (2^{n-1}-1)\sigma(C_m) - (1+2^{k+1})\sigma(P_{n-1}) \\ = \left(\frac{2^{n-1}-1}{3}\right) [3(2\sigma(P_{k+1})-1] - (2^{k+1}+1) \left\lfloor \frac{2^{n-1}-1}{3} \right\rfloor \\ \geq \left(\frac{2^{n-1}-1}{3}\right) [2(2^{k+1}-1)-3] - (2^{k+1}+1) \\ = \left(\frac{2^{n-1}-1}{3}\right) [(2^{k+1}-6)] = 2\left(\frac{2^{n-1}-1}{3}\right) (2^k-3). \end{cases}$$

Thus the minimum number of pebbles that we can send to  $v_0$  is,

$$\left| \frac{2\left(\frac{2^{n-1}-1}{3}\right)\left(2^{k}-3\right)}{2^{k-1}} \right|$$

$$= \left\lfloor 2\left(\frac{2^{n-1}-1}{3}\right)\left(2-\frac{3}{2^{k-1}}\right)\right\rfloor \ge \left\lfloor 2\left(\frac{2^{n-1}-1}{3}\right)\left(\frac{5}{4}\right)\right\rfloor$$
$$= \frac{5}{2}\left\lfloor \frac{2^{n-1}-1}{3}\right\rfloor \ge 2\sigma(P_{n-1})$$

 $\geq \sigma(P_{n-1}) + 1$  where the second inequality follows since k $\geq 3$ .

Also we can send  $\left\lfloor \frac{\sigma(P_n)}{2} \right\rfloor \ge \sigma(P_{n-1})$  pebbles to  $v_0$  from the path  $P_B$ . So, we have at least  $2\sigma(P_{n-1}) + 1$  pebbles at  $v_0$ . Thus we have enough pebbles to cover the edges of the path  $P_n$  and we are done.

**Case** (2B)  $C_m$  contains  $x < \sigma(C_m)$  pebbles.

There are  $2^{n-1}\sigma(C_m) + \sigma(P_{n-1}) - x$  pebbles on  $P_n$ . we use  $\sigma(P_n)$  pebbles to cover the edges of  $P_n$ . The number of pebbles remaining on  $P_n$  for the purpose of covering the edges of  $C_m$  is  $2^{n-1}\sigma(C_m) + \sigma(P_{n-1}) - x - \sigma(P_n)$ 

$$\geq 2^{n-1}\sigma(C_m) + \sigma(P_{n-1}) - x - (2\sigma(P_{n-1}) + 1)$$
$$= 2^{n-1}\sigma(C_m) - \sigma(P_{n-1}) - (x + 1)$$

So, the minimum number of pebbles that we can send to  $v_0$  is,

$$\left| \frac{2^{n-1} \sigma(C_m) - \sigma(P_{n-1}) - (x+1)}{2^{n-1}} \right|$$
  

$$\geq \left| \sigma(C_m) - \frac{2^{n-1} - 1}{3 \cdot 2^{n-1}} - \frac{(x+1)}{2^{n-1}} \right|$$
  

$$\geq \left| \sigma(C_m) - \frac{1}{3} - \frac{1}{3 \cdot 2^{n-1}} - \frac{x+1}{4} \right|$$

$$\geq \left\lfloor \sigma(C_m) - \frac{x}{4} - \frac{7}{12} \right\rfloor$$

Now, the minimum number of pebbles that C<sub>m</sub> has is,

$$x + \sigma(C_{m}) - \left\lfloor \frac{x}{4} + \frac{7}{12} \right\rfloor$$
$$\geq \sigma(C_{m}) + \left( \frac{3x}{4} - \frac{7}{12} \right)$$

 $\geq \sigma(C_m)$ , where the last inequality follows since x > 0. So, we are done.

Thus, 
$$\sigma(L(m, n)) \leq 2^{n-1} \sigma(C_m) + \sigma(P_{n-1})$$
.

Therefore,  $\sigma(L(m, n)) = 2^{n-1}\sigma(C_m) + \sigma(P_{n-1})$ .

### References

- [1] F.R.K. Chung, Pebbling in hypercubes, *SIAM J. Discrete Math*, 2(4) (1989), 467-472.
- [2] Crull, Cundiff, Feltman, Hulbert, Pudwell, Szaniszlo and Tuza, *The Cover Pebbling Number of Graphs*, (Preprint).
- [3] G. Hulbert, A survey of graph pebbling, *Congressus Numerantium*, 139 (1999), 41-64.
- [4] K.M. Kathiresan and G. Marimuthu, Superior domination in graphs, *Utilitas Mathematica*, 76 (2008), 173-182.
- [5] A. Lourdusamy and A. PunithaTharani, Covering cover pebbling number, *Utilitas Mathematica*, 78 (2009), 41-54.
- [6] A. Lourdusamy and A. Punitha Tharani, Covering cover pebbling number of hypercube and diameter d graphs, *Journal of the Korea Society of Mathematical Education Series B, The Pure and Applied Mathematics*, 15(2) (40), May 2008.
- [7] A. Lourdusamy and S. Somasundaram, Pebbling C<sub>5</sub>xC<sub>5</sub> using linear programming, *Journal of Discrete Mathematical Sciences and Cryptography*, 4(1) (2001), 1-15.
- [8] C. Xavier and A. Lourdusamy, Pebbling number in graphs, *Pure and Applied Mathematika Sciences*, XLIII(1-2) (1996), 73-79.