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Abstract 

     The complexity of a finite object was introduced by A. Kolmogorow and V. 
Tihomirov in [1] and it was conjectured that for  actions the complexity 
coincides with topological entropy [2]. In the present paper we introduce 
complexity for actions and prove the Kolmogorow assertion for continuous 
actions of Z. Then we study the variational principle and complexity for group 

actions.  
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1 Introduction 
 
In dynamical systems and ergodic theory, the topological entropy describes the 
complexity of a system. Topological entropy is an invariant for equivalent 
homeomorphisms [3, 4]. 
 
Recently Lewis Bowen introduced a collection of entropy invariants for measure-
preserving actions of countable sofic group a standard probality space admitting a 
generating rotation with finite entropy [5]. Given Bowen’s work, it is natural to 
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ask whether there exist analogous invariants for continuous actions of a countable 
sofic group on a compact metrizable space, and if so whether they are connected 
to Bowen’s measure entropy via a variational principle [6].   
 
It is well known that topological entropy is an invariant of topological conjugacy. 
If the topological entropy is positive, the system is complexity and chaotic. If the 
entropy is zero, the system is rather simple. However from the theory and 
application, there still exists relatively complex and chaotic behavior. Therefore, 
for more general research on complexity of a system. This idea was firstly 
introduced in the research of ergodic theory and then in symbolic dynamical 
systems [7, 8] by Frerenczi. 
 
The entropy theory of dynamical systems originated in the papers of A.N. 
Kolmogorov in the fifties. Topological entropy which is the analog of metric 
entropy in topological dynamics was introduced by Adler, Konheim and 
McAndrew [6]. The conjecture was made there that the topological entropy 
coincides with the least upper bound of the metric entropies over the set of all 
invariant Borel probability measure. This assertion which has been called the 
variational principle (VP) was proved by Dinaburg for homeomorphisms of finite 
dimensional compact [9]. 

 
In recent years, there have been a number of papers about the combinatorial 
notion of symbolic complexity: this is the function counting the number of factors 
of length  for a sequence. The complexity is an indication of the degree of 
randomness of the sequence: a periodic sequence has a bounded complexity, the 
expansion of a normal number has an exponential complexity. For a given 
sequence, the complexity function is generally not of easy access, and it is a rich 
and instructive work to compute it; a survey of this kind of results can be found in 
[10]. 
 

2 The Complexity for   Actions       
                                                                                                                                                                                                                          
In [11], Tagi-zade and Fayziev are defined the notion of complexity of 
configuration  from the space , i.e. the minimal account of information 
necessary for the restoration (decoding) of this configuration. The notion of 
complexity of finite object was introduced by A. Kolmogorov [12]. By this 
definition the complexity of finite object  from the set of finite objects  related 
to the algorithm  defined on the set of finite words   and taking values in 

 is the quantity 
  

)=  

 
Where  is the length of finite words . 
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The notion of trajectorial complexity for an action of  basing on the symbolic 
dynamical ideas from one and a notion of Kolmogorov complexity from other was 
given works of A. Levin and A. Brudno [13, 14]. In [15] A. Tagizade gave an 
approach for construction the complexity notion in case of non-abelian groups 
actions and in [16] this approach was generalized to the countable and continuous 
amenable groups actions. 
 
Let us introduce the notions we need. Let  be a finite set of 
symbols, (alphabet); 
 

 
 
be the space of configurations with Tychcnoff topology, σ be the shift in this 
configuration space: 
 

=  ,  
 
Definition 2.1: A Dynamical system  is a symbolic on  , if  is the σ-
invariant closed subset of Ω and  is the restriction of σ to . 
 
Now we define the complexity of the configuration spaces of the symbolic 
dynamical system  
 
Definition 2.2: For an arbitrary finite subset  of  we denote by  the set of 
stamps (configuration) on . Every point = ( , ϵ . On this set  is 
called a configuration stamp. 
 
Let  be an algorithm defined on some subset of a space of all finite 

words and taking values in the set of all finite words of Ω. By  we 
denote the number of elements in the finite word in the {0,1}—alphabet. 
Following the definition of the Kolmogorow asymptotic complexity [12].  

 
Now we define the complexity ) of the stamp  relatively to the program  
P: 
 

)=  . 

 
Now we define the complexity  for the configuration   relatively to 
the program: 
 

 = ) , 

 
where ={(  . 
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Now let   define the complexity of the configuration space  relatively to 
the program  as: 

 
 = ) . 

 
Let  be such a program that for an arbitrary program  we have a constant 

 such that for every stamp  the inequality 
 

 
 
holds. 
 
We call this program  the asymptotical optimal program. The existence of such a 
program  was proved. 
 
Proposition 2.3: For every symbolic  and arbitrary optimal programs  
and , 
 

(X) = (X) [17]. 
  

3 Varational  Principle 
 
We introduce the concept and definitions needed. Let  be a continuous action of 
the  group with   lattice . We denote   the collection of all compact subsets 
of the -group with lattice . 
 
Let   be the set of all finite open covering of the topological space . For an 
action T of the  -group with lattice L on the compacts metric space. We denote 
by ),( TXℜ  the set of all T-invariant Borel normalized measure . Further let 

 be the set of all finite measure partitions of space  Β). 
 
Definition 3.1: This is map  which is continuous and such that for 

 and  the equality ).( 21 12 xTTxT gggg =  Let ∞
=1}{ nnℓ  be sequence 

of monoton growing to . For  let 
 

( ){ }./ nn LGF ℓ=  

 

For a finite subset  of the group with lattice  and  we 
set  

.,)(1









∈∈≠=
∈

− KgACTA gi
A

Kg

gK φ∩  
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We have that . 

For  we denote by  the set of all sequences  from    

satisfying the following condition   for  
 
We have 
 

),(suplim)(
1

nK
n

n

K AHFTh µµ
−

∞→
=  

 
Here 
 

∑−= )(log)()( aaAH µµµ  

is the entropy function; 
 

).,(sup)(

),(sup)(

)(

)(
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Definition 3.2: The conditional entropy function for ),( TXℜ∈µ and 
partitions  is 
    

∑∑
∈ ∈

−=
1 2

)(log)()|( 21
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j
A

i
A
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j
A

i
A CCCCAAH µµµ . 

 
Definition 3.3: The following equivalent we will vibrational principle (VP) the for 
topological entropy 
  

 
 
In this section we prove the relationship between  topological entropy and the 
complexity for group actions  i.e.: 
 

 
 

The proof for the following theorem is inspired on Misiurewicz proof of the 
variational principle, presented for example in heorem 8.6 of  [18]. 
 
Lemma 3.4: Let  be a sembolic daynamical system,  a 
homeomorphism,   an separated set. Then  
 

. 
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Theorem 3.5: Let ( ) be a symbolic system on  . Then, 
 

 
 
Proof: Let the complexity  of the space be finite and equal to . So we 
have       

 
 
Then let  be an arbitrary number. There is some such that  
 

a  

 
So we have  
 

a                                                                                  (3.1) 
 
The inequality shows us that the number of different restrictions of points of on 
the set is not bigger than  
 
To prove this, we can write from the definition,  
                     

 
 

 
 
for any P program all. Now we will find some set such that  
 

 and  
 
where   We have  

 
  

 

Let us fix  We will show that  
 

 
 
Let us take . From the definition of  we have 
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sup  
 
So there is some finite word,  sup such that 

 =  
 

 . 
 
Now we will show that  
 

 
 
Indeed, from (3,1) we have  
 

. 
 
Thus, 
 

Card  

 
 

 
 
So we have 
 

.                                                                       (3.2) 
 
To finish the proof of the theorem we need first some facts about topological 
entropy. 
 
Theorem 3.6: Let  be a symbolic dynamical system. Then 
 

 
 
where  [1]. 
 
Proof: From Theorem 3.6, Lemme 3 4 and (3.2) we have 
 

 
 
and then 
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Hence 
 

. 
 
Now we will prove the inverse inequality. Let . Then for  there 
exists 
  

 such that  we can write 
 

 
 

 
 

. 
 
Now let us fix some  . For this  we can define some finite program P such 
that it is defined on the finite word 
 

 
 
and can give us all the finite restriction the space X on . Now will continue the 
program P in the following way: 
 
One will divide the big cube  into |  domains every part of which is 
equal to  and now the program P on each domain of the big cube. Certainly this 
program P will be defined on the {0,1} words with length not bigger than  
 

. 

 
Thus, the complexity of the space X relatively to this program P is not bigger than 

. Because of that complexity for an arbitrary asymptotically program. P  
will not than be bigger than b. 
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